final report

October 14, 2021

Traffic Impact Study

Apartments 3223 & 3325 Freys Hill Road Louisville, KY

Prepared for

Louisville Metro Planning Commission

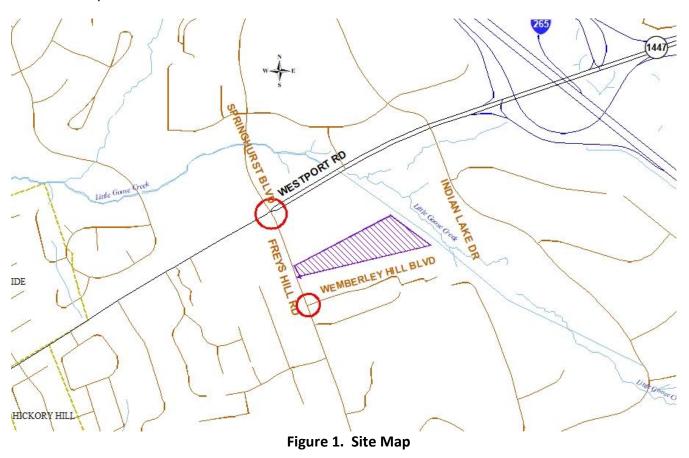


Table of Contents

INTRODUCTION	2
Figure 1. Site Map	2
EXISTING CONDITIONS	2
Figure 2. Existing Peak Hour Volumes	3
FUTURE CONDITIONS	3
Figure 3. 2024 Peak Hour No Build Volumes	4
TRIP GENERATION	4
Table 1. Peak Hour Trips Generated by Site	5
Figure 4. Trip Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	6
Figure 6. Build Peak Hour Volumes	7
ANALYSIS	7
Table 2. Peak Hour Level of Service	8
CONCLUSIONS	8
ADDENDIV	0

INTRODUCTION

The development plan for an apartment community on Freys Hill Road in Louisville, KY shows 312 apartment units. **Figure 1** displays a map of the site. Access to the community will be from two entrances on Freys Hill Road. The northern entrance is a shared access and will primarily provide emergency access to the development. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study, the impact area was defined to be the intersections of Freys Hill Road with Westport Road and the proposed entrances on Freys Hill Road.

EXISTING CONDITIONS

Freys Hill Road is a Metro-maintained road with an estimated 2021 ADT of 4,500 vehicles per day between the Wemberley Hill Boulevard and Westport Road, as estimated from the turning movement count at Wemberley Hill Boulevard. The road has two nine-foot lanes and a one-foot shoulder. The speed limit is 35 mph. There is a sidewalk on the east side. The intersection with Westport Road is controlled with a traffic signal. There are left turn lanes on each approach at the intersection.

Peak hour traffic count for the intersections were obtained on August 24, 2021. The a.m. peak was 7:45 to 8:45 and the p.m. peak hour was 4:45 to 5:45 p.m. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes. The Appendix contains the full count data.

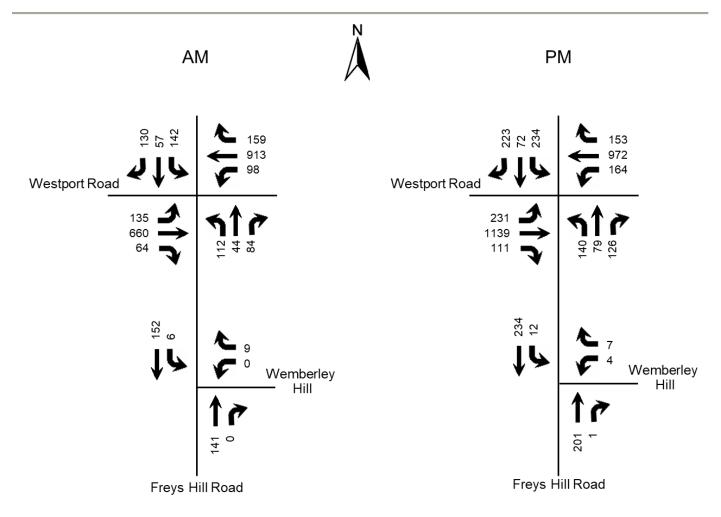
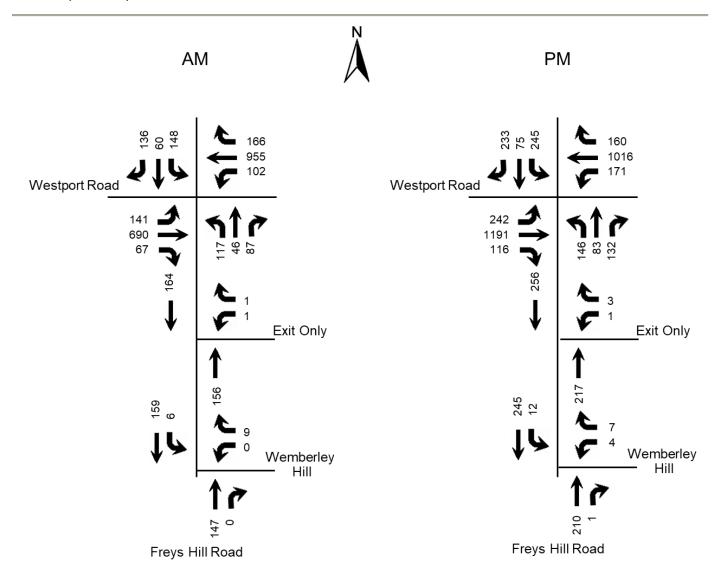
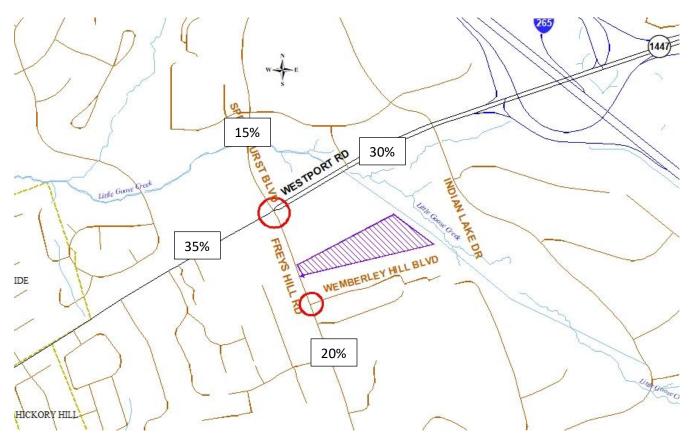


Figure 2. Existing Peak Hour Volumes

FUTURE CONDITIONS

The project completion date is 2024. A review of the Kentucky Transportation Cabinet count stations in the vicinity (095 and 096) revealed moderate growth had occurred. An annual growth rate of 1.5% was selected and applied. Trip generation for 45,764 square feet of mini-warehouse storage has been included on the existing driveway serving 3331 Freys Hill Road. This access driveway is exit only for the storage facility. **Figure 3** illustrates the 2024 traffic volumes without the development.




Figure 3. 2024 Peak Hour No Build Volumes

TRIP GENERATION

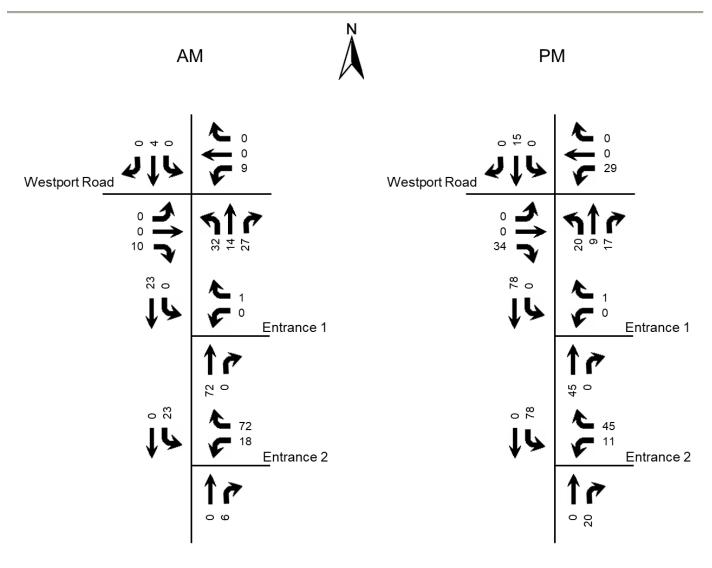

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 11th Edition contains trip generation rates for a wide range of developments. The land use of "Multifamily Housing Low-Rise (220)" was reviewed and determined to be the best match. The trip generation results are listed in **Table 1**. The trips were assigned to the highway network with the percentages shown in **Figure 4**. **Figure 5** shows the trips generated by this development and distributed throughout the road network during the peak hours. **Figure 6** displays the individual turning movements for the peak hours when the development is completed.

Table 1. Peak Hour Trips Generated by Site

	A.M. I	Peak	Hour	P.M. F	Peak	Hour
Land Use	Trips	In	Out	Trips	In	Out
Multifamily Housing Low-Rise (312 units)	120	29	91	155	98	57

Figure 4. Trip Distribution Percentages

Freys Hill Road Freys Hill Road

Figure 5. Peak Hour Trips Generated by Site

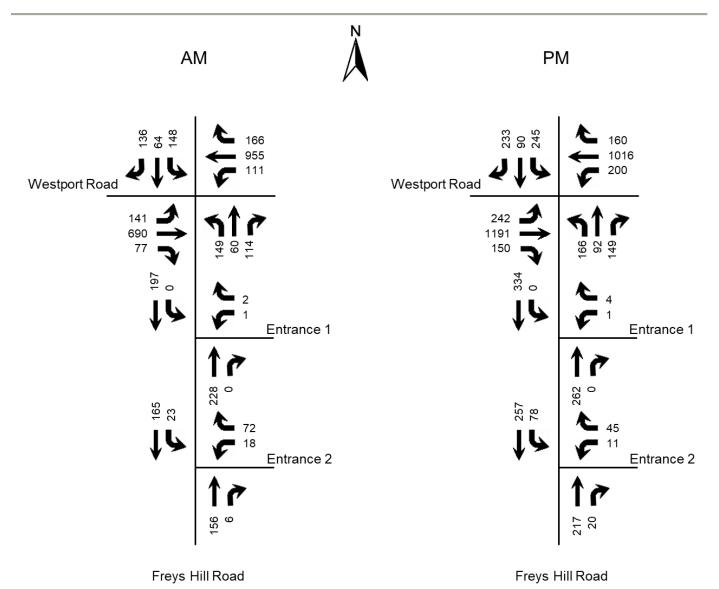


Figure 6. Build Peak Hour Volumes

ANALYSIS

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service". Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst. Level of Service results depend upon the facility that is analyzed. In this case, the Level of Service is based upon the total delay experienced at an intersection.

To evaluate the impact of the proposed development, the vehicle delays at the intersections were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 6th edition. Future delays and Level of Service were determined for the intersections using the HCS Streets (version 7.9.5) software. The delays and Level of Service are summarized in **Table 2**. The a.m. build results reflect an additional 2 seconds of green time for the Freys Hill approach.

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Approach	2021 Existing	2024 No Build	2024 Build	2021 Existing	2024 No Build	2024 Build
Westport Road at Freys Hill Road	C 29.1	C 30.3	D 35.1	D 35.2	D 37.3	D 41.3
Westport Pood Easthound	В	B	C	C	C C	C C
Westport Road Eastbound	17.7	18.7	21.6	28.8	30.9	32.6
Westport Road Westbound	В	В	С	В	С	С
Westport Road Westbourid	14.4	15.8	21.6	18.5	21.2	27.8
Freys Hill Road Northbound	Е	Е	Е	Е	Е	Е
Treys Tilli Road Northbodild	76.6	77.4	79.1	72.9	73.9	76.8
Springhurst Boulevard Southbound	Е	Е	Е	Е	Е	Е
Springharst Bodievard Southboding	67.2	66.7	66.8	69.2	68.9	70.7
Freys Hill Road at Entrance 1						
Entrance Westbound			В			В
Entrance Westboard			10.4			10.8
Freys Hill Road Southbound			Α			Α
			7.8			7.9
Freys Hill Road at Entrance 2						
Entrance Westbound			В			В
2			10.3			11.5
Freys Hill Road Southbound			Α			Α
1 Toyo Tilli Noda Goddibodila			7.6			8.0

Key: Level of Service, Delay in seconds per vehicle

The entrance was evaluated for turn lanes using the Kentucky Transportation Cabinet <u>Highway Design Guidance</u> <u>Manual</u> dated July, 2020. Using the volumes in Figure 6, the volume warrant is met for a left turn lane.

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2024, there will be a minimal impact to the existing highway network, with the signalized intersection continuing to operate at acceptable levels of service. A left turn lane will be provided at the entrance.

APPENDIX

Traffic Counts

Marr Traffic DATA COLLECTION

www.marrtraffic.com

Jefferson County, KY

Site 1 of 2 Freys Hill Rd Springhurst Blvd KY-1447 Westport Rd (West) KY-1447 Westport Rd (East)

Date

Tuesday, August 24, 2021

Weather Fair 87°F

Lat/Long 38.293693°, -85.559210°

0700 - 0900 (Weekday 2h Session) (08-24-2021)

All vehicles

		No	orthbou	nd			So	uthbou	nd			E	astbour	nd			W	estbou	nd		
		Fr	eys Hill	Rd			Spri	nghurst	Blvd		KY	′-1447 W	/estport	Rd (Wes	st)	K	Y-1447 V	Vestpor	t Rd (Eas	t)	
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	1.1	1.2	1.3	1.4	Total	1.5	1.6	1.7	1.8	Total	1.9	1.10	1.11	1.12	Total	1.13	1.14	1.15	1.16	Total	Total
0700 - 0715	14	3	12	0	29	12	3	9	0	24	13	131	12	0	156	13	247	7	0	267	476
0715 - 0730	17	5	22	0	44	19	3	25	0	47	24	118	10	0	152	14	235	14	0	263	506
0730 - 0745	9	8	19	0	36	14	2	13	0	29	29	173	11	0	213	17	217	33	0	267	545
0745 - 0800	24	19	23	0	66	46	12	48	0	106	40	203	16	0	259	29	249	70	0	348	779
Hourly Total	64	35	76	0	175	91	20	95	0	206	106	625	49	0	780	73	948	124	0	1145	2306
0800 - 0815	34	9	13	0	56	43	16	37	0	96	32	161	14	0	207	20	200	27	0	247	606
0815 - 0830	25	8	30	0	63	25	13	23	0	61	33	145	23	0	201	29	244	30	0	303	628
0830 - 0845	29	8	18	0	55	28	16	22	0	66	30	151	11	0	192	20	220	32	0	272	585
0845 - 0900	23	11	20	0	54	27	12	24	0	63	48	145	20	0	213	24	255	43	0	322	652
Hourly Total	111	36	81	0	228	123	57	106	0	286	143	602	68	0	813	93	919	132	0	1144	2471
Grand Total	175	71	157	0	403	214	77	201	0	492	249	1227	117	0	1593	166	1867	256	0	2289	4777
Approach %	43.42	17.62	38.96	0.00	-	43.50	15.65	40.85	0.00	-	15.63	77.02	7.34	0.00	-	7.25	81.56	11.18	0.00	-	
Intersection %	3.66	1.49	3.29	0.00	8.44	4.48	1.61	4.21	0.00	10.30	5.21	25.69	2.45	0.00	33.35	3.47	39.08	5.36	0.00	47.92	
PHF	0.82	0.58	0.70	0.00	0.91	0.77	0.89	0.68	0.00	0.78	0.84	0.81	0.70	0.00	0.83	0.84	0.92	0.57	0.00	0.84	0.83
		•	•						•			•	•								1

1600 - 1800 (Weekday 2h Session) (08-24-2021) All vehicles

		No	orthbou	nd			Sc	uthbou	nd			E	astboun	ıd			W	'estboui	nd		1
		Fr	eys Hill	Rd			Spri	nghurst	Blvd		KY	′-1447 W	/estport	Rd (Wes	st)	ΚY	/-1447 V	Vestpor	t Rd (Eas	t)	
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	1.1	1.2	1.3	1.4	Total	1.5	1.6	1.7	1.8	Total	1.9	1.10	1.11	1.12	Total	1.13	1.14	1.15	1.16	Total	Total
1600 - 1615	23	13	25	0	61	56	17	59	0	132	52	260	23	0	335	27	221	33	0	281	809
1615 - 1630	25	20	32	0	77	51	20	61	0	132	47	259	25	0	331	41	230	36	2	309	849
1630 - 1645	16	20	37	0	73	50	20	42	0	112	56	303	23	0	382	36	238	34	0	308	875
1645 - 1700	43	14	28	0	85	49	16	58	0	123	59	292	32	0	383	39	254	37	0	330	921
Hourly Total	107	67	122	0	296	206	73	220	0	499	214	1114	103	0	1431	143	943	140	2	1228	3454
1700 - 1715	41	17	38	0	96	73	18	68	0	159	49	276	17	0	342	40	258	35	0	333	930
1715 - 1730	30	23	30	0	83	51	17	54	0	122	67	279	30	0	376	34	219	43	1	297	878
1730 - 1745	26	25	30	0	81	61	21	43	0	125	56	292	32	0	380	49	241	38	1	329	915
1745 - 1800	35	25	39	0	99	54	20	43	0	117	47	270	34	0	351	52	206	44	0	302	869
Hourly Total	132	90	137	0	359	239	76	208	0	523	219	1117	113	0	1449	175	924	160	2	1261	3592
Grand Total	239	157	259	0	655	445	149	428	0	1022	433	2231	216	0	2880	318	1867	300	4	2489	7046
Approach %	36.49	23.97	39.54	0.00	-	43.54	14.58	41.88	0.00	-	15.03	77.47	7.50	0.00	-	12.78	75.01	12.05	0.16	-	
Intersection %	3.39	2.23	3.68	0.00	9.30	6.32	2.11	6.07	0.00	14.50	6.15	31.66	3.07	0.00	40.87	4.51	26.50	4.26	0.06	35.33	
			-	•				•					-								
PHF	0.81	0.79	0.83	0.00	0.90	0.80	0.86	0.82	0.00	0.83	0.86	0.98	0.87	0.00	0.97	0.83	0.94	0.89	0.50	0.97	0.98

Classified Turn Movement Count || All vehicles

www.marrtraffic.com

Site 2 of 2

Freys Hill Rd (South) Freys Hill Rd (North)

Jefferson County, KY

Wemberley Hill Blvd

Date

Tuesday, August 24, 2021

Fair 87°F

Weather

Lat/Long

38.291004°, -85.557874°

0700 - 0900 (Weekday 2h Session) (08-24-2021)

All vehicles

	No	orthbou	nd			So	uthbou	nd	
	Freys	Hill Rd (South)			Freys	Hill Rd (North)	
	Thru	Right	U-Turn	App	Left	Thru		U-Turn	App
TIME	2.1	2.2	2.3	Total	2.4	2.5		2.6	Total
0700 - 0715	25	1	0	26	0	20		0	20
0715 - 0730	21	0	0	21	0	21		0	21
0730 - 0745	12	0	0	12	1	27		0	28
0745 - 0800	47	0	0	47	2	40		0	42
Hourly Total	105	1	0	106	3	108		0	111
0800 - 0815	28	0	0	28	1	35		0	36
0815 - 0830	30	0	0	30	2	47		0	49
0830 - 0845	37	0	0	37	1	30		0	31
0845 - 0900	28	0	0	28	1	44		0	45
Hourly Total	123	0	0	123	5	156		0	161
							-		
Grand Total	228	1	0	229	8	264		0	272
Approach %	99.56	0.44	0.00	-	2.94	97.06		0.00	-
Intersection %	44.10	0.19	0.00	44.29	1.55	51.06		0.00	52.61
PHF	0.76	0.00	0.00	0.76	0.75	0.81		0.00	0.81
							-		

	W	'estboui	nd		
	Wemb	erley H	ill Blvd		
Left		Right	U-Turn	App	Int
2.7		2.8	2.9	Total	Total
0		2	0	2	48
0		0	0	0	42
0		2	0	2	42
0		1	0	1	90
0		5	0	5	222
0		2	0	2	66
0		3	0	3	82
0		3	0	3	71
2		1	0	3	76
2		9	0	11	295
2		14	0	16	517
12.50		87.50	0.00	-	
0.39		2.71	0.00	3.09	
0.00		0.75	0.00	0.75	0.86

1600 - 1800 (Weekday 2h Session) (08-24-2021) All vehicles

	No	orthbou	nd			So	uthbou	nd	
	Freys	Hill Rd (South)			Freys	Hill Rd (I	North)	
	Thru	Right	U-Turn	App	Left	Thru		U-Turn	App
TIME	2.1	2.2	2.3	Total	2.4	2.5		2.6	Total
1600 - 1615	21	0	0	21	1	44		0	45
1615 - 1630	40	2	0	42	2	52		0	54
1630 - 1645	33	0	0	33	4	46		0	50
1645 - 1700	39	1	0	40	3	65		0	68
Hourly Total	133	3	0	136	10	207		0	217
1700 - 1715	45	0	0	45	2	42		0	44
1715 - 1730	48	0	0	48	4	47		0	51
1730 - 1745	52	0	0	52	3	72		0	75
1745 - 1800	56	1	0	57	3	73		0	76
Hourly Total	201	1	0	202	12	234		0	246
Grand Total	334	4	0	338	22	441		0	463
Approach %	98.82	1.18	0.00	-	4.75	95.25		0.00	-
Intersection %	40.48	0.48	0.00	40.97	2.67	53.45		0.00	56.12
PHF	0.90	0.25	0.00	0.89	0.75	0.80		0.00	0.81

	W	estbou	nd		I
	Wemb	erley H	ill Blvd		
Left		Right	U-Turn	App	Int
2.7		2.8	2.9	Total	Total
1		5	0	6	72
0		1	0	1	97
0		3	0	3	86
1		2	0	3	111
2		11	0	13	366
0		1	0	1	90
1		0	0	1	100
1		4	0	5	132
2		2	0	4	137
4		7	0	11	459
6		18	0	24	825
25.00		75.00	0.00	-	
0.73		2.18	0.00	2.91	
0.50		0.44	0.00	0.55	0.84

HCS Reports

		1100	, oig	i iaii20	- mile	.1366	aon N	Coul	ts Sun	ııııaı y					
General Inform	nation								Intersect	ion Info	ormatic	on	l J	الماليات ا	b U
Agency		Diane B. Zimmerma	an Traff	ic Engin	eerina			\rightarrow	Duration,		0.250			747	
Analyst		DBZ	ar riuli		is Date	Oct 11	. 2021	$\overline{}$	Area Typ		Other				
Jurisdiction				Time F		AM Pe		_	PHF		0.83		→ 		•
Urban Street		Westport Road			sis Year		Juk	\rightarrow	Analysis	Period	1> 7:4	45	-		7
Intersection		Freys Hill		File Na		AM 21	l viie		Allalysis	Cilou	12 7.5	10			
Project Descrip	ntion	Apartments		T IIC IV	arric	AIVI Z	i.xus						- 4	1	* (
Project Descrip	lion	Apartments													
Demand Infor	mation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	Т	R
Demand (v), v				135	660	64	98	913	3 159	112	44	84	142	57	13
Signal Informa		la:	_	4	2	2		닐쌔	2 6		₽	,	→	Ĺ	-1
Cycle, s	160.0	Reference Phase	2	-	2	\mathbb{R}	₹ '	25	121			1	2	3	7
Offset, s	0	Reference Point	End	Green	5.9	2.5	89.6	18.9	9 17.6	0.0					1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	0.0	4.3	3.5	3.5	0.0		\subseteq _	4 -	\ \ \ \ \	4
Force Mode	Fixed	Simult. Gap N/S	Off	Red	3.0	0.0	1.9	2.9	2.9	0.0		5	Y 6	↓	
Timer Decil						CDT	VA (E)		WDT	ND		NET	05		ODT
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT
Assigned Phas	е			1 1 1		6	5		2			4			8
Case Number				1.1		3.0	1.1	-	3.0		\rightarrow	11.0		_	9.0
Phase Duration	•	\ 0		14.9	$\overline{}$	98.3	12.4	-	95.8			25.3		-	24.0
	hange Period, (Y+R ɛ), s lax Allow Headway (<i>MAH</i>), s			6.5	_	6.2	6.5	_	6.2		6.4			_	6.6
	ax Allow Headway(<i>MAH</i>), s ueue Clearance Time(<i>g</i> s), s			3.0	$\overline{}$	0.0	3.0	-	0.0		3.2			_	3.2
		, - ,		8.2	_	0.0	5.8		0.0			18.6		-	16.7
Green Extension		(g e), S		0.3	\rightarrow	0.0	0.1	-	0.0			0.3		-	0.7
Phase Call Pro				1.00	_		0.99	-			\rightarrow	1.00		-	1.00
Max Out Proba	DIIILY			0.00	'		0.00	,				0.10			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	T	R	L	Т	R	L	T	R	L	T	R
Assigned Move				1	6	16	5	2	12	7	4	14	3	8	18
Adjusted Flow), veh/h		163	795	77	97	904	158		188	101	111	129	15
		ow Rate (s), veh/h/	ln	1795	1752	1535	1711	1766	-		1777	1510	1739	1730	158
Queue Service		, ,,		6.2	19.9	2.6	3.8	18.8	5.4		16.6	9.7	9.7	11.4	14.
		e Time (<i>g</i> ε), s		6.2	19.9	2.6	3.8	18.8	5.4		16.6	9.7	9.7	11.4	14.
Green Ratio (g		(3-),0		0.61	0.58	0.69	0.60	0.56	0.56		0.12	0.16	0.11	0.11	0.1
Capacity (c), v				415	2018	1065	396	1979	-		221	234	189	188	25
Volume-to-Cap		atio (X)		0.392	0.394	0.072	0.245	0.457	-		0.851	0.432	0.589	0.684	0.6
		/In (95 th percentile)	111.4	326.6	40.3	72.1	269.5	-		343	180.3	203.6	243.3	254
	,,	eh/ln (95 th percent	,	4.4	12.7	1.5	2.7	10.5	_		13.3	6.8	7.8	8.9	10.
	, ,,	RQ) (95 th percen		0.41	0.00	0.18	0.41	0.00	0.34		0.76	0.40	0.45	0.54	0.5
Uniform Delay		, , , ,		14.7	18.6	7.9	15.5	14.1	11.1		68.6	61.2	67.9	68.7	62.
Incremental De				0.2	0.6	0.1	0.1	0.7	0.4		16.0	0.5	1.1	1.6	0.9
		•		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Initial Queue Delay (d 3), s/veh Control Delay (d), s/veh				14.9	19.2	8.0	15.6	14.7	11.5		84.6	61.7	69.0	70.3	63.
Level of Service	, , ,			В	B	A	В	В	В		F	E	E	F E	E
Approach Dela				17.7		В	14.4		В	76.6		E	67.2		E
<u> </u>	<i>.</i>			17.7			9.1		5	7 0.0			C 67.2		_
Intersection De	,, 5, 70														
Intersection De	Multimodal Results				EB			WB			NB			SB	
Intersection De	sults			_											
		/LOS		1.90)	В	2.10		В	2.48		В	2.49)	В

Diame B. Zimmerman Traffic Engineering					nmary	ts Sun	esul	ion R	rsect	d Inte	nalize	7 Sig	HCS				
Agency	4.44.1.1			rm atia	ion Info									otion	Conoral Inform		
Analysis DaEZ Analysis Date Oct 11, 2021 Area Type Other Uncan Street Westport Road Analysis Year 2024 No Bull Analysis Period 1>7.45	747	- 1		_			\rightarrow			aarlaa	io Facia	on Troff	Diana B. Zimmarma				
Jurisdiction		- 5		-			$\overline{}$	2024	TO at 11			an Iraiii			<u> </u>		
Urban Street Westport Road Analysis Year 2024 No Build Analysis Period 1>7:45 Analysis		-		-	-				_				DBZ				
Intersection Freys Hill Apartments File Name AM 24 NB.xus Apartments Apartments Apartments Apartments Apartments Apartments Approach Movement L T R	· ·	-	1.5	-	7ii		_		-		-		NA/a atm ant Da ant				
Project Description		- 5	15	1> 7:4	erioa	anaiysis i			-		-						
Demand Information	17	- 🖷					i	NB.xus	AM 24	ame	File Na						
Approach Movement	MINTEL												Apartments	tion	Project Descrip		
Approach Movement	SB			NB		WB				FB				nation	Demand Inform		
Signal Information	TR		R	_		_	_	1	T R	_							
Signal Information	60 13		_	-	_		-	-	-		-						
Cycle, s 160.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated No Simult. Gap EW On Creen 6.0 2.9 87.8 19.6 18.2 0.0 Force Mode Fixed Simult. Gap EW On Red 3.0 0.0 4.3 3.5 3.5 0.0 Timer Results EBL EBL EBL WBT NBL NBT SBL Assigned Phase 1 6 5 2 4 4 26.0 26.0 26.0 4 26.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,,,</td></t<>															,,,		
Offset, s 0 Reference Point No Simult. Gap E/W On Force Mode Fixed Simult. Gap E/W On Force Mode Fixed Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S Off Red 3.0 0.0 1.9 2.9 2.9 0.0 0.0	ĹĹ ₄	5 _	, ,	$oldsymbol{\perp}$		~	-	, ;	2	2							
Offset, s 0 Reference Point No Simult. Gap EAW On Force Mode Fixed Simult. Gap EAW On Force Mode Fixed Simult. Gap N/S Off Red 3.0 0.0 1.9 2.9 2.9 0.0	Y 3	2	1	_		7	251	 	R	2	-			_	Cycle, s		
Fixed Fixed Simult. Gap N/S Off Red 3.0 0.0 1.9 2.9 2.9 0.0				0.0		18.2	19.6			6.0	Green	End		0	Offset, s		
Timer Results	5 4	즈 _			0.0		3.5	4.3	0.0	3.5	Yellow	On		No	Uncoordinated		
Assigned Phase	7 7	6 .	5		0.0	2.9	2.9	1.9	0.0	3.0	Red	Off	Simult. Gap N/S	Fixed	Force Mode		
Assigned Phase	055	25:	NDT		LID:	WDT.		14/5	EDZ						T P. 11		
Case Number 1.1 3.0 1.1 3.0 11.0 Hose Duration, s 15.4 96.9 12.5 94.0 26.0 Image Period, (Y+R c), s 6.5 6.2 6.5 6.2 6.5 6.2 6.6 6.4 Image Period, (Y+R c), s 6.5 6.2 6.5 6.2 6.5 6.2 6.6 6.6 6.4 Image Period, (Y+R c), s 6.5 6.2 6.5 6.2 6.6 6.6 6.6 4.0 3.2	_ SBT 8	SBL			NBL	_	-		_	-	_						
Phase Duration, s 15.4 96.9 12.5 94.0 26.0	9.0		_			_	_	_	_		_			,			
Change Period, (Y+R c), s 6.5 6.2 6.5 6.2 6.4 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.2 Queue Clearance Time (g s), s 8.6 5.9 19.3 Green Extension Time (g s), s 0.3 0.0 0.1 0.0 0.3 Phase Call Probability 1.00 0.99 1.00 1.00 Max Out Probability 0.00 0.00 0.19 Movement Group Results Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R <td>_</td> <td></td> <td>_</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	_		_	-		-	-		_	_	_						
Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.2 19.3 Queue Clearance Time (g ∘), s 0.3 0.0 0.1 0.0 0.3 19.3 Phase Call Probability 1.00 0.99 1.00 1.00 1.00 1.00 Max Out Probability 0.00 0.00 0.00 0.19 1.00 0.19 Movement Group Results EB WB NB S Approach Movement L T R L T <td>24.6</td> <td></td> <td>_</td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td>$\overline{}$</td> <td>-</td> <td>_</td> <td></td> <td>١.٥</td> <td></td> <td></td>	24.6		_	-		_			$\overline{}$	-	_		١.٥				
Queue Clearance Time (g s), s 8.6 5.9 19.3 Green Extension Time (g e), s 0.3 0.0 0.1 0.0 0.3 Phase Call Probability 1.00 0.99 1.00 0.19 Max Out Probability 0.00 0.00 0.19 1.00 Movement Group Results EB WB NB S Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L	6.6		_	-		$\overline{}$	-		_	_	_						
Green Extension Time (g ∘), s 0.3 0.0 0.1 0.0 0.3 Phase Call Probability 1.00 0.99 1.00 Movement Group Results EB WB NB S Approach Movement L T R	3.2			-		0.0	-		0.0		-						
Phase Call Probability 1.00 0.99 1.00 Movement Group Results EB WB NB S Approach Movement L T R L	17.3			_		0.0	-		0.0	_	_		(- //				
Movement Group Results EB WB NB S Approach Movement L T R L T T 4 14 3 8 Adjusted Flow Rate (v), veh/h 170 831 817 196 105 116 13 116 13 116 13 116	0.7		_	\rightarrow		0.0	_		0.0	-	_		(g e), s				
Movement Group Results EB WB NB S Approach Movement L T R L T A 14 14 3 8 8 105 15 16 105 116 13 10.0 10.0 1 10 10 <td>1.00</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	1.00			_		_	_			_	_						
Approach Movement L T R L T R L T R L T R Assigned Movement 1 6 16 5 2 12 7 4 14 3 8 8 14 97 905 157 196 105 116 13 8 14 97 905 157 196 105 116 13 8 14 97 905 157 196 105 116 13 8 14 97 905 157 196 105 116 13 13 8 14 97 905 157 196 105 116 13 13 8 14 97 905 157 196 105 116 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0.00		0.19					0.00		,	0.00			Jility	Wax Out Ploba		
Assigned Movement Adjusted Flow Rate (v), veh/h Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln 1795 1752 1535 1711 1766 1560 1777 1510 1739 173 Queue Service Time (g s), s 6.6 21.6 2.8 3.9 20.0 5.8 17.3 10.0 10.1 12 Green Ratio (g/C) 0.60 0.57 0.69 0.59 0.55 0.13 0.17 0.11 0.1 0.2 Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 13.1 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 4.8 13.6 1.6 2.8 13.6 1.6 2.8 13.6 1.6 2.8 13.7 2.8 13	SB			NB			WB			EB			sults	up Res	Movement Gro		
Assigned Movement Adjusted Flow Rate (v), veh/h Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln 1795 Adjusted Saturation Flow Rate (s), veh/h/ln 1795 Adjusted Saturation Flow Rate (s), veh/h/ln 1795 1752 1535 1711 1766 1560 1777 1510 1739 173 Queue Service Time (g s), s 6.6 21.6 2.8 3.9 20.0 5.8 17.3 10.0 10.1 12 Green Ratio (g/C) 0.60 0.57 0.69 0.59 0.55 0.13 0.17 0.11 0.1 0.2 Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.859 0.440 0.59 0.59 0.59 0.59 0.59 0.13 0.17 0.11 0.1 0.419 Volume-to-Capacity Ratio (RQ) (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 68. Incremental Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68. Incremental Delay (d 2), s/veh 15.8 20.3 8.3 16.4 16.2 12.7 86.1 61.1 68.6 70 Level of Service (LOS) B C A B B B F E E E Approach Delay, s/veh / LOS 18.7 B 15.8 8 77.4 E 66.7	TR	L	R	Т	L	R	Т	L	R	Т	L			ment	Approach Move		
Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln Adjusted Saturation Flow Rate (s), veh/ln (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	8 18	3	14	4	7	12	2	5	16	6	1						
Adjusted Saturation Flow Rate (s), veh/h/ln	135 164	116	105	196		157	905	97	81	831	170), veh/h				
Cycle Queue Clearance Time ($g c$), s 6.6 21.6 2.8 3.9 20.0 5.8 17.3 10.0 10.1 12 Green Ratio (g/C) 0.60 0.57 0.69 0.59 0.55 0.55 0.13 0.17 0.11 0.1 0.1 Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.592 0.6 Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d), s/veh 15.6 19.7 8.2 16.3 <	1730 158	1739	1510	1777		1560	1766	1711	1535	1752	1795	n			-		
Cycle Queue Clearance Time (gc), s 6.6 21.6 2.8 3.9 20.0 5.8 17.3 10.0 10.1 12 Green Ratio (g/C) 0.60 0.57 0.69 0.59 0.55 0.55 0.13 0.17 0.11 0.1 0.1 Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.592 0.6 Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d), s/veh 15.6 19.7 8.2 16.3 <t< td=""><td>12.0 15.</td><td>10.1</td><td>10.0</td><td>17.3</td><td>\neg</td><td>5.8</td><td>20.0</td><td>3.9</td><td>2.8</td><td>21.6</td><td>6.6</td><td></td><td>g s), S</td><td>Time (g</td><td>Queue Service</td></t<>	12.0 15.	10.1	10.0	17.3	\neg	5.8	20.0	3.9	2.8	21.6	6.6		g s), S	Time (g	Queue Service		
Green Ratio (g/C) 0.60 0.57 0.69 0.59 0.55 0.55 0.13 0.17 0.11 0.7 Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.592 0.6 Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68	12.0 15.	10.1	10.0	17.3		5.8	20.0	3.9	2.8	21.6	6.6						
Capacity (c), veh/h 408 1986 1058 375 1938 856 229 242 196 19 Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.592 0.6 Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1. Intitial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0	0.11 0.1	0.11	0.17	0.13		0.55	0.55	0.59	0.69	0.57	0.60		(5)		•		
Volume-to-Capacity Ratio (X) 0.417 0.419 0.076 0.258 0.467 0.184 0.858 0.434 0.592 0.6 Back of Queue (Q), ft/ln (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 209.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1. Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	195 266	196	242	229		856	1938	375	1058	1986	408						
Back of Queue (Q), ft/in (95 th percentile) 120.5 350.8 43.1 73.6 290.5 91.6 359.1 185.9 299.9 252 Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1. Initial Queue Delay (d 3), s/veh 0.0	0.691 0.61	0.592	0.434	0.858		0.184	0.467	0.258	0.076	0.419	0.417		itio (X)	acity Ra	Volume-to-Capa		
Back of Queue (Q), veh/ln (95 th percentile) 4.8 13.6 1.6 2.8 11.3 3.5 13.9 7.0 8.1 9. Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1. Initial Queue Delay (d 3), s/veh 0.0 0	252.2 262		-						-		_)	/In (95 th percentile)	(Q), ft/	Back of Queue		
Queue Storage Ratio (RQ) (95 th percentile) 0.44 0.00 0.19 0.42 0.00 0.37 0.80 0.41 0.47 0.5 Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1.1 Initial Queue Delay (d 3), s/veh 0.0	9.2 10.	8.1	-			-			-		_						
Uniform Delay (d 1), s/veh 15.6 19.7 8.2 16.3 15.5 12.2 68.3 60.6 67.5 68 Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1. Initial Queue Delay (d 3), s/veh 0.0	0.56 0.5	$\overline{}$	-	_		-			-	$\overline{}$	_	,		,,			
Incremental Delay (d 2), s/veh 0.3 0.7 0.1 0.1 0.7 0.4 17.9 0.5 1.1 1.0	68.3 61.	-	-	_		-			-		-		, , ,				
Initial Queue Delay (d 3), s/veh 0.0 <	1.6 0.9	1.1	0.5	17.9		-	0.7	0.1	0.1	0.7	0.3						
Control Delay (d), s/veh 15.8 20.3 8.3 16.4 16.2 12.7 86.1 61.1 68.6 70 Level of Service (LOS) B C A B B B F E E E Approach Delay, s/veh / LOS 18.7 B 15.8 B 77.4 E 66.7 Intersection Delay, s/veh / LOS 30.3 C	0.0 0.0	-	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		3), s/veh	elay (d	Initial Queue De		
Level of Service (LOS) B C A B B B F E E E E Approach Delay, s/veh / LOS 18.7 B 15.8 B 77.4 E 66.7 Intersection Delay, s/veh / LOS 30.3 C	70.0 62.	68.6	61.1	86.1		12.7	16.2	16.4	8.3	20.3	15.8		,.	- `			
Approach Delay, s/veh / LOS 18.7 B 15.8 B 77.4 E 66.7 Intersection Delay, s/veh / LOS 30.3 C	E E		-	_		_			-		-						
Intersection Delay, s/veh / LOS 30.3 C			_		77.4	_			$\overline{}$		_		· · ·				
Multimodal Populte																	
Multimodal Poculte EP 1//P ND C																	
	SB			NB			WB			EB					Multimodal Re		
Pedestrian LOS Score / LOS 1.91 B 2.10 B 2.48 B 2.49 Bicycle LOS Score / LOS 1.38 A 1.70 B 0.98 A 1.17	_	_	_	_		_	$\overline{}$		-	_	_						

		HCS	/ Sig	nalize	d Inte	ersec	tion F	kesu	lts Sur	nmary					
General Inforn	nation								Intersect	ion Info	rmatio	on	Į J	14241	a U
Agency		Diane B. Zimmerma	an Traffi	c Engin	eerina			\rightarrow	Duration,		0.250			747	
Analyst		DBZ			is Date	Oct 11	1. 2021	\rightarrow	Area Typ		Other		- E		
Jurisdiction				Time F		AM P		\rightarrow	PHF		0.83		÷		
Urban Street		Westport Road		_	sis Year	-		\rightarrow	Analysis	Period	1> 7:4	45	7		-
Intersection		Freys Hill		File Na		-	B IMP.							40	
Project Descrip	tion	Apartments											- F	41441	7
Demand Inform	mation				EB			WI	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	/eh/h			141	690	77	111	95	5 166	149	60	114	148	64	136
Signal Informa	ation				12	12	_	.					E	I 🛧	
Cycle, s	160.0	Reference Phase	2	1	20	Ŀ		₩ 24	26			>	→	(L	丈
Offset, s	0	Reference Point	End		2	T's	7	2 6	il?			1	2	3	Y
Uncoordinated	No	Simult. Gap E/W	On	Green		2.5	82.8	24.		0.0		_		K	人
Force Mode	Fixed	Simult. Gap E/W	Off	Yellow Red	3.5	0.0	1.9	2.9		0.0			♦ 。 -	1),	.
T OTCC WOOLC	TIXCU	Ollifait. Gap 14/G	Oil	Itteu	10.0	10.0	1.0	2.0	2.0	0.0					
Timer Results				EBI		EBT	WB	L	WBT	NBL		NBT	SBI		SBT
Assigned Phas	e			1		6	5		2	,,,,,,		4			8
Case Number				1.1		3.0	1.1	\neg	3.0			11.0			9.0
Phase Duration	1, S			15.8	_	91.5	13.3	-	89.0		_	30.8			24.3
Change Period		c), S		6.5	\rightarrow	6.2	6.5		6.2			6.4			6.4
	ax Allow Headway (<i>MAH</i>), s			3.0	\neg	0.0	3.0	\neg	0.0		\neg	3.2		\neg	3.2
	neue Clearance Time ($g s$), s			9.1			6.7					24.2			17.3
Green Extension	een Extension Time ($g \in S$), s			0.3		0.0	0.1	\neg	0.0		\neg	0.2		\neg	0.6
Phase Call Pro	bability	, -		1.00			0.99					1.00			1.00
Max Out Proba	bility			0.00			0.00					1.00			0.02
		.,			- FD			14/5			NID			0.0	
Movement Gro	_	sults			EB		.	WB	_		NB		<u> </u>	SB	
Approach Move				L	T	R	L	T	R	L		R	L	T	R
Assigned Move		\		1	6	16	5	2	12	7	4	14	3	8	18
Adjusted Flow		**	-	170	831	93	104	898	156		252	137	116	140	164
		ow Rate (s), veh/h/l	n	1795 7.1	1752 23.2	1535 3.2	1711 4.7	1766 24.4	-		1777 22.2	1510 12.9	1739 10.1	1730 12.5	158
Queue Service				7.1	23.2	3.2	4.7	24.4	-		22.2	12.9	10.1	12.5	15.3
		e Time (<i>g</i> _c), s						_	$\overline{}$						-
Green Ratio (g				0.58 378	0.53 1869	0.69 1053	0.56 356	0.52 1828	$\overline{}$		0.16 283	0.20 295	0.11 195	0.11	0.17 270
Volume-to-Cap		itio (X)		0.449			0.293	0.49	$\overline{}$		0.891	0.466	0.595	0.720	0.60
		/In (95 th percentile)		131.4		50.6	79.2	373.9	$\overline{}$		456.8	229.3	210.1	260.4	262.
		eh/In (95 th percentile)		5.2	14.6	1.9	3.0	14.6	$\overline{}$		17.7	8.6	8.1	9.5	10.3
	, ,	RQ) (95 th percent		0.48	0.00	0.23	0.45	0.00	$\overline{}$		1.02	0.51	0.47	0.58	0.58
Uniform Delay				18.4	22.8	8.4	17.2	21.9	-		65.9	57.0	67.6	68.6	61.4
Incremental De				0.3	0.8	0.4	0.2	0.9	0.5		25.1	0.4	1.1	1.9	0.8
Initial Queue D		**		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Control Delay (18.8	23.6	8.6	17.4	22.8	-		91.0	57.4	68.7	70.5	62.2
Level of Service				В	C	A	В	C	В		F	E	E	F E	62.2
Approach Delay, s/veh / LOS			21.6	_	C	21.6		С	79.1		E	66.8		E	
Intersection De							5.1			. 0.1			D		
Multimodal Re	sults				EB			WB			NB			SB	
		/ 1 00		1.91		В	2.11		В	2.48		В	2.49)	В
Pedestrian LOS	Score	/ LOS		1.0						2.10	_				

		HCS	7 Sig	nalize	d Inte	ersec	tion R	esul	lts Sun	nmary	/				
General Infor	nation								Intersect		_		- 4	111	يا مل
Agency		Diane B. Zimmerma	an Traff						Duration,	h	0.250				
Analyst		DBZ		Analys	is Date	6/15/2	021	$\overline{}$	Area Type	е	Other		<u>^</u>		
Jurisdiction				Time F	Period	PM Pe	eak		PHF		0.98		÷		
Urban Street		Westport Road		Analys	is Year	2021		/	Analysis l	Period	1> 4:4	15	32		•
Intersection		Freys Hill Road		File Na	ame	PM 21	.xus							17	
Project Descrip	otion	Apartments											T	4144	11
Demand Infor	mation				EB			WE	•		NB			SB	
				L	T	R	L	T	R	L	T	R	L	T	R
Approach Mov				231	1139	111	164	972		140	79	126	234	72	22
Demand (v),	ven/m			231	1139	111	104	912	2 103	140	19	120	234	12	
Signal Inform	ation				2	_ 5			, R	\top	4		<u> </u>	ΙĹ	
Cycle, s	180.0	Reference Phase	2	1	\bowtie	₩		7, 6	12		<u>`</u>	~		/_	- 1
Offset, s	0	Reference Point	End	Green	15.7	73.7	6.0	24.	1 25.8	0.0		1	2	3	'
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	4.3	4.3	3.5		0.0		<u>_</u>	A		本
Force Mode	Fixed	Simult. Gap N/S	Off	Red	3.0	3.0	3.0	2.9	2.9	0.0		5	7 6	1 7	
								-						_	
Timer Results				EBI	-	EBT	WB	-	WBT	NBL	-	NBT	SBI	-	SBT
Assigned Phas	se			1.2	_	6	5	_	2		+	4		\rightarrow	8
Case Number					\rightarrow	3.0	1.3	_	3.0		-	11.0		_	9.0
Phase Duration				23.0	$\overline{}$	04.0	13.3	-	94.3		-	30.5		\rightarrow	32.2
Change Period				7.3	-	7.3	7.3	_	7.3			6.4		_	6.6
Max Allow Hea				3.0	\rightarrow	0.0	3.0	_	0.0			3.2			3.2
Queue Clearar				15.4	_		2.0	_				23.7		_	24.8
Green Extensi		(ge), s		0.3	\rightarrow	0.0	0.1	_	0.0			0.4			0.7
Phase Call Pro				1.00)		1.00	<u> </u>				1.00			1.00
Max Out Proba	ability			0.00			0.33					0.14			0.12
Movement Gr	oun Res	sults			EB			WB			NB			SB	
Approach Mov				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				1	6	16	5	2	12	7	4	14	3	8	18
Adjusted Flow) veh/h		236	1162	113	166	986	155	-	223	129	155	157	22
		ow Rate (s), veh/h/l	ln	1795	1795	1572	1795	1809	_		1827	1585	1781	1830	161
Queue Service		. , , , .	"	13.4	39.9	4.6	0.0	18.4	_		21.7	13.2	14.7	14.5	22.
		e Time (<i>g</i> c), s		13.4	39.9	4.6	0.0	18.4	_		21.7	13.2	14.7	14.5	22.
Green Ratio (- /iiio (g c), G		0.51	0.54	0.67	0.43	0.48	_		0.13	0.17	0.14	0.14	0.2
Capacity (c),				373	1928	1056	248	1749	_		245	265	253	260	36
Volume-to-Cap		atio (X)		0.631	0.603		0.670		-		0.913		0.613	0.604	0.6
		/In (95 th percentile))	244.5	604.7	77.4	299.6		_		443.2	-	282.3	282.3	363
		eh/ln (95 th percenti		9.7	24.0	3.0	11.9	8.6	1.7		17.6	4.9	11.1	11.2	14.
		RQ) (95 th percent		0.89	0.00	0.34	1.71	0.00	_		0.98	0.28	0.63	0.00	0.8
Uniform Delay			uic)	27.1	28.5	19.2	59.8	11.5			76.9	22.3	72.6	72.5	62.
Incremental De				0.7	1.4	0.2	4.5	1.1	0.5		24.9	0.5	0.9	0.8	1.
Initial Queue D				0.7	0.0	0.2	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Control Delay		· · · · · · · · · · · · · · · · · · ·		27.7	29.9	19.4	64.3	12.6	-		101.8	22.8	73.5	73.3	63.
Control Delay				C C	29.9 C	19.4 B	E	12.6 B	Α		F	C C	73.5 E	73.3 E	63. E
Level of Service				28.8	_	С	18.5	_	В	72.9		E	69.2		E
	-			20.0	,		5.2		D	72.9			D 69.2		E
Level of Service Approach Dela	INV SIVE	, 200	_			00									
Approach Dela	elay, s/ve			==				WB			NB				
					EB			WB			NB			SB	
Approach Dela Intersection De	esults	/LOS		1.98		В	2.12	_	В	2.48		В	2.49		В

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sun	nmary	,				
General Inforr	nation							-	ntersect		_		- 6	111	يا در
Agency		Diane B. Zimmerma	an Traff					1	Duration,	h	0.250				
Analyst		DBZ			sis Date			_	Area Type	e	Other		<u>-</u> -1		
Jurisdiction				Time F		PM P			PHF		0.98		÷		
Urban Street		Westport Road		Analysis Yea		2024	No Build	d /	Analysis l	Period	1> 4:4	15	- F		
Intersection		Freys Hill Road		File N	ame	PM 24	1 NB.xu	s						17	ſ
Project Descrip	otion	Apartments											ħ	41441	7
Demand Infor	mation				EB			WE	1		NB			SB	
Approach Mov				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v				242	1191	116	171	101		146	83	132	245	75	233
Signal Informa	1		-	-	2	,		늴셌	2 6		↓	,	5 –	ĹĹ	-4
Cycle, s	180.0	Reference Phase	2		\Rightarrow	 	2	20	12		_	1	2	X	Y
Offset, s	0	Reference Point	End	Green	16.7	70.9	6.0	25.1		0.0					1
Uncoordinated		Simult. Gap E/W	On	Yellow		4.3	4.3	3.5	3.5	0.0		\Box _	4 _	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4
Force Mode	Fixed	Simult. Gap N/S	Off	Red	3.0	3.0	3.0	2.9	2.9	0.0		5	6 .	J 7	
Timer Results				EBI		EBT	WB		WBT	NBL		NBT	SBI		SBT
Assigned Phase						6	5		2	, NDL		4	ODI		8
Case Number	.~			1.2		3.0	1.3		3.0			11.0			9.0
Phase Duration					-	102.2	13.3	-	91.5		$\overline{}$	31.5		_	33.0
Change Period		.) c		7.3	-	7.3	7.3		7.3			6.4	_	_	6.6
Max Allow Hea				3.0	-	0.0	3.0	-	0.0		_	3.2		_	3.2
				16.4	-			-	0.0			24.7	_	$\overline{}$	25.7
Queue Clearar				0.3	-	0.0	2.0 0.1	-	0.0		-	0.4	-	_	0.7
Phase Call Pro		(g e), s		1.00	-	0.0	1.00	-	0.0		_	1.00	_	\rightarrow	1.00
Max Out Proba				0.00	_		0.33	_	_		\rightarrow	0.30		_	0.34
Wax Out 1 Toba	ibility			0.00	,		0.00	,				0.50			0.54
Movement Gre	oup Res	ults			EB			WB			NB			SB	
Approach Mov	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			1	6	16	5	2	12	7	4	14	3	8	18
Adjusted Flow	Rate (v), veh/h		247	1215	118	166	986	155		234	135	163	164	238
Adjusted Satur	ation Flo	ow Rate (s), veh/h/l	n	1795	1795	1572	1795	1809	1585		1827	1585	1781	1830	161
Queue Service		. ,,		14.4	43.5	4.9	0.0	20.3	3.3		22.7	13.8	15.4	15.1	23.
		e Time (<i>g</i> c), s		14.4	43.5	4.9	0.0	20.3	3.3		22.7	13.8	15.4	15.1	23.
Green Ratio (, 5 //		0.50	0.53	0.67	0.42	0.47	0.47		0.14	0.17	0.15	0.15	0.24
Capacity (c),				368	1893	1049	227	1693	-		255	274	261	268	385
Volume-to-Cap		atio (X)		0.670			_	_	-		0.918		0.623	0.612	_
		/In (95 th percentile)	263	655.2	82.5	305.5		-		464.3		294.3	293.2	376
		eh/ln (95 th percent		10.4	26.0	3.2	12.1	9.3	2.0		18.4	5.1	11.6	11.6	15.0
		RQ) (95 th percent		0.96	0.00	0.37	1.75	0.00	0.21		1.03	0.29	0.65	0.00	0.8
Uniform Delay				28.7	30.4	19.2	65.3	13.2	7.5		76.4	22.3	72.1	72.0	61.
Incremental De				1.6	1.7	0.2	8.3	1.2	0.5		26.9	0.5	1.6	1.3	1.4
Initial Queue D				0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Control Delay (,.		30.3	32.1	19.4	73.6	14.4	8.1		103.4	22.9	73.7	73.3	62.
Level of Service				С	С	В	Е	В	A		F	С	E	Е	Е
Approach Dela				30.9		С	21.2		С	73.9		E	68.9		E
				35.0			7.3						D		
Intersection De															
Intersection De						WB				NB		SB			
Multimodal Re					EB		_	_	_	_	_	_	_	_	-
	S Score			1.98	3	В	2.12	2	В	2.48	\perp	В	2.49)	В

		HCS	7 Sig	nalize	d Into	ersec	tion R	esu	Its Sur	nmary	/				
General Inform	nation								Intersect	ion Info	ormatio	on	U] , [b L
Agency		Diane B. Zimmerma	an Traff	c Engin	eering				Duration,	h	0.250)		247	
Analyst		DBZ		Analys	is Date	6/15/2	021		Area Typ	е	Other		<u></u>		~_
Jurisdiction				Time F	eriod	PM Pe	eak		PHF		0.98		*		=
Urban Street		Westport Road		Analys	is Year	2024	Build		Analysis	Period	1> 4:4	45	7		•
Intersection		Freys Hill Road		File Na	ame	PM 24	B.xus							17	
Project Descrip	tion	Apartments											ħ	14144	1-1
					- FD			14/	_		NID			0.0	
Demand Infor					EB T	T D	+ -	W	_		NB T	T D	+ -	SB	
Approach Move				242	1191	150	200	10		166	92	149	245	90	233
Demand (V), (en/n			242	1191	130	200	10	16 160	100	92	149	240	90	230
Signal Informa	ation				2	T_ 5		<u> </u>	52	\top	L	_	<u> </u>	ΙĹ	
Cycle, s	180.0	Reference Phase	2		\bowtie	Hi E	. 5	, L	STZ			^	Y	7	7
Offset, s	0	Reference Point	End	Green	17.0	68.1	6.0	27	.8 26.3	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.3	4.3	3.5		0.0			<u> </u>	<u> </u>	4
Force Mode	Fixed	Simult. Gap N/S	Off	Red	3.0	3.0	3.0	2.9	2.9	0.0		5	₹ 6	1 7	
				EBL											
Timer Results Assigned Phase					-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT
Case Number				1	+	6	5	-	2			4	_	_	8
Phase Duration, s				1.2	$\overline{}$	3.0	1.3	\rightarrow	3.0		-	11.0	_	_	9.0
	-, -	١.٥		24.3 7.3	\rightarrow	99.8	13.3 7.3	\rightarrow	88.7			34.2		_	32.7 6.6
Change Period		·		_	-	7.3		-		7.3		6.4		_	
Max Allow Hea		·		3.0	\rightarrow	0.0	3.0 5.0		0.0		3.2 27.6		_	_	3.2
Queue Clearar				16.8	-	0.0	0.0		0.0		0.2		_	_	25.7
Green Extension		(g e), S		0.2	\rightarrow	0.0	_	\rightarrow	0.0				_	_	0.4
Phase Call Pro Max Out Proba				0.06	-		1.00	-			_	1.00	_	_	1.00
Wax Out 1 Toba	Dility			0.00			1.00					1.00			1.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	R
Assigned Move	ment			1	6	16	5	2	12	7	4	14	3	8	18
Adjusted Flow	Rate (v), veh/h		247	1215	153	190	965	152		263	152	163	179	238
	ation Ele					$\overline{}$			4505		1826	1585	1781	1834	161
Adjusted Satur	allon Fic	ow Rate (s), veh/h/l	n	1795	1795	1572	1795	1809	9 1585		1020	1000		40.7	00.
Queue Service	Time (g	g s), S	n	14.8	44.8	6.4	3.0	22.4	4.0		25.6	15.5	15.4	16.7	
Queue Service Cycle Queue C	Time(g learance		n	_		_			4.0		25.6	_	15.4 15.4	16.7	
Queue Service Cycle Queue C Green Ratio (¿	Time(g learance g/C)	g s), S	n	14.8 14.8 0.48	44.8 44.8 0.51	6.4 6.4 0.67	3.0	22.4	4.0 4.0 5 0.45		25.6 25.6 0.15	15.5			23.7
Queue Service Cycle Queue C Green Ratio (c Capacity (c),	Time(g learance g/C) veh/h	g s), s e Time (g c), s	n	14.8 14.8 0.48 359	44.8 44.8 0.51 1844	6.4 6.4 0.67 1051	3.0 3.0 0.40 217	22.4 22.4 0.45 1636	4.0 4.0 5 0.45 6 717		25.6 25.6	15.5 15.5 0.19 298	15.4 0.14 258	16.7 0.14 266	0.24
Queue Service Cycle Queue C Green Ratio (c Capacity (c), V Volume-to-Cap	Time (g clearance g/C) veh/h pacity Ra	g s), s e Time (g c), s atio (X)		14.8 14.8 0.48 359 0.688	44.8 44.8 0.51 1844 0.659	6.4 6.4 0.67 1051 0.146	3.0 3.0 0.40 217 0.875	22.4 22.4 0.45 1636 0.59	4.0 4.0 5 0.45 6 717 0 0.212		25.6 25.6 0.15 283 0.932	15.5 15.5 0.19 298 0.510	15.4 0.14 258 0.629	16.7 0.14 266 0.674	23.7 0.24 386 0.61
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue	Time (g clearance g/C) veh/h vacity Ra (Q), ft/	$(g \circ s)$, s e Time $(g \circ s)$, s atio (X)		14.8 14.8 0.48 359 0.688 273.3	44.8 44.8 0.51 1844 0.659 674.9	6.4 6.4 0.67 1051 0.146 149.7	3.0 3.0 0.40 217 0.875 372.6	22.4 22.4 0.45 1636 0.59 260.	4.0 4.0 5 0.45 3 717 0 0.212 9 62.7		25.6 25.6 0.15 283 0.932 526	15.5 15.5 0.19 298 0.510 148.7	15.4 0.14 258 0.629 297.5	16.7 0.14 266 0.674 324.7	23.7 0.24 386 0.61 377.
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), V Volume-to-Cap Back of Queue Back of Queue	Time (g clearance g/C) veh/h racity Ra (Q), ft/ (Q), ve	$(g \circ s)$, s e Time $(g \circ s)$, s atio (X) /In $(95 \text{ th percentile})$) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8	44.8 44.8 0.51 1844 0.659 674.9 26.8	6.4 6.4 0.67 1051 0.146 149.7 5.8	3.0 3.0 0.40 217 0.875 372.6 14.8	22.4 22.4 0.45 1636 0.59 260.	4.0 4.0 5.0.45 6.717 0.0.212 9.62.7 4.2.5		25.6 25.6 0.15 283 0.932 526 20.9	15.5 15.5 0.19 298 0.510 148.7 5.9	15.4 0.14 258 0.629 297.5 11.7	16.7 0.14 266 0.674 324.7 12.9	23.7 0.24 386 0.61 377.
Queue Service Cycle Queue C Green Ratio (c Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage	Time (gclearance g/C) veh/h vacity Ra (Q), ft/ (Q), vec Ratio ((g s), (s) at $(g c)$, (s) at (s) by (s) at (s) by $($) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13	22.4 0.45 1636 0.59 260. 10.4	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25		25.6 25.6 0.15 283 0.932 526 20.9 1.17	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33	15.4 0.14 258 0.629 297.5 11.7 0.66	16.7 0.14 266 0.674 324.7 12.9 0.00	23.7 0.24 386 0.61 377. 15.1
Queue Service Cycle Queue C Green Ratio (c Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	Time (g clearance g/C) veh/h vacity Ra (Q), ft/ (Q), ve e Ratio ((d 1), s	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile)) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2	6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0	4.0 4.0 5.0.45 6.717 0.0.212 9.62.7 4.2.5 0.0.25 0.9.8		25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9	23.1 0.2 ⁴ 386 0.61 377. 15.1 0.8 ⁴ 61.0
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	Time (g) Clearance (g/C) veh/h vacity Ra (Q), ft/ (Q), ve Ratio ((d1), si elay (d2)	g s), s e Time (g c), s atio (X) In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) (veh) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3	3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0	22.4 0.45 1636 0.59 260. 10.4 0.00 16.0	4.0 4.0 5.0.45 6.717 0.0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5		25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2	23.7 0.2 ⁴ 386 0.61 377. 15.7 0.8 ⁴ 61.0
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	Time (g Clearance g/C) weh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), se elay (d 2 elay (d 2	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh s), s/veh 3), s/veh) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0		25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0
Queue Service Cycle Queue C Green Ratio (c Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Time (g Clearance g/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s, elay (d2 elay (d,	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh a), s/veh eh) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4		25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0 1.8 0.0
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental Delay Incremental Queue D Control Delay (Level of Service	Time (g Clearance g/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), se elay (d 2 elay (d 2 elay (d (d), s/ve e (LOS)	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh e), s/veh e), s/veh eh) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4 C	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1 C	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0 20.0	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3 F	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0 17.2 B	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4 B		25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0 107.8 F	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0 23.1	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1 E	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1 E	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0 1.8 0.0 62.8
Queue Service Cycle Queue C Green Ratio (c Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	Time (g Clearance g/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s, elay (d2 elay (d, (d), s/ve e (LOS) y, s/veh	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh e), s/veh g), s/veh eh / LOS) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1 C	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0 20.0 B	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3 F	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0 17.2 B	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4	76.8	25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0 107.8 F	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0 23.1 C	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1 E	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1 E	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0 1.8 0.0
Queue Service Cycle Queue C Green Ratio (c Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	Time (g Clearance g/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s, elay (d2 elay (d, (d), s/ve e (LOS) y, s/veh	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh e), s/veh g), s/veh eh / LOS) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4 C	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1 C	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0 20.0 B	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3 F	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0 17.2 B	4.0 4.0 5.0.45 6.717 0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4 B	76.8	25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0 107.8 F	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0 23.1 C	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1 E	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1 E	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0 1.8 0.0 62.8
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	Time (g Clearance g/C) veh/h acity Ra (Q), fu (Q), ve Ratio ((d 1), si elay (d 2 elay (d d), sive e (LOS) y, siveh elay, sive	g s), s e Time (g c), s atio (X) /In (95 th percentile) eh/In (95 th percentile) //veh e), s/veh g), s/veh eh / LOS) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4 C	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1 C	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0 20.0 B	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3 F	22.4 22.4 0.45 1636 0.59 260. 10.4 0.00 16.0 1.3 0.0 17.2 B	4.0 4.0 5.0.45 6.717 0.0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4 B	76.8	25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0 107.8 F	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0 23.1 C	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1 E	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1 E	23.7 0.2 ² 386 0.61 377. 15.7 0.8 ² 61.0 1.8 0.0 62.8
Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental Delay Incremental Queue D Control Delay (Level of Service	Time (g Clearance g/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s/ve elay (d2 elay (d3), s/ve e (LOS) y, s/veh elay, s/ve	g s), s e Time (g c), s atio (X) In (95 th percentile) eh/In (95 th percentile) /veh e), s/veh 3), s/veh eh /LOS eh / LOS) ile)	14.8 14.8 0.48 359 0.688 273.3 10.8 0.99 30.6 2.7 0.0 33.4 C	44.8 44.8 0.51 1844 0.659 674.9 26.8 0.00 32.2 1.9 0.0 34.1 C	6.4 6.4 0.67 1051 0.146 149.7 5.8 0.67 19.7 0.3 0.0 20.0 B	3.0 3.0 0.40 217 0.875 372.6 14.8 2.13 70.4 25.0 0.0 95.3 F	22.4 22.4 0.48 1636 0.59 260. 10.4 0.00 16.C 1.3 0.0 17.2 B	4.0 4.0 5.0.45 6.717 0.0.212 9.62.7 4.2.5 0.0.25 0.9.8 0.5 0.0 2.10.4 B	76.8	25.6 25.6 0.15 283 0.932 526 20.9 1.17 75.1 32.6 0.0 107.8 F	15.5 15.5 0.19 298 0.510 148.7 5.9 0.33 22.6 0.5 0.0 23.1 C	15.4 0.14 258 0.629 297.5 11.7 0.66 72.4 2.7 0.0 75.1 E	16.7 0.14 266 0.674 324.7 12.9 0.00 72.9 4.2 0.0 77.1 E	

				100	vvay	Stop										
General Information							Site	Inforr	natio	1						
Analyst	DBZ						Inters	ection			Freys	Hill at E	ntrance ′	1		
Agency/Co.	Diane	B Zimn	nerman 1	Fraffic En	gineerin	g	Jurisd	liction								
Date Performed	10/14	1/2021					East/	Nest Stre	eet		Entra	nce 1				
Analysis Year	2024						North	/South S	Street		Freys	Hill				
Time Analyzed	AM P	eak					Peak	Hour Fac	tor		0.86					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Freys	Hill Apt														
Lanes																
				74 474 76		† † † Y r Street: Nor	141	74+44								
Vehicle Volumes and Ad	justme	nts			iviajoi	30,660,1401	u1-300ti1									
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	F
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	C
Configuration							LR					TR		LT		
Volume (veh/h)						1		2			228	0		0	197	
Percent Heavy Vehicles (%)						1		1						1		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)	\top					7.1		6.2						4.1		П
Critical Headway (sec)						6.41		6.21						4.11		
						3.5		3.3						2.2		
Base Follow-Up Headway (sec)						3.51		3.31						2.21		
Base Follow-Up Headway (sec) Follow-Up Headway (sec)																
	nd Leve	l of S	ervice	1										0		
Follow-Up Headway (sec)	nd Leve	l of S	ervice	· 			3								_	\vdash
Follow-Up Headway (sec) Delay, Queue Length, ar	nd Leve	l of S	ervice				3 675							1305		
Follow-Up Headway (sec) Delay, Queue Length, ar Flow Rate, v (veh/h)	nd Leve	l of S	ervice				_							0.00		
Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)	nd Leve	l of S	ervice				675							_		
Follow-Up Headway (sec) Delay, Queue Length, at Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	nd Leve	l of Se	ervice				675 0.01							0.00		
Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	nd Leve	l of S	ervice				675 0.01 0.0							0.00		
Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	nd Leve	l of So	ervice			10	675 0.01 0.0 10.4							0.00 0.0 7.8 A	.0	

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort							
General Information							Site	Inforr	natio	1						_	
Analyst	DBZ						Inters	ection			Freys	Hill at E	ntrance '	1			
Agency/Co.	Diane	B Zimn	nerman 1	Traffic En	gineerin	g g	Juriso	liction			,						
Date Performed	10/14						East/	Nest Stre	eet		Entrance 1						
Analysis Year	2024						North	/South :	Street		Freys	Hill					
Time Analyzed	PM Pe	eak						Hour Fac			0.84						
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25						
Project Description	Freys	Hill Apt															
Lanes																	
				74477		ት ቁቀጥ		74444									
Vehicle Volumes and Ad	justme	nts			Major	r Street: Nor	th-South										
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	F	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	C	
			l			l	LR					TR	l	LT		$ldsymbol{ld}}}}}}$	
Configuration		-	_	_	_	_	_	_		_		_	_				
Configuration Volume (veh/h)						1		4			262	0		0	334		
						1		4 1			262	0		0	334		
Volume (veh/h)								_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)						1	0	_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized						1	0	_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage				Undi	vided	1	0	_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	leadwa	ys		Undi	vided	1	0	_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	leadwa	ys		Undi	vided	1	0	_			262	0			334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H	leadwa	ys		Undi	vided	1	0	1			262	0		1	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	leadwa	ys		Undi	vided	7.1		6.2			262	0		4.1	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	leadwa	ys		Undi	vided	7.1	0	6.2			262	0		4.1	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)			ervice		vided	7.1 6.41 3.5	0	6.2 6.21 3.3			262	0		4.1 4.11 2.2	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)			ervice		vided	7.1 6.41 3.5	6	6.2 6.21 3.3			262	0		4.1 4.11 2.2	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and			ervice		vided	7.1 6.41 3.5		6.2 6.21 3.3			262	0		4.1 4.11 2.2 2.21	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h)			ervice		vided	7.1 6.41 3.5	6	6.2 6.21 3.3			262	0		4.1 4.11 2.2 2.21	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)			ervice		vided	7.1 6.41 3.5	6 628	6.2 6.21 3.3			262	0		4.1 4.11 2.2 2.21	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio			ervice		vided	7.1 6.41 3.5	6 628 0.01	6.2 6.21 3.3			262	0		1 4.1 4.11 2.2 2.21 0 1254 0.00	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)			ervice		vided	7.1 6.41 3.5	6 628 0.01 0.0	6.2 6.21 3.3			262	0		1 4.1 4.11 2.2 2.21 0 1254 0.00 0.0	334		
Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) V/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)			ervice		vided	7.1 6.41 3.5 3.51	6 628 0.01 0.0 10.8	6.2 6.21 3.3			262	0		1 4.1 4.11 2.2 2.21 0 1254 0.00 0.0 7.9 A	.0		

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	1						_
Analyst	DBZ						Inters	ection			Freys	Hill at E	ntrance 2	2		
Agency/Co.	Diane	B Zimn	nerman '	Traffic En	gineerin	ıq	Jurisd									
Date Performed	_	1/2021					East/\	Nest Stre	eet		Entra	nce 1				
Analysis Year	2024	<u>, </u>					_	/South :			Freys					
Time Analyzed	AM P	eak						Hour Fac			0.86					
Intersection Orientation	+	n-South							Period (hrs)	0.25					
Project Description	_	Hill Apt					7				0.20					
Lanes		7111174														
				4 4 7 4 4 7		オキア r Street: Nor		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
Vehicle Volumes and Adj	ustme	nts														
Approach	\perp		ound			_	oound				bound				bound	_
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	\bot	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	1	1	0
Configuration	\bot						LR					TR		L	Т	╙
Volume (veh/h)						18		72			156	6		23	165	
Percent Heavy Vehicles (%)	\bot					1		1						1		ㄴ
Proportion Time Blocked																
Percent Grade (%)	\perp						0									
Right Turn Channelized																
Median Type Storage	\bot			Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	\top					7.1		6.2						4.1		П
Critical Headway (sec)						6.41		6.21						4.11		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.51		3.31						2.21		
Delay, Queue Length, an	d Leve	l of S	ervice													
.							105							27		
Flow Rate, v (veh/h)							782							1392		
							0.13							0.02		
Flow Rate, v (veh/h)														0.4		
Flow Rate, v (veh/h) Capacity, c (veh/h)							0.5							0.1		
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio							0.5 10.3							7.6		
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)																
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)						10	10.3							7.6 A	.9	

Ent 2 AM.xtw

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforn	natio	1						_
Analyst	DBZ						Inters	ection			Freys	Hill at E	ntrance 1	1		
Agency/Co.	Diane	B Zimm	nerman 1	Fraffic En	gineerin	q	Jurisd	iction			Ť					
Date Performed	10/14	1/2021				_	East/\	Vest Stre	et		Entra	nce 1				
Analysis Year	2024						North	/South S	Street		Freys	Hill				
Time Analyzed	PM P	eak					Peak	Hour Fac	tor		0.84					
Intersection Orientation	-	n-South					_		Period (hrs)	0.25					
Project Description	-	Hill Apt														_
Lanes	110,0	т т.ф.с														
				7447777		∤ ↑ ◆ Ƴ r Street: Nor		74+A+C								
Vehicle Volumes and Adj	ustme															
Approach	+		ound			_	oound				bound				bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	\bot	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes	\vdash	0	0	0		0	1	0	0	0	1	0	0	1	1	0
Configuration	\bot						LR					TR		L	Т	
Volume (veh/h)	\perp					11		45			217	20		78	257	
Percent Heavy Vehicles (%)	\bot					1		1						1		
Proportion Time Blocked																
Percent Grade (%)	\perp)									
Right Turn Channelized																
	1			Undi	vided											
Median Type Storage																
,, , , , , , , , , , , , , , , , , , ,	eadwa	ys														
	eadwa	ys			Π	7.1		6.2						4.1		
Critical and Follow-up H	eadwa	ys				7.1 6.41		6.2						4.11 4.11		
Critical and Follow-up H Base Critical Headway (sec)	eadwa	ys														
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	ys				6.41		6.21						4.11		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)			ervice			6.41 3.5		6.21 3.3						4.11 2.2		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)			ervice			6.41 3.5	67	6.21 3.3						4.11 2.2		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an			ervice			6.41 3.5	67	6.21 3.3						4.11 2.2 2.21		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)			ervice			6.41 3.5	-	6.21 3.3						4.11 2.2 2.21		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)			ervice			6.41 3.5	622	6.21 3.3						4.11 2.2 2.21 93 1286		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio			ervice			6.41 3.5	622 0.11	6.21 3.3						4.11 2.2 2.21 93 1286 0.07		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) y/c Ratio 95% Queue Length, Q ₉₅ (veh)			ervice			6.41 3.5	622 0.11 0.4	6.21 3.3						4.11 2.2 2.21 93 1286 0.07 0.2		
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) y/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)			ervice			6.41 3.5 3.51	622 0.11 0.4 11.5	6.21 3.3						93 1286 0.07 0.2 8.0	.9	

Ent 2 PM.xtw