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ABSTRACT 
Exposure to cement dust has been documented to cause various occupational and long-term health complications both in human 

and animal. However, investigations on the extent of toxicity associated with cement dust exposure have been limited by lack of 

suitable model for controlled laboratory exposures. In this study, a glass house animal exposure chamber was fabricated using a 

plexi-glass and a blowing fan of adjustable revolution. Model simulations were validated using experimental data showing the 

effects of cement dust exposure on haematological indices, trace element status and gastrointestinal motility in rats. Thirty male 

Wistar rats were randomly divided into three groups. The unexposed group (n = 10) served as control while the other groups 

were exposed for five hours daily to cement dust (200g) at a revolution of 2400-3000rpm. Blood collected was analysed for some 

haematological variables as well as plasma concentrations of cadmium, lead, silicon, aluminium, manganese, calcium, iron and 

magnesium. Organ weights were measured and histopathological features of the kidney, lungs stomach and liver were assessed 

to determine the degree of tissue damage. Intestinal motility was assessed in vivo using the Charcoal meal method while colonic 

motility was studied by measuring the distance travelled by beads inserted 2cm into the distal colon through the anal opening.  

Data were expressed as Mean ± SEM, analysed using one-way ANOVA and p<0.05 was significant. Blood analysis from exposed 

rats on days 14 and 28 showed significant increase in concentrations of Calcium, Silicon, Manganese, Iron, Lead, Cadmium, 

Aluminium and magnesium compared with unexposed animals. Significant reductions were observed in haematocrit values, red 

and white blood cell counts after cement dust exposure. Also, significant increases were observed in the neutrophil-lymphocyte 

ratio and erythrocyte sedimentation rate in exposed rats compared with control. There was a significant decrease in organ weights 

- stomach, lungs, kidney when compared with control. Rats exposed to cement dust had significantly decreased small intestinal 

motility but increased colonic transit time.  Histopathological examination from exposed rats revealed peribronchiolar infiltration 

by lymphocytes in the lungs while gastric gland was severely infiltrated by inflammatory cells. The results from this study are 

comparable to data obtained from earlier reported on haematological and heavy metals in humans occupationally exposed to 

cement. 
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INTRODUCTION 

 

Man’s environment is constantly being polluted by remains of 

industrial activities which poses serious threat to human 

health. One of such activities in developing countries is 

increased construction of structures such as houses, roads, 

schools, factories, hospitals etc. for which usage of cement is 

inevitable. Cement is a powdery composition (limestone, 

laterites, clay and gypsum) used in making and holding blocks 

or bricks in-place during construction (Amodu and Egwuogu, 

2014). The major components of cement are derived from 

toxic heavy metals such as nickel, cobalt, lead, chromium and 

Silica (Gbadebo and Bankole 2007; Baby et al., 2008; 

Ogunbileje et al, 2013). It also contains Thallium and many 

other impurities (Short and Petsonk, 1996). Many of these 

toxic compounds have been shown to cause damages at both 

cellular and organ levels in the lungs (Ade-Ademilua and 

Obalola, 2008); Akpan et al. 2011), blood (Goyer et al, 1973)  

gut (Olaleye et al, 2006, 2007; Adeleye and Olaleye, 2016; 

Adeleye et al, 2018) in addition to their roles in genetic 
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disorders and cancers. In most developed countries, dusts 

from cement factories is a major problem that both factory 

workers and nearby residents are faced with as it affects the 

quality of air they inhale. Apart from factory workers, cement 

dusts also pose environmental threat to the ecosystem with 

adverse impact on vegetation and aquatic life (Anda, 1986; 

Iqbal and Shafiq, 2000).  

 Several reports are available in literature which 

underscore the adverse effects of repeated and or prolonged 

exposure to cement dusts on the health status of most cement 

factory workers as well as those living around cement 

factories (Calistrusjudge et al., 2002; Fell et al., 2003; 

Lameed, 2008). Excessive exposure to cement dusts Cough 

and phlegm production, chest tightness, impairment of lung 

function, obstructive and restrictive lung disease, pleural 

thickening, fibrosis, emphysema, lung nodulation, 

pneumoconiosis and carcinoma of lung (Alakija et al., 1990; 

Meo, 2004; Baccarelli et al., 2014,). In the gastrointestinal 

tract, cement dust exposure is believed to cause mechanical 

trauma, mucosal inflammation, loss of tooth surface, 

periodontal disease, dental abrasion, dental caries, Stomach 

ache and cancer of stomach (Kolev and Shumkov, 1975; 

Struzak-Wysokinska and Bozyk, 1989; Jakobsson et al, 1990; 

Tuominen and Tuominen, 1992). 

 Most of the reports on the effects of cement dust exposure 

on body functions have been on human studies carried out on 

industry workers or on animals taken to production areas. In 

such studies, quantification of the extent of exposure are 

practically impossible. The implication of this is that 

information on mechanistic and detailed laboratory-based 

exposure models of cement dust exposure in animals are not 

available, leading to limitations in the knowledge of cement 

dust toxicity in the body. In this study, the efficacy of a 

fabricated cement dust exposure chamber was tested and 

validated by assessing and comparing the effects of cement 

dust exposure on hematological indices, trace metal status and 

intestinal motility in rats. 

 

MATERIALS AND METHODS 
 

The Exposure chamber: The fabricated plexiglass house 

animal exposure chamber consists of a square shaped box 

made up plastic glass with two compartments. One of the inner 

compartments houses the experimental animal during 

exposure (Plate 1) while the second inner smaller 

compartment contains two industrial fans which is been 

connected to electricity to blow the cement dust been 

deposited into the compartment to the other compartment that 

houses animal during the exposure at a revolution of 2400-

3000rpm 

 The bigger compartment has a height of 60cm and a width 

of 59.9cm. The smaller inner chamber has a height of 19.6cm 

and a width of 26.1cm. The chamber also contains outlet 

opening (vent) which regulates the temperature of the chamber 

during exposure at every 30minutes interval to prevent 

suffocation of the experimental animal. It has a height of 

9.9cm and a width of 10.6cm. 
 

Animals: Fifteen male Wistar rats (100 – 110g were randomly 

divided into three groups viz: 1-unexposed group (control) 

while other groups 2 and 3 were exposed to cement dust for 

14 and 28 days respectively. Animals were acclimatized for 

two weeks with free access to standard commercial rat chow 

and tap water ad libitum before commencement of studies. 

The animals were housed under standard conditions of 

temperature (23 ± 2ºC), humidity (55 ± 15%) and 

environmental 12hour light and dark cycle in the Animal 

house of Department of Physiology, University of Ibadan, 

Ibadan. They were kept in plastic cages with beddings which 

were adequately changed throughout the study period. They 

were exposed for five hours daily to cement dust (200g) at a 

revolution of 2400-3000rpm in the enclosed plexiglass 

exposure chamber between 8:00 am to 12 noon. 

 

 

    
Plate 1 

Fabricated enclosed cement dust chamber before exposure (plate 1a) and during exposure (plate 1b) 
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Exposure procedure: 200g of cement was weighed daily and 

kept in the inner compartment of the exposure chamber for 

circulation. A thick transparent hollow glass plate was placed 

inside the chamber filled with 50ml of distilled water in order 

to ascertain the level of cement dust that will be diffused in to 

the water during exposure so as to measure the effectiveness 

of the chamber and also to compare the concentration found 

in water and that in the blood throughout the period of fourteen 

days and twenty eight days of exposure. Afterwards, animals 

were placed in the outer compartment (as shown in plate 1b) 

and the fan switched on. 

 

Hematological examination: Blood collection was through 

the retro-orbital sinus using heparinized capillary tubes and 

EDTA bottles on days 14 and 28. The blood parameters (PCV, 

HB, WBC and RBC) were determined according to the 

method described by Dacies and Lewis (1994). 
 

Histological Analysis: On sacrificing the animals, the lungs 

and stomach were harvested, weighed and a small section 

were fixed in formalin before Histological evaluation was 

carried out on them. 

 

Metal analysis in blood: After collecting 1 ml of blood into a 

test tube, 2 ml of Nitric acid (HNO3) was added and left 

overnight after thorough mixing. The digested blood was 

placed in water bath and heated for 30 minutes at 98-100°C. 

After cooling, 12mL of distilled water was added to the 

digested blood and filtered. The filtrate was then analyzed for 

the major heavy metals found in cement viz: Calcium, Silicon, 

Manganese, Iron, Lead, Cadmium, Aluminum and 

magnesium using atomic absorption spectrophotometry 

(Awad et al, 2013).  

 

Intestinal motility: In another experiment, intestinal transit 

was determined following the method described by Teke et al. 

(2007). Briefly, Healthy Wistar rats were grouped into 3 (n=5) 

and exposed to cement dust as described earlier. A control 

group was not exposed. All animals were fasted for 18 h prior 

to the administration of charcoal meal. The charcoal meal (1 

mL) (10% charcoal and 5% acacia gum suspended in distilled 

water and made up to 100 mLs of solution) was administered 

by oral gavage to all the groups. The animals were sacrificed 

30 minutes after charcoal meal was given by ketamine 

overdose (100 mg/kg) followed by cervical dislocation. The 

small intestine was removed carefully and lengths of intestine, 

as well as the leading end of the charcoal meal were measured. 

The percentage of distance covered by the charcoal was 

computed to calculate percentage inhibition. 

% transit = (distance traveled by charcoal meal / total length 

of the intestine) x 100 .      

 

Colonic motility: The effect of cement exposure on altered 

gastrointestinal motility was also studied in Wistar rats fasted 

for 24 hours prior to experiment.  The animals were grouped 

into 3 and exposed to cement dust as described earlier. Beads 

of about 2mm were be inserted 2cm into the distal colon 

through the anal opening using the nasogastric tube (NG) 

which was well lubricated. The animals were then placed in 

different plastic cages lined with white tissue rolls and the time 

at which each animal expelled the beads was be noted. Colonic 

motility was be calculated by computing the time between 

bead placement and expulsion of the bead (Osiniki et 

al.,1999). 

 

Ethical considerations; This study was conducted in 

accordance with the current Animal Care Regulations and 

standards approved by the Institute for Laboratory Animal 

Research (ILAR, 1996) and the experimental protocol 

approved by the Animal Care and Use Research Ethics 

Committee of the University of Ibadan. Ibadan, Nigeria 

 

Statistical analysis: All values are expressed as Mean ± SEM 

of the animals used in each group. Independent T-test and one-

way ANOVA were employed to compare differences among 

variables. Comparisons between groups were done using 

appropriate post hoc test and the statistical differences was 

taken to be significant at p<0.05. 

 

 

RESULTS 

 

Body and organ weight changes 

The changes in body weight of the animals after 14- and 28-

days exposure to cement dust are shown in Figure 1. Significant 

decreases in the body weight of exposed animals were apparent 

when compared with the unexposed (control) animals. Table 1 

shows that the relative weights of the kidneys, stomach and 

lungs were significantly decreased in cement dust-exposed rats. 

Liver weight was not significantly affected. 

 

 

 
Figure 1:  

Boy weight profile of rats before and after exposure to cement dust. 

Each vertical bar represents mean ± SEM of 10 rats per group.  

 

Blood parameters: 

The results of studies on the effects of cement dust exposure on 

blood variables are shown in Table 2. The values of red and 

white blood cell counts, platelets as well as Packed Cell 

Volume (PCV) and hemoglobin were significantly decreased in 

rats exposed to cement dust. The effects were marked more on 

the 28-day exposed animals.  
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Table 1:   

Effect of cement dust exposure on body organ weight.  

Groups Organs 

Lungs (g) Liver (g) Kidney (g) Stomach (g) 

Control 1.56 

±0.06 

6.20  

± 0.17 

1.28  

± 0.04 

1.42  

± 0.10 

14 days 

CDE 

1.057  

± 0.06** 

5.25  

± 0.25 

1.11  

± 0.02* 

1.14  

± 0.02* 

28 days 

CDE 

1.37  

± 0.09 

6.80  

±0.39 

1.07  

± 0.01* 

0.96  

± 0.02** 

Values are presented as Mean ± SEM, n=5. *Significant when 

compared to control (P<0.05). ** Highly Significant when compared 

to control (P<0.01) 

 

 Differential white blood cell counts revealed significant 

decreases in the lymphocyte and eosinophil counts in exposed 

rats while neutrophil and monocyte counts were significantly 

increased after 28 days of exposure. However, the decreases 

observed in lymphocyte, neutrophil and eosinophil counts on 

day 14 were not significant when compared with the control 

groups (Table 2). 

 As shown in Fig. 2, Erythrocyte Sedimentation Rate (ESR) 

was significantly increased after 14 and 28 days of exposure to 

cement dust. The figure also shows the relative increase in the 

Neutrophil-Lymphocyte ratio in the exposed rats when 

compared with the control. 

  

Heavy metal levels in blood: 

As shown in Fig. 3, the blood levels of lead and cadmium (3a), 

silicon, aluminum an manganese (3b) as well as calcium, iron 

an magnesium (3c) were all increased the end of the 28 day 

exposure period.  

 

Table 2:   

Effect of cement dust exposure on blood parameters  
Control 14 Days CDE 28 Days CDE 

PCV (%) 40.40±0.67 39.80±1.16 33.80±1.72 *# 

RBC 

(millions/mm3) 

6.53±0.18 6.88±0.19 5.72±0.23 *#  

HB (g/dl) 13.56±0.27 13.68±0.34 11.14±0.58 *# 

WBC 

(millions/mm3) 

8910±737.30 9050±1131 4770±94.34 *# 

Platelet 

(x103/mm3) 

2.55±0.26 1.62±0.90* 1.66±0.89* 

Lymphocyte 70.50±1.04 71.50±1.04 65.50±1.32 *# 

Neutrophils 25.75±0.85 27.25±0.85 31.50±1.19 *# 

Monocytes 1.25±0.25 2.25±0.25 * 2.75±0.25 * 

Eosinophils 2.60±0.24 2.80±0.20 1.20±0.20 *# 

Values are presented as Mean ± SEM, n=10 

* Significant when compared to control (P<0.05). 
# Significant when compared with 14 days CDE (P<0.05) 

CDE stands for cement dust exposure 

 

 

 

 

 
Figure 2: 

Effect of cement dust exposure on erythrocyte sedimentation rate and neutrophil-lymphocyte ratio. Values are presented as Mean ± SEM, n=5    

* Significant when compared to control (P<0.05). # Significant when compared with 14 days CDE (P<0.05) . 
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Figure 3.  

Effect of cement dust exposure on Lead and Cadmium (A), Calcium, iron and magnesium (B) and Silicon, Aluminum and manganese levels. 

Values are presented as Mean ± SEM.  * and # Significant when compared to control and with 14 days CDE (P<0.05) 

 

 

 

Intestinal and colonic motility 

Intestinal motility was significantly decreased 14 and 28 days 

after cement dust exposure compared with control group (Fig 

4). Figure 5 shows the effect of cement dust on colonic transit 

time. Colonic transit time was significantly increased in all 

exposed animals 
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Figure 4:  

Effect of cement dust on Intestinal motility 

Values are presented as Mean ± SEM, n=10 

* Significant when compared to control. 
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Figure 5:  

Effect of cement dust on colonic transit time 

Values are presented as Mean ± SEM, n=10 

* Significant when compared to control. 

# Significant when compared with 14 days CDE 

 

Histology  

The results of the histological examinations of the lung and 

stomach tissues of the exposed rats showed marked 

microscopic changes when compared the tissues of the control 

rats (Plates 2 and 3). 
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Plate 2:  

Histology of The Lungs (H&E Stain MAG. X 100) showing A-Control: showing moderate peri-lymphocyte bronchiolar and vascular infiltration 

(black arrow), there is mild fat deposit at the perivascular region, no vascular congestion is noted. The intra alveolar spaces are not infiltrated 

and alveolar ducts appear normal, B-group 2, day 14: showing moderate lymphocyte follicle and severe peri-bronchial ar infiltration of 

lymphocytes (green arrow). There is moderate thickening of vascular wall and mild vascular congestion noted. The intra alveolar spaces and 

alveolar ducts (red arrow) are severely infiltrated. C-group 3, day 28:  showing moderate fibrosis, severe peri bronchiolar infiltration of 

lymphocytes (black arrow). There is moderate thickening of vascular of vascular and mild vascular congestion noted. There is focal area of mild 

fat deposits. The intra alveolar spaces (slender arrow) and alveolar ducts (red arrow) are severely infiltrated (slender arrow) 

 

 
Plate 3:  

Histology of the Stomach (H&E Stain MAG. X 100) showing Group 1 (A), Unexposed Control; moderate architecture, the mucosa layer shows 

scanty infiltration of the gastric gland and lamina propria. The submucosa layer shows mild infiltration of inflammatory cells (blue arrow). 

Group 2 (B), day 14 CDE: moderate architecture and poorly preserved mucosa epithelial cells layer (white arrow) which are severely eroded, 

there is moderate papillary infoldings, the mucosa layer shows no infiltration of the gastric glands and lamina propria. The submucosal layer 

appear mildly infiltrated by inflammatory cells and moderately vascularized with thickened vascular walls and mild congestion (blue arrow), 

the circular muscle layer (red arrow) appears normal. Group 3 (C), day 28 CDE: fair architecture, the mucosa epithelial cells layer is poorly 

preserved (white arrow), the mucosa layer shows moderate to severe infiltration of the gastric glands and lamina propria. The submucosal layer 

appears severely infiltrated by inflammatory cells (blue arrow) and also show moderate vascularization and mild fibrosis. The circular muscle 

layer (red arrow) appears normal 

 
 

DISCUSSION 

 

In this study, rats were exposed in the laboratory to cement 

dusts via a fabricated exposure chamber. The efficacy of the 

exposure chamber was tested by investigating the effect of the 

exposure on some indicators of toxicity. 

 The body weights of the animals exposed to cement dust 

in this study were decreased when compared with the 

unexposed control rats. Decreased body weights have been 

attributed to several factors such as impaired gastrointestinal 

functions (Chokshi, 2007) probably resulting from increased 

toxic end products during inappropriate food conversion 

(Klaassen et al., 2001).  It could also be as a result of 

impairment or disturbances in the metabolic breakdown 

between carbohydrate, protein and fats  (Klaassen et al., 2001) 

which can be linked to altered food appetite (Ezeonwumelu et 

al., 2011). Changes in body weight have been reported by 

several workers as an indication of toxicity (Lamanna and 

Hart, 1968; Kwan Yuet Ping et al., 2013). Decreased in body 

weight may be used as an index of toxicity or deleterious 

effect of certain substances (Hilaly et al., 2004) which is 

evident in this study. 

 The weights of the liver were not remarkably altered by 

cement dust exposure in this study. This is in line with the 

work of Mojiminiyi et al., (2008) that reported that the liver 

function parameters remained similar in exposed workers 

compared to unexposed workers. Results of this study indicate 

that kidney and lung weights decreased as a result of cement 

dust exposure. 

 The proper functioning of the body system or cells is 

dependent on adequate nourishment, a factor determined by 

the efficacy of blood cells. Blood cells function in 

oxygenation, removal of waste products from organs and 

ultimately conferring immunity to the body system (Barrett et 

al, 2010). Anaemia has been documented over time as an 

index of toxicity. In this study, the blood cells- erythrocytes, 

leucocytes and platelets were significantly diminished in rats 

exposed to cement dusts. The adverse effect of cement dust on 
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hematological variables in humans (Mojimoniyi et al., 2007; 

Mohammed and Sambo, 2008) and animals taken to cement 

manufacturing sites (Yahaya et al, 2011) have been well 

documented. However, while Mojiminiyi et al., (2008) and 

Erhabor et al., (2013) increases in the platelet counts in 

exposed humans, Jude et al., (2002) observed decreases in the 

platelet count in exposed subjects. This disparity thus suggests 

for more investigations. 

 Erythrocyte sedimentation rate has been used clinically to 

denote presence of tissue damage during stress conditions. It 

is also a common haematological test used to measure non-

specific inflammation (Gabriel et al., 2004; Punzi et al., 2005). 

Erythrocyte sedimentation rate is also an indirect 

measurement of fibrinogen level which are observed as acute 

phase protein in disease state (Husain and Kim 2002).  In this 

study, the Erythrocyte sedimentation rate was elevated after 

cement dust exposure. This is similar to the observations of 

Erhabor et al., (2013).  An elevated ESR means fragile and 

reduced levels of red blood cell production which was 

observed in this study and suggesting adverse effect cement 

dust exposure may exert on erythrocyte formation, structure 

and function.   

 Ratios of blood cells- neutrophil-lymphocyte ratio 

(NLR), lymphocyte-monocyte ratio (LMR), platelet-

lymphocyte ratio (PLR), and mean platelet volume (MPV) 

have been projected as useful markers of disease conditions 

including cancers and systemic inflammation response (Liu et 

al., 2011, Seretis et al, 2013; Lee et al, 2018).  In this study, 

neutrophil counts remarkably increased in animals exposed to 

cement dust, similar to the report of Okonkwo et al., (2015) 

and Yahaya et al., (2011). Also, Neutrophil/Lymphocyte ratio 

significantly increased in rats exposed to cement dust.  

   Similar to reports in humans occupationally exposed to 

cement and in studies involving animals taken to sites of 

cement production, our study shows significantly elevated 

levels in blood concentration of Cadmium, Calcium, 

Magnesium, Silicon, Manganese, Lead, Aluminum and Iron 

after 14 and 28 days of cement dust exposure. This finding is 

a confirmation of the previous where elevated levels of these 

heavy metals were detected in blood and lungs of exposed 

humans and animals (Abdul-Wahab, 2006; Gbadebo and 

Bankole, 2007; Akinola et al. 2008; Ade-Ademilua and 

Obalola, 2008; Akpan et al., 2011; El-Abssay et al., 2011).  

 The decrease in the two types of intestinal motility tests 

(small intestinal transit and colonic motility) from this study 

did not present mechanistic evidence to trace the pathways of 

reported findings. However, the reduced motility is an 

indication of stasis in the gut. This slow dynamism of the gut 

movement in the presence of ingested heavy metals might be 

a signal suggestive of danger to the gut’s health. The report by 

Manjula et al (2013) where factory workers exposed to cement 

dust presented with series of gastrointestinal problems ranging 

from diarrhea as well as constipation might suggest 

modulatory roles that the cement dust can play when exposed 

to the gut.  

 Chromium which is a component of cement was recently 

reported to possess decreased intestinal and colonic motility 

properties in rat models exposed to trivalent chromium 

(Odukanmi et al, 2017). This further buttress the reported role 

of delayed in motility adduced to cement dust exposure in this 

current study. Certain gastrointestinal cancers were also 

linked to exposure to cement in some factory workers 

(Jakobsson et al, 1990) and even though this could occur 

through series of pathways, delayed motility is certainly a 

strong precursor in development of gastrointestinal cancers. 

More importantly if the heavy metals have potentials of 

generating reactive oxygen species (Bishak et al, 2015). 

 The observed findings in this study which were very 

similar to animals taken to cement factory environment further 

confirms for the first time that this model mimicks pollutions 

as though in the cement factory. It also buttresses the fact that 

cement dust exposure can be performed experimentally using 

this exposure chamber model. Pathological observations of the 

lungs and kidney, adverse observations of the haematological 

variables of exposed rats as well as elevated heavy metal levels 

found in blood of cement exposed animals confirms that 

cement dust is pathogenic to rats as also observed in humans. 

This study is therefore in concordance with most of the research 

works conducted previously regarding the toxicity effects of 

cement dust exposure to animals and humans 
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Introduction

Emission of toxic metals from 
industries is a source of environmental 
degradation, and can affect human 
heath.1-10 Cement production emits 
dust particles of various sizes, volatile 
substances and dangerous metals, 
harming the environment.11,12 Cement 
dust reduces crop yield (through 
stomata clogging), gaseous exchange, 
rate of transpiration and inhibits 
intercellular processes, and also affects 
surrounding ecosystems.13-17 The main 
materials used in the production of 
cement are limestone, shells, and chalk 
or marl combined with shale, clay, 
slate, blast furnace slag, silica sand, 
and iron ore.18 Metals and compounds, 
such as lead, zinc, and sulfuric acid, 
originate from cement manufacturing 
plants.19

In developing countries, like Nigeria, 
soil quality plays a crucial role in 
food production, as metals emitted 
from industries can bioaccumulate in 
plants from soil.20-23 Ingestion of these 
plants can lead to health problems 

and eventually mortality.20-26 Cement 
dust has a high percentage of calcium 
silicate which is harmful to human 
health when ingested.27,28 The alkaline 
compound has the ability to transform 
to C-S-H bond when it reacts with 
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ecological risk of heavy metals associated with dust released during cement production.
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oxygen in the soil, this consequently 
makes the presence of calcium silicate 
a major problem when ingested or 
even with dermal contact.29

Cement dust also contains hexavalent 
chromium, a compound that is highly 
toxic in nature, and has major health 
impacts when bioaccumulation occurs 
up the food chain.35-37

Little or no study has been carried out 
to assess the extent of contamination 
of heavy metals in soils and plants or 
evaluate the health and ecological risks 
associated with cement production 
in the study area.38-40 The research 
was therefore carried out to assess 
the impact of heavy metals found in 
cement dust on the soils and plants 
within and around Ewekoro Portland 
cement factory and also evaluates the 
health impacts.

Methods

Ewekoro is located within latitude N 
6o53’00”-N 6o55’00” and longitude E 
3o12’00”-E 3o13’00” in southwestern 
Nigeria (Figure 1). Ewekoro is found 
along the Sango-Ifo-Abeokuta 
Expressway of Ogun State, bordering 
Papalanto in the west and Abeokuta 
in the east. The town is 54 km from 
Lagos and 24 km from Abeokuta. 
Ewekoro is easily accessible and 
drained mainly by the River Ewekoro, 
which is seasonal in nature and has 
many tributaries.41 The topography 
of Ewekoro is an immeasurable low 
land. The area experiences high 
levels of humidity and shrubbery is 
primarily located on tree plantations. 
The climate is significantly marked by 
two alternating wet and dry seasons. 
The average temperature in the area 
is 27.1oC with the highest and lowest 
temperatures recorded in March 
and August, respectively. The mean 
annual rainfall in the area is 1305 mm 
with the highest rainfall observed 
in June and the lowest rainfall in 
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January.42 According to the United 
States Department of Agriculture 
classification scheme, the soils of 
the area are ferric, quartz and highly 
weathered clay minerals.43,44 Human 
activities in the area include mining, 
quarrying, farming and cement 
production, and has a population of 
55,156.45,46 The area is found within 
the Dahomey basin, which is one 
of the major sedimentary basins in 
Nigeria. Ewekoro is a type locality for 
limestone deposits in the country and 
soil type reflects the presence of clay 
minerals.47,48

Sampling

Thirty (30) topsoil samples weighing 1 
kg each were collected at a depth of 20 
cm in March 2015 using a hand auger. 
After each sample was collected, all 
instruments used for sample collection 
were washed using distilled water and 
dried before use at the next sampling 
point.49 This method was repeated for 
of all of the collected samples. Three 
control samples were collected in 
areas with no observed anthropogenic 
activities. Likewise, 30 healthy plant 
samples, commonly consumed 
by locals were collected from four 
species of plants: Celosia argentea 
(soko), Corchorus olitorius (ewedu), 
Colocasiaesculenta (cocoyam), 
Musa sp.(banana) and Saccharum 
officinarum (sugar cane). The foliage 
was picked into a container and 
tagged.50,51 Two (2) control samples of 
soils and plants were also collected in 
areas with no observed anthropogenic 
activities.

Chemical analysis

In the laboratory, all the soil and 
plant samples were dried at room 
temperature. The sods were pulverized 
and sieved using an impact electric 
sieve shaker. After sieving, clay-sized 
(63 µm) sediments were collected and 
packed into small zip-lock bags. The 

grains were divided into roots, stems, 
and leaves and pulverized to fineness 
(<0.002 mm) using a china clay mortar 
and pestle. Soil and plant samples were 
then digested before analysis.

One (1) gram of soil was weighed 
from each pulverized sample and 
dissolved with 15 ml nitric acid, 
20.0 ml perchloric acid and 15.0 ml 
hydrofluoric acid, and heated for three 
hours and thereafter measured into 
a 100 ml flask with distilled water.51 
Plant samples were thoroughly washed 
in deionized water because they are 
more prone to battering of sediments, 
heated at 105oC for 5 minutes, cooled 
at 70oC for 48-72 hours to a stable 
mass, then turned into a powdery form 
in a 100 μm blender so they could be 
easily dissolved.52-54 A homogenized 
measured mass of 0.25 g was put in a 
100-ml dry Pyrex digestion tube and 
digested with 5 ml of concentrated 
nitric acid was measured with it for 
the metals analysis. Digested samples 
were diluted with ultrapure water 
using a 1:50 dilution factor. Digestates 
were sent for analysis at Acme 
Laboratory Canada. Metals analyzed 
in the samples included copper (Cu), 
lead (Pb), zinc (Zn), chromium (Cr), 
cobalt (Co) and nickel (Ni). Statistical 
analyses were carried out using the 
Statistical Package for the Social 
Sciences (SPSS) software program 
version 21. It was used to calculate 
mean, minimum, maximum, standard 
deviation and bivariate correlation. 

Contamination and risk assessment

The equations described below were 
used to evaluate the contamination, 
ecological and health risks of heavy 
metals in samples. Heavy metal 
contamination in soils was calculated 
using the geo-accumulation index 
(Igeo), contamination factor (CF), 
contamination degree (CD) and 
pollution load index (PLI).

Geo-accumulation index 

The Igeo was used to assess 
contamination of a specific metal in 
soils by evaluating metal enrichment 
above baseline or background 
values. Geo-accumulation index was 
calculated according to Equation 1.55

Equation 1

Igeo = log2 x Cn / (1.5×Bn)

where, Cn is the metal concentration 
in the sample; Bn is the concentration 
of metal in the background sample, 
and the constant 1.5 is introduced 
to minimize the effect of possible 
variations in the background values 
which may be attributed to lithologic 
variations in the samples. The 
following interpretation for the Igeo 
was given by Loskaet al.: Igeo<0 = 
practically unpolluted, 0<Igeo<1 = 
unpolluted to moderated polluted, 
1<Igeo<2 = moderately polluted, 
2<Igeo<3 = moderately to strongly 
polluted, 3<Igeo<4=strongly polluted, 
4<Igeo<5= strongly to extremely 
polluted and Igeo>5 = extremely 
polluted.56

Contamination factor 

The assessment of soil contamination 
was also carried out using the CF 
in Equation 2. The CF is the single 
element index, and all four classes are 
recognized.57

Equation 2

CF =  Metal concentration in soils /  
Concentration of element in 
background soils

The CF can be classified as follows: 
CF<1: low contamination; 1<CF<3: 
moderate contamination; 3<CF<6: 
considerable contamination; CF≥6: 
very high contamination.
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Contamination degree

The sum of contamination factors for 
all examined elements represents the 
CF of the environment.58 The CD is 
aimed at providing a measure of the 
degree of overall contamination in 
surface layers in a particular sampling 
site. The formula for calculating the 
CD is shown in Equation 3.

Equation 3

Cd = ∑n
i=1Ci

f 

where, Cd is the contamination 
degree and Cf is the contamination 
factor. A CD<6 indicates a low 
degree of contamination, while 
6<CD<12 implies a moderate degree 
of contamination. In addition, 
12<CD<24 indicates a considerable 
degree of contamination, while 
CD> 24 reflects a high degree of 
contamination.

Pollution load index

The PLI is defined as the ratio of 
element concentration in the study 
to the background content of the 
abundance of chemical elements in the 
continental crust and is used to assess 
environment quality.59,60 The PLI for 
the soil samples was determined by 
the equation below, as proposed by 
Tomilson et al. and used by Anjos et 
al.58,59

Equation 4

PLI = (CF1 x CF2 x CF3 x ... x CFn)1/n  
 

According to Chen et al., the PLI of 
each metal is classified as either low 
(PI≤1), middle (1<PI≤3) or high 
(PI>3).60

Contamination load index 

Equation 5 was used to determine 

the rate of contamination of specific 
metals in the grain/plant.

Equation 5    
 
CLI =  Ccrop/MPC

Where, CLI is the contamination load 
index; Ccrop is the concentration of 
metal in a plant; MPC is the maximum 
permitted concentration of metals in 
crops, and a contamination load index 
>1 indicates contamination of grains 
by metals.61

Bioaccumulation factor

Bioaccumulation factor is defined 
as the ratio of metal concentration 
in plant to that in the soil.62 It is 
expressed using Equation 6.

Equation  6    
 
BAF = Cp/Cso   

Where, BAF is the bioaccumulation 
factor, and Cp and Cso are the 
metal concentration in aerial parts 
of the plant (mg/kg) and in soil 
(mg/kg), respectively. When the 
bioaccumulation factor>1 there is 
mobility of metal from soil to plant.

Ecological risk assessment for metals 
in soils 

Ecological risks of metals were 
evaluated using the ecological risk 
index (ERI) (Equation 7) as presented 
by Mamut et al.63

Equation 7    
 
ERI = T i

R x C i
f

Where, ERI is the potential ecological 
risk of a single element; TR is the toxic-
response factor; and CF is the pollution 
of a single element factor, which is also 
the contamination factor. The toxic-
response factors for some metals used 

in the study were Zn = 1, Cr = 2, Cu 
= 5, Pb = 5, cadmium (Cd) = 30, Ni = 
5. The results from Equation 7 help to 
produce the risk index (RI), which is 
the summation of the ecological risk 
assessment (Equation 8).64

Equation 8    
 
RI = ∑m

i=1 x E i
R  

When the ecological risk (ER) is <40 
and RI<150, this implies low ecological 
risk, while 40≤ER<80 and 150≤RI<300 
indicate moderate ecological risk. A 
80≤ER<160 and 300≤RI≤600 indicates 
considerable ecological risk, while 
160≤ER<320 implies high ecological 
risk. An ER≥320 and RI>600 indicate 
very high ecological risk.

Results

The average concentrations of heavy 
metals in soils in the study area are 
presented in Table 1. The mean soil 
concentrations of the metals were Cu: 
41.63 mg/kg; Pb: 35.43 mg/kg; Zn: 
213.64 mg/kg; Cr: 35.60 mg/kg; Co: 
3.84 mg/kg and Ni: 5.13 mg/kg (Table 
1). The results revealed a decreasing 
order of Zn>Cu>Cr>Pb>Ni>Co (Table 
1) for the metals concentrations. 
Sample 21 had the highest 
concentration of Co, while sample 30 
has the least concentration (Figure 
2). For Ni, sample 20 had the highest 
concentration, while sample 30 had the 
lowest (Figure 2). The concentration 
of Zn was highest in sample 4 and 
lowest in sample 1 (Figure 3). The 
concentration of Cr was highest in 
sample 27 and lowest in sample 1 
(Figure 3). The highest concentration 
of Cu was found in sample 27, while 
the lowest was found in sample 1 
(Figure 4). The highest concentration 
of Pb was found around sample 23, 
while the least values were found in 
sample 1 (Figure 4). The study further 
showed that the concentrations of Cr 
in soils in the study area were above 
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the United States Environmental 
Protection Agency (USEPA) standards, 
while the concentrations of Zn, Cu, Pb, 
Ni and Co were below this standard.65 
The average concentrations of the 
metals in soils were greater than those 
in the control samples (Table 1).

Metal concentrations in plants 

The decreasing order of metals in 
plants in the present study area are 
Zn>Cr>Cu>Pb>Ni>Co (Table 1). Zinc 
had a mean value of 135.87 mg/kg, a 
minimum value of 14.90 mg/kg and a 
maximum value of 252.00 mg/kg; with 
a significance of ρ = 0.01. Chromium 
had a mean value of 30.62 mg/kg, a 
minimum value of 1.20 mg/kg and 
a maximum of 343.00 mg/kg, with a 
significant value of ρ = 0.01. Copper 
had a mean value of 26.52 mg/kg, with 
a minimum value of 2.59 mg/kg and 
maximum value of 305.60 mg/kg. The 
concentrations of Zn, Cr, Cu, Pb, Ni 

and Co in plants are above CODEX 
recommended limits.61

Contamination assessment of soils 
and plants

Results of the contamination 
assessment of heavy metals in soils 
in the study area are presented in 
Table 2. Copper had minimum and 
maximum Igeo values of 0.94 and 3.19, 
respectively, with an average of 2.23, 
while Pb had minimum and maximum 
Igeo values of -1.08 and 2.97, 
respectively, with a mean value of 0.69. 
Zinc showed a mean Igeo value of 1.84, 
while the average value of Igeo for Cr 
was 1.70. The minimum Igeo value 
for Co was -1.26, with a maximum 
value of 5.71 and a mean of 4.66, while 
the minimum Igeo value for Ni was 
1.57 with a maximum Igeo value of 
6.32. In addition, the results showed 
that the CF for Cu in soils of the area 
showed a minimum and maximum 

of 2.88 and 13.64, respectively, while 
for Pb the CF ranged between 0.71 
and 11.76.The average CF value for Zn 
was 9.05 and 6.03 for Cr. For Co, the 
CF ranged between 0.63 and 78.58, 
and for Ni the minimum CF was 4.45 
and the maximum was 119.59. The 
minimum CD for heavy metals in soils 
in the study area was 11.90, while the 
maximum was 105.82. In plants in the 
area, the mean contamination load 
index for Cu, Pb, Zn, Cr and Ni was 
44.20, 77.30, 226.45, 23.55 and 34.27, 
respectively (Table 3).

Bivariate correlation

The results of the significant values (> 
0.01) (Table 3) revealed that all metals 
in plants and soils originated from the 
same source, with the exception of Zn, 
which showed a varied value in soils 
and plants, suggesting different sources 
for the two media. This was confirmed 
in the results of the bivariate 

Table 1 — Average Concentration of Heavy Metals in Soils and Plants of the Study Area
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Figure 2 — Spatial distribution of cobalt and 
nickel in topsoil in the study area

Figure 3 — Spatial distribution of zinc and 
chromium in topsoil in the study area
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correlation (Table 4) that revealed the 
following significant correlations: Pb-
Cu (r=0.680); Cu-Cr (r=0.699); Co-Cu 
(r=0.553); Pb-Cr (r=0.638); Co-Zn 
(r=0.529); Co-Cr (r=0.509) and Co-Ni 
(r=0.624) in soil and (Cu: r=0.682; Pb: 
r=0.606; Zn: r=0.923; Cr: r=0.973 and 
Ni: r=0.924) in plants, implying that 
the sources of these metals in plants in 
the study area originate predominantly 
from uptake from soils.  

Bioaccumulation assessment of 
heavy metals in plants 

The outcomes of the bioaccumulation 
assessment of heavy metals in plants 
in the study area are shown in Table 
3. The minimum and maximum 
bioaccumulation factor for Cu was 
0.04 and 1.84, respectively, and ranged 
between 0.01 and 5.09 for Pb. The 
average bioaccumulation factor for Zn, 
Cr, Co and Ni was 1.39, 0.86, 0.43 and 
0.78, respectively.

Ecological risk 

Results of the ecological risk 
assessment of heavy metals in soils in 
the study area are presented in Figure 
5. The minimum ERI for Cu was 14.41, 
while the maximum was 68.22. For 
Pb, the minimum and maximum ERI 
was 3.55 and 58.81, respectively. For 
Zn, the ERI ranged between 0.53 and 
33.26, with an average of 9.05, while 
the minimum and the maximum ERI 
for Cr was 2.71 and 34.57, respectively. 
Nickel had a minimum and maximum 
ERI of 22.27 and 597.95, respectively. 
The overall ERI for all the metals 
ranged between 49.71 and 749, with an 
average of 350.26

Discussion

Except for Cr in soils of Ewekoro, 
concentrations of heavy metals were 
below the recommended limits set 
by the USEPA.65 However, they were 
above their corresponding measured 

Laniyan, Adewumi

Figure 4 — Spatial distribution of copper and lead in topsoil  
in the study area
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concentrations in the background soils 
(Table 1). Relating the above results 
with similar studies done in Ashaka 
and Obajana cement production areas 
in Nigeria, the concentrations of Cu, 
Pb, Zn and Ni in soils of the study area 
were above those reported in the two 
areas.55-58 However, concentrations 
of Co in soils were lower than those 
reported in Ashakasoils, and higher 
than those in Obajana soils. In 
addition, concentrations of potentially 
toxic metals in plants in this area were 

above the recommended limits.60 The 
spatial distribution of Co and Ni in 
soil (Figure 2) revealed that Jagun had 
higher concentrations of Co than other 
parts of the study area. In addition, 
Zn was highly concentrated in the 
northeast and southwest of the study 
area (Figure 3). Concentrations of Cr 
were high in the northwest around 
Ewekoro, Lapeleko and Jagun (Figure 
3). Copper was well distributed in 
soils across the study area, but was 
highly concentrated around Ewekoro, 

Lapeleko, Jagun and Papalanto (Figure 
4). Concentrations of Pb were high in 
soils around Ewekoro and Lapeleko 
(Figure 4). The study revealed that 
aerial deposition of metal-laden soils 
might have contributed significantly 
to their concentration in the area. A 
study by Afolabi et al. showed that 
more than 70% of the inhabitants of 
the area live in houses about 2 km 
from the cement processing factory.45 
This indicates that toxic metals in soils 
of the area are highly concentrated in 
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Table 2 — Geo-Accumulation Index, Contamination Factor, Contamination Degree and Pollution Load Index  
of Heavy Metals in Soils

Table 3 — Bioaccumulation Factor and Contamination Load Index of Heavy Metals in Plants
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areas where people live. In addition, 
concentrations of heavy metals in 
plants of the area were above the 
recommended limits set by CODEX.61

In the study area, the Igeo revealed 
that soils are unpolluted to strongly 
polluted by Cu Pb and Cr (the 
classification has been clearly defined 

in Equation 1), while they are 
unpolluted to extremely polluted by 
Zn and Co (Table 2). In addition, soils 
are moderately to extremely polluted 
by Ni (Loska et al).56 However, the 
results of the CF showed that the soils 
in the area ranged from lowly to very 
highly contaminated by Pb, Zn and 
Co, while Cu and Cr present moderate 

to very high contamination (the 
classification is defined in Equation 
2). Nickel showed considerable to very 
high contamination in soils of this 
area. The CD showed that heavy metals 
in soils of the area pose a moderate 
to high degree of contamination 
(Table 2). This was affirmed by the 
PLI which also revealed a moderate 

Table 4 — Bivariate Correlation of Heavy Metals in Soils and Plants
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to high degree of pollution (Table 2). 
This showed that cement production, 
processing, and transportation coupled 
with the abandoned railway track 
in the area might have significantly 
contributed to the high degree of 
contamination recorded in the area. 
According to Afolabi et al., land and 
aerial pollution contributed 6.40% and 
80.81% of the total pollution in the 
study area.45 Oral ingestion, dermal 
contact and inhalation of contaminated 
soils and dusts might have contributed 
significantly to the spread of diseases 
in the area as reported by Afolabi et 
al.45 In addition, the contamination 
load index revealed that plants in this 
area are highly contaminated by heavy 
metals. Consumption of contaminated 
vegetables and plants may also 
contribute to health issues in the study 
area.

The present study further revealed the 
presence of metals transfer from soil 
to plants across most of the study area 
(Table 3). Bivariate correlation (Table 
4) revealed that Cu, Pb, Zn, Cr and Ni 

were mobilized from soils to plants, 
while Co was not. Although metals 
in plants might have originated from 
soils in the area, aerial deposition of 
contaminated dusts is another possible 
means of contamination, entering 
plants through their stomata.

Correlation analysis of metals in 
soils showed that the potentially 
toxic elements in soils of the area 
might have originated from common 
mixed anthropogenic and point 
sources. Major possible sources of 
metals in soils of the area are cement 
production, processing, processing, 
rail and vehicular transportation. It 
was observed that Cu, Pb, Zn and Cr 
in soils of the study area posed low to 
considerable ecological risk (Figure 5), 
while Ni posed considerable to very 
high ecological risk (the classification 
is defined in Equation 8).

Conclusions

The present study was carried out 
to assess the extent of heavy metals 

contamination and their potential 
ecological risk in soils and plants 
of Ewekoro, southwest Nigeria. 
Concentrations of heavy metals in 
soils and plants in the area were above 
those in background samples and 
cement production areas across the 
country. Soils and plants in the area are 
contaminated by heavy metals which 
possibly originate from anthropogenic 
activities, especially from cement 
production and processing as well as 
rail and vehicular transportation. In 
addition, crops in the area are strong 
bioaccumulators of these heavy 
metals, although aerial deposition of 
contaminated dust is also a potential 
source of metals. Furthermore, the 
ecological risk potential of heavy metals 
in soils of the area ranged from low 
to considerably high. Further studies 
should be conducted on the extent of 
heavy metal bioaccumulation in this 
area and the potential health risk to 
local residents. Stricter rules should 
be introduced to regulate cement 
production activities to lower the 
emission rate of cement dust polluted 
with metals into the environment.
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Abstract
Cement plants located in urban areas can increase health risk. Although children are particularly vulnerable, biomonitor-
ing studies are lacking. Toenail concentration of 24 metals was measured in 366 children (6–10 years), who live and attend 
school in a city hosting a cement plant. Living addresses and schools were geocoded and attributed to exposed or control 
areas, according to modeled ground concentrations of  PM10 generated by the cement plant. Air levels of  PM10 and  NO2 
were monitored.  PM10 levels were higher in the exposed, than in the control area. The highest mean  PM10 concentration 
was recorded close to the cement plant. Conversely, the highest  NO2 concentration was in the control area, where vehicular 
traffic and home heating were the prevalent sources of pollutants. Exposed children had higher concentrations of Nickel 
(Ni), Cadmium (Cd), Mercury (Hg), and Arsenic (As) than controls. These concentrations correlated each other, indicating 
a common source. Toenail Barium (Ba) concentration was higher in the control- than in the exposed area. The location of 
the attended school was a predictor of Cd, Hg, Ni, Ba concentrations, after adjusting for confounders. In conclusion, children 
living and attending school in an urban area exposed to cement plant emissions show a chronic bioaccumulation of toxic 
metals, and a significant exposure to  PM10 pollution. Cement plants located in populous urban areas seem therefore harmful, 
and primary prevention policies to protect children health are needed.

Keywords Heavy metals · Cement plants · PM10 · Nitrogen dioxide · Biomonitoring · Children health

Introduction

Cement plants are frequently located in urban areas at high 
population density. However, the production of cement gen-
erates emission of particulate matter (Leone et al., 2016; 
Mohebbi and Baroutian 2007), gaseous pollutants (i.e., 
nitrogen oxides, sulfur oxides, carbon oxides (Lei et al., 
2011)), heavy metals (Chen et al., 2010; Chen, 2020; Gupta 
et al., 2012; Liu et al., 2019; Wu, 2021), and persistent 
organic pollutants (i.e., polychlorinated dibenzo-p-dioxins 
and dibenzofurans, polychlorinated biphenyls Richards and 
Agranovski 2017; Zou et al., 2018)). Thus, the presence of 
cement plants has been linked with altered air quality in 
working areas (Noto et al., 2015) and in urban areas (Leone 
et al., 2016). Furthermore, previous studies indicate an 
increased risk of adverse health outcomes in exposed adults 

(Bertoldi et al., 2012; Eom et al., 2017; Raffetti et al., 2019) 
and children (Bertoldi et al., 2012; Garcia-Perez et al., 2017; 
Marcon, 2014).

Although fly ashes from industrial combustion in cement 
kilns are released into atmosphere after appropriate purifica-
tion, this procedure does not seem to adequately avoid the 
unintentional contamination of environmental matrices and, 
as a consequence, human exposure to toxic chemicals.

In particular, previous evidence points to cement produc-
tion as a relevant contributor for the atmospheric emissions 
of several heavy metals as mercury (Chen et al., 2020; Wu 
et al., 2021), copper, arsenic, nickel, cadmium (Chen et al., 
2010; Gupta et al., 2012; Liu et al., 2019), and chromium 
(Hwang et al., 2018; Isikli et al., 2003). Some of these met-
als have been identified as biomarkers of exposure deriving 
from cement production (Raffetti et al., 2019).

Heavy metals produced by human industrial activities 
can generate negative effects to human health and to the 
environment, because of their persistence, toxicity, bio-
logical accumulation, and molecular interactions (Rehman 
et al., 2018; Wu et al., 2016). In children, in particular, 
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health risks include altered growth and development (Shah, 
2020), obesity (Fan et al., 2017; Shao et al., 2017), neuro-
logic (Alemany, 2017; Pujol, 2016; Rehmani et al., 2017), 
cognitive (Lucchini, 2019), respiratory disorders (Madri-
gal et al., 2018; Zheng et al., 2013), and cancer (Xu 2019; 
Zhang, 2019a; Zumel-Marne et al., 2019). In adults, long-
term exposure t-o heavy metals has been mainly linked with 
impaired cognitive function and cognitive decline (Bakulski 
et al., 2020), osteopenia or osteoporosis (Jalili et al., 2020), 
altered glucose metabolism, insulin resistance and meta-
bolic syndrome (Cortes et al., 2021; Guo et al., 2019; Moon 
2014; Wen et al., 2020; Yang et al., 2020), obesity (Wang 
et al., 2018b), hypertension (Wu, 2018), cardiovascular risk 
(Domingo-Relloso, 2019; Wang et al., 2019), decrease renal 
function (Tsai et al., 2017), and cancer (Duan, 2020; IARC 
2012).

In proximity of cement plants, heavy metals have been 
detected in environmental air (suspended particulate matter) 
(Ali-Khodja et al., 2008), in soil (Bermudez et al., 2010; 
Lv, 2018; Wang et al., 2018a; Yatkin and Bayram 2010) 
and, in humans (adult age), in biological samples as blood, 
urine and hair (Afridi, 2011; Dong et al., 2015; Hwang et al., 
2018; Isikli et al., 2006).

Although the paediatric age appears particularly vulner-
able to emissions generated by cement plants (Bertoldi et al., 
2012; Garcia-Perez et al., 2017; Marcon et al., 2014), scarce 
information exists on body accumulation of several metals in 
children living close to these industrial facilities.

An increased health risk can also be present when chil-
dren living in the surrounding of a cement plant are exposed 
to air concentration of particulate matter not exceeding the 
exposure limit (Marcon et al., 2014). Particulate matter 
vehiculates toxic metals, and children exposed to metal pol-
lution early and chronically can accumulate negative health 
effects (Carrizales, 2006; Claus Henn, 2017,2016; Haynes, 
2015; Torres-Agustin, 2013) mainly due to oxidative damage 
(Pizzino, 2017; Zheng et al., 2013), and to a more significant 
lung deposition of fine particles, as compared with adults 
(Sanchez-Soberon et al., 2015).

In this complex scenario, the pathways linking the envi-
ronmental concentration of pollutants, the bioaccumulation 
of toxic elements, and the possible development of health 
effects in the short- and in the long-term, cannot be compre-
hensively depicted by separate analyses on environmental 
or biological monitoring. Thus, the combined evaluation of 
human biomonitoring techniques and environmental mon-
itoring appears as a key tool for an adequate assessment 
of the body burden of toxic chemicals, and to explore the 
individual risk linked with an unhealthy environment. This 
approach adequately evaluates the combined results of dif-
ferent modalities of metals intake (i.e., inhalation, ingestion, 
dermal absorption) (Joas, 2012; Llobet et al., 2003).

Human nail clips, in particular, represent a valuable sam-
ple to assess metal exposure of various origin (Esteban and 
Castano 2009). The procedure is validated and noninvasive 
for the assessment of metal concentration, and has been used 
extensively used in pediatric age (Carneiro et al., 2011a; da 
Silveira Fleck et al., 2017; Menezes-Filho, 2018; Rodrigues 
2018; Slotnick et al., 2005). Thus, the assessment of metal 
concentration in human nails represents a suitable indicator 
of long-term exposures (Hunter 1990; Slotnick and Nriagu 
2006) to pollutants of anthropogenic origin (Hopps 1977; 
Hunter et al., 1990; Slotnick and Nriagu 2006; Sukumar 
2006; Yaemsiri et al., 2010).

Methods

Study Design

We measured toenail concentration of a wide panel of metals 
(see below) in children living and attending public elemen-
tary schools in the city of Barletta (Apulia region, South-
ern Italy, 93,275 residents in the year 2020), an urban area 
hosting a large cement plant with a production capacity of 
about one-million-ton cement/year, powered with fossil fuels 
and waste-derived fuel. According to the European Pollut-
ant Release and Transfer Register (E-PRTR, https:// prtr. eea. 
europa. eu/#/ home), the main activity of this facility is the 
production of cement clinker and clinker grinding. An addi-
tional activity is the incineration of non-hazardous waste 
included in the EU directive 2000/76/EC.

A public campaign in five elementary schools (from 
November 2019 to January 2020) served to explain the 
aims of the study to teachers, parents and children. At the 
end of the campaign, a total of 366 children (188 females, 
age range 6–10 years) were enrolled on a voluntary basis, 
after both parents signed the informed consent. Children 
also agreed to participate as volunteers and expressed con-
sent. The enrolled subjects were the 8.5% of children aged 
6–10 years living in the city of Barletta in the year 2020 
(4,289 children). Inclusion criteria were living at the same 
address in the last 6 months before enrollment, and the 
absence of known diseases.

In the explored area, ground concentrations of particu-
late matter with a diameter of ≤ 10 µm  (PM10) emitted by 
the cement plant had been previously modeled by a 3-D 
Lagrangian Particle Model (SPRAY) (Rotatori and Pirrone 
2012). This model is particularly fit to assess the environ-
mental impact of industrial facilities located in complex 
geographical areas, where land/sea breeze and topography 
generate complex circulation patterns. The model allows an 
accurate assessment of the atmospheric dispersion of pollut-
ants in non-homogenous and non-stationary conditions, also 
considering a reliable reconstruction of complex wind and 

https://prtr.eea.europa.eu/#/home
https://prtr.eea.europa.eu/#/home
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turbulence fields (Gariazzo et al., 2004). The pollutant con-
centration used as input was the maximal  PM10 stack emis-
sion limit allowed for the cement plant (20 mg/Nm3) (Rota-
tori and Pirrone 2012). Results, expressed by a colorimetric 
map, represent the average yearly ground concentration of 
 PM10 following atmospheric transport. According to the pol-
lutant dispersion model, the urban area with the minimal 
estimated ground concentrations of  PM10 (i.e., below 0.5 μg/
m3) was considered as the control area. Conversely, the 
exposed urban area was that with the estimated ground con-
centration of  PM10 in the range 0.5–40 μg/m3 (Fig. 1). The 
address of the five explored schools and the home address 
of each enrolled children were geocoded and attributed to 
exposed or control area. According to the E-PRTR, the only 
industrial facility releasing air pollutants in the exposed area 
is the cement plant. Other relevant sources of air pollutants 
in both the exposed and the control area are vehicular traffic 
and home heating.

According to geocoding, 174 children attended two 
schools in the exposed area, and 192 attended the remain-
ing three schools in the control area (Fig. 1). Not all children 
lived in the same area of the attended school. Thus, in order 
to evaluate the role of the individual exposure during the 
whole day, children were also divided according to home 
address, and the following three subgroups were considered: 

children living and attending schools in the control area 
(group A, n = 189, the less exposed subgroup); children 
living or attending schools in the exposed area (group B, 
n = 110, children only exposed at school or at home); chil-
dren living and attending schools in the exposed area (group 
C, n = 67, the most exposed subgroup).

The study was approved by the local ethics committee 
(inter-provincial ethics committee, ASL FG/ASL BAT 
authorization n. 108/CE/2019).

Nail Collection, Sample Preparation, and Analysis

Toenail sample collection was conducted in all schools in 
a unique day (February 26, 2020). Parents were asked not 
to cut children’s nails in the month before sample collec-
tion (from January 25 to February 26, 2020). Toenails were 
selected for sampling as preferential to fingernails due to the 
minor risk of external contamination (Barbosa et al., 2005). 
The procedure for toenail collection, sample preparation, 
and analysis is a well standardized technique (Sanches and 
Saiki 2011), and used extensively (Butler, 2018; Carneiro 
et al., 2011b; Chanpiwat et al., 2015; Coelho, 2014; da Sil-
veira Fleck et al., 2017; Di Ciaula et al., 2020; Gault, 2008; 
Grashow et al., 2014; Oyoo-Okoth et al., 2010; Slotnick 
et al., 2005; Wickre et al., 2004; Wilhelm et al., 1994).

Fig. 1  Map of the explored city (Barletta, southern Italy, Apulia 
region), with a colorimetric modeling of the average yearly ground 
concentrations of  PM10 emitted by the cement plant, following 
atmospheric transport. The site of the cement plant is delimited by 
a black line. The ground concentrations of  PM10 generated by the 
cement plant have been estimated by a 3-D Lagrangian model (Rota-
tori and Pirrone 2012). According to the dispersion model, the urban 
area with the minimal estimated ground concentrations of  PM10 
(i.e., below 0.5 μg/m3) has been considered as the control area. The 
exposed urban area was that with estimated ground concentration of 

 PM10 in the range between 0.5 and 40 μg/m3. The five yellow marks 
indicate the location of the explored schools (i.e., two exposed, three 
control schools). The black triangle indicates the location of the air 
monitoring station positioned in the high exposure area. The blue tri-
angle indicates the location of the air monitoring station positioned in 
the intermediate exposure area. In the inlet, the red triangle indicates 
the monitoring station used for control exposure (see methods sec-
tion). Map elaborated from Google Earth Pro and pollutant dispersion 
model (Rotatori and Pirrone 2012)
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Toenails were clipped using ceramic blade to avoid pos-
sible contamination. Samples were stored in a 10 mL poly-
propylene tube for subsequent analysis, and scissors were 
cleaned with a light-acid solution.

Before assessing metal concentrations, samples were 
immersed in a 70% ethanol solution without stirring or soni-
cation for a period of 10 min, to reduce the risk of microbio-
logical contamination. Exogenous impurities were removed 
by a multistep washing procedure with acetone and Milli-Q 
purified water, and the cleaned samples were kept at room 
temperature for a period from 24 to 48 h for drying. The 
dry samples were weighed, and the concentration of 24 ele-
ments was subsequently calculated, using inductively cou-
pled plasma mass spectrometry (ICP-MS): Antimony (Sb), 
Arsenic (As), Barium (Ba), Beryllium (Be), Boron (B), 
Cadmium (Cd), Chromium (Cr), Cobalt (Co), Manganese 
(Mn), Mercury (Hg), Molybdenum (Mo), Nickel (Ni), Lead 
(Pb), Copper (Cu), Selenium (Se), Silver (Ag), Thallium 
(Tl), Tellurium (Te), Thorium (Th), Titanium (Ti), Tungsten 
(W), Uranium (U), Vanadium (V) and Zinc (Zn). Given the 
mass variation of the nail samples, specific methodological 
Limits of Detection (LOD) were adopted for each sample. 
The analytical procedure was performed using a standard-
ized technique, according to the EPA 6020A 2007 method. 
https:// 19jan uary2 017sn apshot. epa. gov/ sites/ produ ction/ 
files/ 2015- 07/ docum ents/ epa- 6020a. pdf

Assessment of Air Pollutants

The average daily air concentrations of  PM10 and nitrogen 
dioxide  (NO2) were assessed during the four months pre-
ceding toenail sampling (from November 1, 2019 to Feb-
ruary 26, 2020), and during the whole year 2019 by three 
air monitoring stations positioned and regularly managed 
by the Regional Environmental Agency (ARPA Puglia). 
Periodic quality control and validation of recorded data are 
performed by ARPA Puglia according to technical criteria 
depicted by national and international directives (D. Lgs. 
155/2010, EU Directive 2008/50/CE). The concentrations 
of  PM10 and  NO2 are available, for each monitoring station, 
as average daily values expressed in µg/m3. The full database 
of recorded data is publicly available (http:// old. arpa. puglia. 
it/ web/ guest/ meta- aria).

As shown in Fig. 1, the first monitoring station is posi-
tioned at about 0.5 km from the cement plant, in an area 
with an average yearly ground concentration of  PM10 above 
2 µg/m3, as estimated by the dispersion model (Rotatori and 
Pirrone 2012). This was defined as high exposure area. The 
second monitoring station is positioned at about 0.7 km from 
the cement plant, in an area (defined as intermediate expo-
sure) with an average yearly ground concentration of  PM10 
in the range 0.5–1 µg/m3, as estimated by the dispersion 
model (Rotatori and Pirrone 2012). The third monitoring 

station (control exposure) is located at 9 km from the cement 
plant, in a nearby urban area (city of Andria, 98,414 resi-
dents in the year 2020), with characteristics similar to the 
city of Barletta but with urban pollution primarily generated 
by vehicular traffic and home heating. In this control area 
there are no industrial plants with stack emissions recorded 
in the E-PRTR.

Assessment of Potential Confounders

Further environmental conditions or personal behaviors 
possibly influencing the concentration of metals in toenails 
were explored by a specific questionnaire administered at 
enrollment. Considered as confounders were domestic heat-
ing using biomass, orthodontic treatments, regular outdoor 
sports, regular exposure to passive smoke, consumption of 
locally grown vegetables. The questionnaire was adminis-
tered to parents for self-compilation.

Statistical Analysis

Frequencies of categorical variables, means, standard errors, 
medians and range of continuous variables were calcu-
lated. The χ2 test (proportions), the Mann–Whitney U test 
(unpaired data) or the Kruskal–Wallis Multiple-Comparison 
Z Value test (inter-group differences) were employed to eval-
uate differences. Correlations were tested using the Spear-
man’s rank correlation coefficient. Tobit regression models 
were employed to examine the associations between the 
toenail concentration of metals, the location of the attended 
schools, and the role of potential confounders. Tobit regres-
sion was used to accommodate the left-censored nature of 
values, due to the presence of samples with metal concen-
tration below the limit of detection (Lubin, 2004). Metal 
concentrations were log-transformed to meet the normal 
assumption (Tobin 1958). P values < 0.05 were considered 
statistically significant. Analyses were performed using R 
software version 3.5.1 (R Project for Statistical Computing, 
available from https:// www.r- proje ct. org/).

Results

As shown in Table 1, in the four months preceding toenail 
sampling, the average daily (24 h) air concentration of 
 PM10 was significantly higher in the two exposed areas, 
than in the control area. As expected, the highest  PM10 
air concentration was recorded in the high exposure area 
(i.e., closest to cement plant). The annual mean  PM10 
concentration was above 20 µg/m3, the limit set by the 
World Health Organization (World Health Organization 
2006), in the control and in the two exposed areas, and 
the highest value was recorded in the high exposure area. 

https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/epa-6020a.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/epa-6020a.pdf
http://old.arpa.puglia.it/web/guest/meta-aria
http://old.arpa.puglia.it/web/guest/meta-aria
https://www.r-project.org/


Bioaccumulation of Toxic Metals in Children Exposed to Urban Pollution and to Cement Plant…

1 3

The two exposed schools were located in the intermediate 
exposure area (Fig. 1). In this site, the average daily  PM10 
concentration measured in the four months before toenail 
sampling was lower than in the high exposure area, but 
was still significantly higher than in the control area.

The opposite trend was evident for  NO2. In fact, in the 
four months preceding toenail sampling, the highest air 
concentration of  NO2 was recorded in the control area, and 
the lowest in the high exposure area. This trend was also 
confirmed when the annual mean concentration of  NO2 
was considered (Table 1). Although  NO2 is also emitted 
from cement industries, and not only from vehicular traf-
fic and domestic heating, these findings might indicate a 
different prevalent origin of these two pollutants.

The analysis of toenail metal concentration found that 
Be, Te, Tl and Th levels were lower than LOD in all sam-
ples (Table 2; Fig. 2). The rate of samples with toenail 
metal concentrations above the LOD was comparable in 
children attending schools in the exposed or in the control 
area in all cases, except for Ni (37% exposed vs 55% con-
trol schools), Cd (19% exposed vs 11% control schools), 
Ba (94% exposed vs 99% control schools), and Hg (59% 
exposed vs 48% control schools) (Fig. 2).

Table 2 shows the average concentration of each metal, 
as measured in children attending schools in the exposed 
or in the control area. Children attending schools in the 
exposed area had significantly higher concentrations of Ni, 
Cd, Hg, as compared with the control area. The opposite 
was evident in the case of Ba, since the toenail concentra-
tion of this metal was higher in children from the control, 
than in those from the exposed area.

Children with the highest individual toenail concentra-
tion of Ni (109.2 μg/g), Cd (4.2 μg/g) and Hg (1.56 μg/g) 
attended school in the exposed area. Conversely, the 

Table 1  Average concentration 
of air pollutants in the exposed 
and in the control area

PM10 particulate matter with a diameter of ≤ 10  µm; NO2 nitrogen dioxide. Data are expressed as 
mean ± SEM of daily (24 h) concentrations of air pollutants measured during the 4 months before toenail 
sampling (November 1st to February 27, 2020), and during the whole year 2019 (annual mean). Differ-
ences were tested by Kruskal–Wallis Multiple-Comparison Z Value Test
* P = 0.000001vs control area; P = 0.000001 vs intermediate exposure area

Control area Intermediate exposure 
area

High exposure area

PM10 (µg/m3)
Mean of daily (24 h) concentra-

tions in the 4 months before 
toenail sampling

Annual mean (year 2019)

20.8 ± 0.9
21.8 ± 0.6

23.3 ± 0.9*
22.0 ± 0.6

27.8 ± 1.0*°
25.5 ± 0.6*°

NO2(µg/m3)
Mean of daily (24 h) concentra-

tions in the 4 months before 
toenail sampling

Annual mean (year 2019)

77.2 ± 2.7
62.0 ± 1.6

59.0 ± 2.2*
43.0 ± 1.5*

50.8 ± 1.9*°
59.5 ± 1.6*°

Table 2  Absolute toenail metals concentration in children attending 
school in the exposed or control area

Data are expressed in μg/g. Values are reported as mean ± SEM. Dif-
ferences were tested by Mann–Whitney U test
NS not significant

Metal Exposed schools
(n = 174)

Control school
(n = 192)

P

Be 0 0 –
B 0.11 ± 0.11 0.1 ± 0.1 NS
Ti 0.15 ± 0.6 0.7 ± 0.3 NS
V 0.008 ± 0.004 0.047 ± 0.01 NS
Cr 0.28 ± 0.09 0.7 ± 0.2 NS
Mn 0.57 ± 0.13 1.5 ± 0.7 NS
Co 0.18 ± 0.1 0.19 ± 0.2 NS
Ni 0.97 ± 0.7 0.7 ± 0.1 0.0003
Cu 4.3 ± 0.5 4.5 ± 0.8 NS
Zn 76.5 ± 1.8 78.6 ± 3.8 NS
As 0.12 ± 0.07 0.05 ± 0.01 NS
Se 0 0.007 ± 0.003 NS
Mo 0.01 ± 0.01 0.04 ± 0.03 NS
Ag 0.02 ± 0.005 0.02 ± 0.009 NS
Cd 0.08 ± 0.03 0.01 ± 0.004 0.01
Sb 0.12 ± 0.03 0.16 ± 0.02 NS
Te 0 0 –
Ba 4.1 ± 0.5 7.8 ± 1.7 0.004
W 0.006 ± 0.006 0.027 ± 0.03 NS
Hg 0.15 ± 0.02 0.09 ± 0.02 0.001
Tl 0 0 –
Pb 0.36 ± 0.7 0.67 ± 0.2 NS
Th 0 0 –
U 0.008 ± 0.005 0.005 ± 0.001 NS
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highest toenail concentration of Ba (198.6  μg/g) was 
recorded in a child attending school in the control area.

When both home and school address of enrolled chil-
dren were considered, toenail concentration of metals in 
the group A, B and C were comparable in all cases (data 
not shown), except for Ni, Cd, Ba, Hg and As (Table 3). 
Children who either lived and attended schools in the 
exposed area had significantly higher toenail concentra-
tions of Ni, Hg and As, than those living and attending 
schools in the control area. A similar trend was evident 

for Cd, and the opposite was shown in the case of Ba 
(Table 3).

According to results from the Tobit regression models 
(Table 4), the location of the attended school was a signifi-
cant predictor of Cd, Hg, Ni and Ba concentrations, after 
adjusting for confounders. No significant effect on toenail 
metal concentrations derived from the analysis of covariates.

Considering the whole group of enrolled children, the 
Spearman’s correlation matrix showed that toenail Cd con-
centration was correlated with Ni, Hg and As levels. Posi-
tive correlations were also shown between Ba, Ni, andAs 
concentrations (Table 5).

Discussion

The present study explored for the first time the chronic body 
accumulation of a wide panel of metals of anthropogenic 
origin in a cohort of children living and attending school in 
a populated urban area hosting a cement production plant.

In urban areas with pollution generated by multiple 
sources (i.e., natural sources, industrial facilities, vehicu-
lar traffic, domestic heating), monitoring air pollutants as 
unique technique of exposure assessment can underestimate 
the real individual exposure. Undervaluation can mainly 
derive from the multiple ways of intake of toxic chemicals 
(inhalation, oral ingestion, skin absorption), from the limited 
number of the air pollutants regularly monitored, from the 
effects of long-term exposure (i.e., accumulation of pollut-
ants), and from the variable ground concentration of indus-
trial pollutants generated by facilities located in urban areas 

Fig. 2  Absolute number of 
toenail samples with metal 
concentration above the limit of 
detection (LOD) for each of the 
explored metals. Samples were 
from children attending school 
in the exposed or in the control 
area. Asterisks indicate P < 0.01 
(χ2 test)

Table 3  Absolute toenail metals concentration in children selected 
according to the location of both attended school and home address

Group A: children living and attending school in the control area; 
Group B: children living or attending school in the exposed area; 
Group C children living and attending school in the exposed area. 
Data are expressed in μg/g, and as means ± SEM, median (range)
* 0.002 < P < 0.03 vs Group A (Kruskal–Wallis Multiple-Comparison 
Z Value test)

Group A Group B Group C

n 189 110 67
Ni 0.7 ± 0.18

0.28 (0–22.9)
0.3 ± 0.07*
0 (0–4.5)

2.0 ± 1.7*
0 (0–109.2)

Cd 0.015 ± 0.004
0 (0–0.58)

0.06 ± 0.02*
0 (0–1.2)

0.1 ± 0.07
0 (0–4.2)

Ba 7.9 ± 1.7
3.2 (0–198.6)

4.6 ± 0.7
2.99 (0.58–61.7)

3.3 ± 0.3*
2.5 (0.26–14.8)

Hg 0.09 ± 0.01
0 (0–1.03)

0.14 ± 0.02*
0.07 (0–1.56)

0.16 ± 0.03*
0.08 (0–1.28)

As 0.04 ± 0.005
0.009 (0–0.55)

0.06 ± 0.02
0.036 (0–2.01)

0.25 ± 0.18*
0.05 (0–12.0)
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with complex topography, inconstant wind directions and 
turbulence fields. Results from the present study point to the 
integration of environmental monitoring (i.e., the burden of 
specific pollutants in the environment) and biomonitoring 
techniques (i.e., the body burden of toxic chemicals) as a 
reliable method to assess the individual effects of environ-
mental exposures, and the related health risk.

Distinct Patterns of Bioaccumulation in the Exposed 
and Control Area

The present study shows at least two patterns of metal bioaccu-
mulation, according to the location of the attended school and 
the home address of children in the exposed or in the control 

area. Children either attending school and living in the area of 
maximal ground-level concentration of pollutants produced by 
the cement plant were the most exposed group. These subjects 
showed a higher accumulation of Ni, Cd, Hg and As, when 
compared to those living and attending schools in the control 
area. These metals correlated each other, indicating the pos-
sibility of a common source of emission.

On the other hand, children either attending school and 
living in the control area (i.e., the subgroup less exposed to 
plant emissions) showed a prevalent bioaccumulation of Ba. 
The concentration of this metal positively correlated with 
that of Ni, and previous evidence indicates that both Ba (Bir-
mili et al., 2006; Figueiredo et al., 2007; Godri Pollitt et al., 
2016) and Ni (Canteras et al., 2019) are markers of metal 
accumulation mainly deriving from vehicular traffic. These 
data confirm that vehicular traffic and home heating can be 
considered important sources of metal bioaccumulation in 
urban areas, besides industrial emissions. This hypothesis 
is in line with data deriving, in the present study, from the 
environmental monitoring of air pollutants. In this case, 
higher levels of  NO2 were present in the control, than in the 
exposed area. Of note, as Ba and Ni accumulation, also  NO2 
air concentration is a well-known environmental marker of 
traffic density in an urban context (da Silveira Fleck et al., 
2017).

Conversely, the increased body accumulation of Ni, Cd, 
Hg and As in the exposed area seems to be mainly related 
to the industrial emissions produced by the cement plant.

Table 4  Results of Tobit regression models on toenail metal concentrations in children attending control and exposed schools, and the effect of 
covariates

Only significant results (metal concentration) are presented. Metal concentrations were log-transformed to meet the normal assumption. Results 
(β coefficients and 95% confidence intervals) have been adjusted for covariates and consider the left-censored data present in metals distribution
* P < 0.05; **P < 0.01

Cd Hg Ni Ba

Control vs. exposed 0.07*
(− 0.12 to -0.018)

− 0.03**
(− 0.05 to (− 0.02)

0.1*
(0.03 to 0.18)

0.08**
(0.03 to 0.13)

Domestic heating with biomass  − 0.6
(− 251.6 to 251.8)

0.08
(− 0.09 to 0.3)

0.16
(− 0.46 to 0.8)

0.008
(0.45 to 0.5)

Orthodontic treatments 0.0007
(− 0.09 to 0.09)

0.007
(− 0.03 to 0.04)

− 0.03
(0.04 to 0.5)

 − 0.04
(− 0.14 to 0.05)

Outdoor sports 0.0004
(− 0.06 to 0.06)

0.01
(− 0.2 to 0.3)

 − 0.08
(− 0.18 to 0.1)

 − 0.05
(− 0.11 to 0.01)

Passive smoke  − 0.8
(− 250.1 to 251.8)

 − 0.08
(− 0.008 to 0.04)

0.03
(− 0.57 to 0.6)

 − 0.18
(− 0.6 to 0.3)

Consumption of locally grown vegetables − 3.3
(− 0.1 to 0.05)

0.08
(− 0.08 to 0.04)

0.5
(− 0.1 to 1.1)

− 0.05
(− 0.5 to 0.4)

Constant − 1.67
(− 1.8 to − 1.5)

 − 2.31
(− 2.4 to − 2.2)

 − 1.03
(− 1.1 to − 0.9)

 − 1.25
(− 1.3 to − 1.18)

Table 5  Spearman’s correlation matrix considering the toenail con-
centrations of Ni, Cd, Ba, Hg, and as in the whole cohort of enrolled 
children

Data are Spearman correlation coefficients (rho, normal text) and P 
values (in italic). Significant P values are marked in bold

Ni Cd Ba Hg As

Ni –
–

Cd 0.17
0.001 –

Ba 0.21 0.089 –
0.0001 ns –

Hg 0.069 0.11  − 0.03 –
ns 0.03 ns –

As 0.25 0.14 0.15 0.007 –
0.000003 0.008 0.005 ns –
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Cement Production as a Source of Pollution 
of Specific Metals

Raw material and fuels commonly employed for clinker/
cement production (mainly fossil fuels as pet-coke and 
coal, but also waste-derived fuels), contain large amounts 
of heavy metals (in particular Hg, Co, Cd, Ni and Tl) (Gen-
debien et al. 2003; Genon and Brizio 2008; Zemba et al., 
2011), and the emission of pollutants from cement kilns 
strongly depends on the primary fuel used (Zemba et al., 
2011).

Mercury, in particular, is typically present in the emis-
sions from cement kilns alimented with coal or pet-coke, 
supplemented or not with waste-derived fuels. This is due 
to the presence of Hg in elemental vapor form, which is less 
captured by the pollution control devices employed in kilns 
for cement production (Zemba et al., 2011).

Additional risk could derive from the presence of heavy 
metals (in particular the more volatile ones, as Hg) in substi-
tution fuels (i.e., waste derived fuels), and from their trans-
fer factors to gaseous emissions (Genon and Brizio 2008). 
Previous evidence showed that the substitution in cement 
kilns of fossil fuels with waste-derived fuels might have 
a negative impact on the emissions of heavy metals, and 
in particular Hg (Genon and Brizio 2008). This might be 
the case of the cement plant examined in the present study, 
in which an additional activity is the incineration of non-
hazardous waste, which partially substituted fossil fuels to 
power the kiln.

A previous study exploring air pollutants generated 
from three commercially operating cement kilns co-burn-
ing waste, confirmed that Ni, Cd, Hg and As were among 
the predominant heavy metals emitted (Pudasainee et al., 
2009). In the cited study, bag filters were able to remove 
above 98.5% of all heavy metals except Hg, which showed 
a removal above 60%. In the case of Hg, the removal effi-
ciency ranged in the cited study from 77 to 28%. Thus, on 
average, about 40% of Hg was released into the atmosphere, 
as compared with 3.3% of Ni, 0.14% of Cd and 0.01% of As 
entering bag filters (Pudasainee et al., 2009).

Of note, these proportions (i.e., release of Hg and Ni 
higher than those of Cd and As) are comparable with those 
deriving, in the present study, from toenail concentration of 
the same metals in exposed children. In fact, children in the 
exposed area showed, on average, relatively higher concen-
trations of Hg (0.15 ± 0.02 μg/g) and Ni (0.97 ± 0.7 μg/g), 
as compared with those of Cd (0.08 ± 0.03 μg/g) and As 
(0.12 ± 0.07 μg/g).

The Accumulation of Metals in the Environment 
and in Biological Samples Surrounding Cement 
Plants

The presence of higher toenail concentrations of Ni, Cd, Hg 
and As in the exposed, than in control area is in line with 
previous observations confirming the accumulation of these 
metals in environmental matrices or in biological samples 
collected in geographical areas surrounding cement plants.

A recent study measuring heavy metals in the surround-
ing soil of a Chinese cement plant reported levels of Cd and 
Hg which were, respectively, two- and six times higher than 
background levels, thus generating a high ecological risk 
(Wang et al., 2018a). In France, cement plants in the Paris 
region have been identified as significant secondary source 
of soil contamination by Cd (Foti, 2017). A Turkish cement 
plant has been indicated as a significant contributor to depo-
sitions of trace elements, in particular Cd, in the surrounding 
area (Yatkin and Bayram 2010). Finally, in an Italian study, 
elevated Ni concentration were detected in leaves from trees 
close to a cement plant, as an effect of clinker production 
and storage (Baldantoni et al., 2014).

Similarly to studies which measured metal concentration 
in environmental matrices, previous biomonitoring studies 
showed, in biological samples from adult subjects, higher 
concentration of Cd in blood (Afridi et al., 2011; Isikli et al., 
2006), hair(Afridi et al., 2011), and urine(Cha, 2011), higher 
Ni levels in blood (Afridi et al., 2011; Demir et al., 2005), 
and hair (Afridi et al., 2011), and higher Hg concentrations 
in blood (Dong et al., 2015), and urine(Cha et al., 2011) 
from subjects exposed to cement plant emissions, as com-
pared with non-exposed subjects.

The Bioaccumulation of Specific Metals in Exposed 
Children

Our study shows, for the first time in pediatric age, higher 
Hg bioaccumulation in the area of maximal exposure to the 
emissions from the cement plant, as compared with the con-
trol area.

Cement production has been indicated as the largest Hg 
emission source in China, with considerable increase in Hg 
emissions in the last years (Chen et al., 2020). A recent study 
exploring positive effects of the COVID-19 lockdown on 
atmospheric Hg concentrations identified cement clinker 
production as the main responsible for Hg emission during 
the pre-lockdown period. In this study, the Hg emission from 
cement clinker production decreased markedly during the 
lockdown (Wu et al., 2021).

In a U.S. study, blood Hg levels measured in subjects 
living closer to a cement plant were associated with  PM2.5 
modeling, and were significantly and positively corre-
lated with As blood concentrations (Dong et al., 2015). 
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Approximately 80% of inhaled mercury is absorbed via the 
lungs and retained in the body (World Health Organization 
1976). Although ingestion of contaminated food is a major 
source of Hg body levels (European Food Safety Author-
ity (EFSA) 2012; European Food Safety Authority (EFSA) 
2015), ground-level ambient air concentration of Hg is a 
significant predictor of body metal levels, also after control-
ling for covariates and other exposure variables (Hill 2020). 
Furthermore, in children living in industrial areas, a rela-
tively high risk of exposure from hand-to-mouth intake is 
also possible (Abuduwailil et al., 2015).

These findings are in line with results from our study 
since, according to Tobit regression analysis, attending 
school in the exposed area was a significant predictor of 
increased Hg body levels.

Moreover, the average toenail Hg concentration recorded 
in the most exposed subgroup of children (0.16 ± 0.03 µg/g), 
was about three-times higher than that measured in a cohort 
of 290 children aged three years and enrolled in the New 
Hampshire Birth Cohort Study (0.055 ± 0.087SD) (Farzan 
2021), and about 2.2-times higher than in a cohort of 222 
U.S. healthy term newborns (0.07 ± 0.1SD) (Appleton et al., 
2017).

A large biomonitoring survey involving, in 17 European 
countries, 1844 children aged 5–11 years participating in the 
DEMOCOPHES study, showed an average Hg concentra-
tion in hair (weighted geometric mean) of 0.145 µg/g (95% 
CI 0.139–0.151) (Hond 2015). Although a conversion ratio 
between Hg concentration in hair and in toenail has not been 
fully validated, according to a previous evidence this value 
should be equivalent to 0.05 μg/g in toenails (Choi 2009), a 
concentration about 3-times lower that that observed, in the 
present series, in the subgroup of the most exposed children.

Mercury is highly toxic to humans, in particular in terms 
of negative effects on the developing nervous system, and 
for exposures occurring in utero and during childhood (Rice 
et al., 2014). Thus, it has been strongly recommended to 
avoid Hg exposure during pregnancy and childhood as much 
as possible (European Food Safety Authority (EFSA) 2012; 
European Food Safety Authority (EFSA) 2015).

We found that the mean toenail Ni concentration meas-
ured in the whole population (0.8 ± 0.3 µg/g) was almost 
in the same range previously detected in other cohorts of 
children from Brazil (1.3 ± 1.0 µg/g, mean ± SD(da Silveira 
Fleck et  al., 2017)), Italy (0.43 ± 0.18 µg/g, mean ± SE 
(Ciaula et  al., 2020)), New Zealand (mean 1.08  µg/g, 
range 0.01–71.84 (Karatela et  al., 2018)), and Pakistan 
(0.91 ± 0.1 µg/g mean ± SE (Bibi et al., 2016)). However, 
when the most exposed subgroup of children was considered 
(i.e., those living and attending school in the exposed area), 
the average Ni concentration was the highest (2.0 ± 1.7). 
Although a large variability existed, the maximal recorded 
value reached, in an exposed child, the value of 109.2 µg/g.

According to the International Agency for Research on 
Cancer (IARC), Ni is classified in group A1, i.e., “carcino-
genic to humans”. Besides the carcinogenic risk, Ni expo-
sure can increase the risk of low birth weight (Sun 2018), 
preterm delivery(Chen 2018), and congenital malformations 
(Xu et al., 2021; Zhang, 2019b). In a cohort of adult patients 
with Mesoamerican nephropathy, average toenail Ni con-
centration (1.55 µg/g, range 0.18–42.65) was similar to that 
measured, in the present series, in children living and attend-
ing school in the exposed area (2.0 ± 1.7 µg/g). In the same 
study, control subjects showed a mean toenail Ni concen-
tration of 0.21 µg/g (range 0.06–51.24), and the concentra-
tions of this toxic metal were negatively correlated with the 
estimated glomerular filtration rate (Zhang et al., 2019b).

Cadmium has been identified as a biomarker of emissions 
from cement plants by biomonitoring techniques and atmos-
pheric dispersion models (Abril et al., 2014).

In a previous Italian cohort of adult subjects, toenail 
Cd levels in the third (i.e., 0.0145–0.0306 µg/g) and in the 
fourth quartiles (i.e., ≥ 0.0306 µg/g) have been linked with 
an increased risk of prostate cancer, with ORs of 1.3 (95% 
CI 0.3–4.9) and 4.7 (95% CI 1.3–17.5), respectively (Vinceti 
2007). In our study, the average toenail Cd concentration 
measured in children living and attending school in the 
exposed area was about 3-times higher than the threshold 
for the 4th quartile of Cd toenail concentration reported 
in the cited study. The average Cd toenail concentration 
measured in this subgroup of children (0.1 ± 0.07 µg/g) was 
also higher than the average value reported by the Italian 
National Institute of Health in another cohort of Italian sub-
jects (0.041 ± 0.1)(Alimonti et al., 2010).

Cadmium levels have been also linked with exocrine pan-
creatic cancer (Kriegel 2006). A study assessing metal toe-
nail concentrations in adult subjects with or without exocrine 
pancreatic cancer, demonstrated higher Cd concentrations 
in patients than in controls, and a significantly increased 
risk of pancreatic cancer in subjects with toenail Cd and As 
concentrations above 0.029 µg/g, and 0.1061 µg/g, respec-
tively (Amaral 2012). Of note, in the present study, both 
average Cd (0.1 ± 0.07 µg/g) and As (0.25 ± 0.18 µg/g) toe-
nail concentrations in children living and attending school 
in the exposed area were above the values reported in the 
cited study.

Besides the risk of cancer, previous studies linked 
increased Cd exposure in children with learning disability 
and cognitive delay (Ciesielski et al., 2012; Rodriguez-Bar-
ranco, 2014), altered immune response and inflammatory 
regulation(Zhang et al., 2020), altered renal function (Sand-
ers et al., 2019), altered metabolic homeostasis(Pizzino 
et al., 2017).
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Different Air Pollutants Concentration in Control 
and Exposed Areas

Heavy metals present in emissions generated by cement 
plants are vehiculated by particulate matter. Cement plants 
can increase atmospheric concentrations of particulate 
matter by both direct (Baroutian et  al., 2006; Mohebbi 
and Baroutian 2007; Yatkin and Bayram 2010) and fugi-
tive emissions from stocked materials (clinker and pet-coke 
materials) (Moreno 2009). Previous studies indicate these 
industrial facilities as a major source of  PM10 in urban areas, 
being also responsible for the deterioration of air quality 
(Leone et al., 2016). This evidence is confirmed by results 
from the present study, which showed significantly increased 
air levels of  PM10 in the exposed, as compared with the con-
trol area.

Previous authors found that the amount of particles 
emitted by a cement plant may be higher than levels rec-
ommended by WHO guidelines at a distance of about 
600–1400 m from the plant stacks (Mohebbi and Baroutian 
2007). In the present study, the distance from the cement 
plant and the two exposed schools is less than 1 km, and the 
annual average exposure to  PM10 was above the limit set 
by World Health Organization (20 µg/m3) (World Health 
Organization 2006) in all the examined areas. However, 
the highest annual mean  PM10 level was present in the high 
exposure area, as compared with both control and intermedi-
ate exposure area.

In the exposed area, besides the possible health effects 
directly deriving by chronic bioaccumulation of heavy met-
als, the combined exposure to elevated  PM10 and  NO2 air 
levels per se can be responsible for additional health risk. 
Children are particularly vulnerable to these pollutants, 
which can promote a number of health effects in the short 
term (i.e. asthma attacks and allergies Penard-Morand et al., 
2010; Zhang, 2019c), and following chronic exposures (i.e., 
poorer performance in working memory, inhibitory control, 
behavioural regulation, and metacognition(Gui 2020a), 
reduced lung function(He et al., 2019; Oftedal et al., 2008; 
Xing, 2020), sleep disorders(Lawrence, 2018), altered lipid 
metabolism (Gui, 2020b; Kim et al., 2019)).

Limitations of the study

A limitation of the present study is the lack of evaluation of 
biological and epidemiological effects deriving from  PM10 
and  NO2 exposure, and from bioaccumulation of metals 
in enrolled children. These aspects should be investigated 
by future studies specifically designed to evaluate, in this 
geographical area, acute and chronic health effects possibly 
linked with a complex environmental exposure.

Inhalation of metals was the only exposure way consid-
ered in the present study. This can be identified as another 

limitation, since anthropogenic sources can contaminate 
vegetable-growing soils (Gan et al., 2018), water, and edi-
ble fish (Ramos-Miras et al., 2019), and the possible inges-
tion of contaminated food has not been comprehensively 
quantified in enrolled children. However, the consumption 
of locally grown vegetables has been considered as a pos-
sible confounder in the statistical analysis, and a signifi-
cant role for this factor has been excluded. On the other 
hand, although not quantified, water composition and the 
average amount of fish consumption should be comparable 
in children living in the same city, with similar dietary 
habits. Furthermore, the cement plant was the only sig-
nificant anthropogenic source of Hg in the explored area. 
Finally, it has been suggested that air concentration of met-
als can be considered a predictor of body metal levels, 
independently from other exposure variables (Hill et al., 
2020). The separate role of different ways of exposure to 
environmental metals, however, should be better examined 
by further investigations.

Conclusions

The present study demonstrates, for the first time in pediatric 
age, a long-term body accumulation of toxic metals (i.e., 
Hg, Ni, Cd, As) in children living and attending school in 
an urban area with the maximal estimated ground concentra-
tion of  PM10, as calculated by a specific pollutant dispersion 
model. According to previous environmental and biomoni-
toring evidence, the distinct panel of metals chronically bio-
accumulating in children is compatible with the emission 
pattern of metals generated by cement plants powered with 
fossil fuels and waste-derived fuels. The specific bioaccu-
mulation pattern documented in the area mainly exposed 
to cement plant emissions is different from that found in 
children in the control area, which appears to be primar-
ily related to vehicular traffic. Evidence from the present 
study also confirms the role of a cement plant located in a 
populated urban area as a significant contributor to urban 
 PM10 pollution and, thus, to related health risk, in particular 
during childhood. Thus, the location of cement production 
plants in the context of an urban area seems particularly 
harmful, since the negative effects produced by the plant 
add up to those generated by other typical sources of urban 
pollution. Besides the previously documented health risk in 
adult age, the high vulnerability of children to this toxic and 
chronic exposure might generate significant consequences 
in the short and in the long term, and suggest the need of 
adequate primary prevention policies. Specific strategies, 
in particular, should be oriented to the relocation of cement 
production facilities away from urban centers, and to more 
strict regulations for the use of fossil fuels. Combustion of 
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pet-coke and coal, in particular, should be discouraged, and 
more sustainable energy sources (i.e., natural gas, renew-
able energy sources, biomaterials) should be preferred. More 
strict regulation of fossil replacement with alternative fuels 
should also be useful, with limitation of waste-derived fuels 
containing a significant burden of heavy metals. Further-
more, in the case of cement plants located in urban areas at 
high population density, an implementation of health educa-
tion programs at all scales (schools, mass media, political 
sectors) might be necessary to improve resilience in subjects 
at risk.
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Abstract: Construction is an important segment of the economy that employs millions of people.
Construction dust is an occupational health hazard to millions of construction workers worldwide.
The hazards associated with respirable dust depend upon its particulate size distribution and
chemical composition, as these determine the deposition pattern in the respiratory tract and reactivity,
respectively. This study presents characterization of the size and composition of the dust from
two key construction materials—cast cement and poured concrete. The dust was generated by
cutting the cured cement and concrete blocks using an 18” hand-held circular saw as used in highway
and building construction. Transmission electron microscopy, scanning electron microscopy, dynamic
light scattering, and laser diffraction were performed for the size analysis of the particles. Energy
dispersive spectroscopy and X-ray photoelectron spectroscopy were used for chemical analysis. X-ray
diffraction was used for phase identification. Electron diffraction patterns were obtained to assess
the crystallinity of individual particles. They confirm the crystallinity of particles of different size
and shapes. With a particle size range between 0.5 µm and 10 µm, greater than 90% of particles fell
below 2.5 µm, presenting a respirable health concern. Crystalline compounds including the metals
Al, Ca, Fe, Mg, Na, and K were detected. The concrete particles were most enriched in crystalline
silica with a concentration of more than 30% by weight. The presence of metals and high crystalline
silica content pose a serious health concern to construction workers.

Keywords: cement dust; respiratory hazard; PM2.5 characterization; construction; crystalline silica

1. Introduction

Cement and concrete are essential elements of modern-day infrastructure. Cement
is the most common ingredient used in the construction industry as a binding material
which sets and cures over time due to chemical reaction with water. Concrete is a mixture
of sand, coarse stones, and cement. Water is added to concrete to activate the cement,
which binds the mixture together. By the addition of coarse stones or aggregates, concrete
can serve as a building material. Construction activities involving sawing, cutting, and
grinding of cast cementitious and cured concrete expose construction workers to a cloud
of crystalline dust particles. Exposure to these particles can be a serious health hazard.
The Bureau of Labor Statistics estimates that more than 196,000 workers are employed as
cement masons and concrete finishers in the USA alone [1]. Their occupation involves
smoothening and finishing concrete surfaces with a variety of hand and power tools,
which exposes them to the resultant dust. Several other trades including laborers may also
perform concrete grinding activities, adding significantly to the total number of exposed
workers [2]. In several of these occupations, the crystalline silica exposure from respirable
construction dust can exceed by several hundred times that of the NIOSH Recommended
Exposure Limit (REL) of 0.05 mg/m3 [3]. With such a large portion of the working-age
population at stake, there is a necessity to characterize and analyze the dust for its potential
adverse health impacts.
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In cement plants, cough, sputum, and breathing difficulty is prevalent in exposed
workers [4]. Several studies indicate that chronic exposure to cement dust can significantly
lower pulmonary functions with duration of exposure [5–8]. Furthermore, cement dust is
also known to cause cancer of the larynx and lung [9,10]. Animal studies have shown that
the dust can cause emphysema and fibrosis in lung tissues [11,12].

Cement dust inhalation appears to have secondary impacts as well because of its ability
to reach various organs. Pimentel et al. inferred that the inhaled cement particles can enter
into the bloodstream and reach the liver because swelling, inflammation, and lesions were
found around the liver in cement mill workers [13]. Meo et al. found decreased performance
of intercostal muscles and suggested that when cement dust enters the bloodstream, it can
also reach and deposit into skeletal muscles, affecting their structure and performance [14].
More recently, inhaled particles were seen to cause disorders in the nervous system [15,16].
Other unhealthy traits such as higher blood pressure and significant increase in weight
were found to be statistically prominent in exposed workers [17]. Studies have also revealed
an association between cement dust exposure and lowering of hemoglobin and red blood
cells in workers [18,19]. Some research groups have also speculated about the translocation
of inhaled particles from the respiratory tract to the placenta and fetus, potentially affecting
the offspring [20]. Studies have shown that suspended cement particles not only affect
cement workers but also residents living near a cement factory or other sources of cement
dust from manufacturing operations [21–24].

Differentiated from these workplace and exposure studies are construction activities
involving the action of sawing, cutting, or grinding of cementitious materials and concrete.
After casting or pouring and subsequent curing, the mineralogic composition of cement
and concrete has changed. Well-known mineral forms include portlandite and quartz,
each with its own crystalline structure and elemental composition. As often observed
at building sites, and sidewalk and highway repair, clouds of dust are generated by the
often-used circular saws. The duration of these particles being suspended in air and how
far they travel from the source of emission is dependent of the particle size distribution
of the dust. The finer particles can remain suspended longer and reach farther distances.
In addition, particle translocation and associated secondary impacts seen in various other
organs such as liver, heart, spleen, muscles, and so on, are also size dependent, as found in
multiple studies [14–16,25,26]. Particles finer than 2.5 µm are more hazardous, as they enter
deeper into the pulmonary system and bloodstream [27] and further reach other organs.
Hence, a study of dust size distribution generated during cutting activities is critical.

Apart from particle size, the chemical composition of the dust also has a direct impact
on the hazards posed by the dust particles. With reference to the components of cement
and concrete products, crystalline silica is a known abrasive to the lung tissues and the
cause of silicosis [28]. Calcium hydroxide causes irritation of the nose and throat with a
risk of permanent lung damage [29,30]. Inhalation of dust containing metal content in the
dust particles can also contribute to inflammation and lung damage [31].

Although the chemical composition of cement and concrete can be easily read off the
manufacturer’s data sheet, the chemical phases in the cement undergo substantial changes
after hydration and setting. In addition, surface composition can be more important
than overall composition, as the particle surface is what will be in direct contact with
cell membranes. Surface composition can differ from the overall particle composition,
contingent on the way cleavage occurs at the mineral phase boundaries in cement and
concrete during the cutting activities. In addition, some of the chemical phases may
separate out and preferentially form finer particles, depending on hardness and other
physical properties of different phases and dynamics occurring during scission. Therefore,
an in-depth study regarding the chemical nature of the dust is crucial for assessing the
health concerns.

To understand the risks of cement and concrete dust toxicity, it is necessary to quantify
the physical and chemical properties of these particles. Prolonged exposure to even small
concentrations of toxins can be a serious health concern. To our knowledge, no study to date
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has collected and performed size and chemical characterization of actual dust produced by
cutting and grinding cement-based construction materials. To date, studies and regulations
have focused upon cement dust exposure from factories. However, as routinely observed at
construction sites, pre-cast concrete panels require cutting (e.g., for making slots and holes).
Similarly, the replacement and repair work observed routinely on highways exposes the
road crews (and passers-by) to cement dust during cutting. Workers are commonly seen
without respiratory protection; even a mask is not required for such work. Although cutting
of cement and concrete is extensive, surprisingly, very little is known about the particulate
emissions from such activities. The toxic effects of this inhalation hazard will fundamentally
depend upon particulate properties such as size, surface area, chemical composition, and
crystalline structure. This study aimed to characterize the physico-chemical properties
of cementitious dust as a basis for gauging potential health hazards. Armed with this
knowledge, appropriate precautions and protective actions can be implemented.

2. Methodology

The cement paste was prepared by adding water to Portland cement concrete mix
(Commercial Grade Quikrete Type I/II), with 67.3% cement by weight and the remainder of
water. The mixing was carried out in a clean plastic bucket using a drill connected to a spiral
mixing attachment. Cement paste was mixed according to the procedure prescribed in ASTM
C305, with the exception that the mixing time was tripled to ensure consistency. The mixture
was then poured into the mold. After, the mold was put on a vibrating table for 3–5 min to
allow gases to escape. It was then covered for 24 h to set. As shown in Figure 1, the block
of set concrete paste was cut using a TS 420 STIHL Cutquik Concrete Saw equipped with a
diamond blade, while a custom homemade dust shroud attached to a vacuum collected
the generated particles. A block of concrete obtained from a local manufacturer was used
to generate the concrete dust using the same saw and collection apparatus.
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2.1. Laser Diffraction

Laser diffraction is the most common technique used to determine cement particle
size distribution (PSD) [32]. The analysis is based on angular variation in scattered light
intensity by particles of varying sizes. The sample solution was prepared by mixing
collected cement dust in distilled water (~5% mass fraction) using a magnetic stirrer for
5 min, followed by ultrasonication for another 5 min. A Malvern Mastersizer 3000 was used
to carry out laser diffraction measurements. The sample dispersion was added drop-wise
into the automated sample dispersion unit containing distilled water with stirring and
sonication modes turned on. The solution was added into the dispersion unit until the
recommended obscuration (around 7%) was reached. The optimal obscuration eliminates
the sampling error and multiple scattering error.
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Cutting with the circular saw blade generates particles with a lognormal particle size
distribution (PSD) for both cement and concrete, as seen in Figure 2. It was observed that
more than 90% of the particles are less than 2.5 µm in size. The limitation of the laser diffrac-
tion measurement is that Fraunhofer and Mie theories are applicable to spherical particles,
not the fragmented, irregularly shaped particles predominant in cement dust. Thus, other
characterization techniques were employed to study the morphology of the particles.
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Figure 2. Fits to laser diffraction measurements of (a) cement and (b) concrete dust.

2.2. XRD

X-ray diffraction is one of the prominent techniques routinely used to identify and
quantify crystalline phases in bulk powdered material. The measurements were car-
ried out by a Malvern PANalytical Empyrean diffractometer equipped with a Cu source
(λ ∼= 1.54 A◦), para-focusing optics, and a PIXcel 3D detector. The spectrum was scanned
in the 2θ range of 5◦ to 90◦. Figure 3 shows a portion of the collected spectrum for both
cement and concrete dusts. Peaks corresponding to the top three crystalline components
in the cement and concrete dust have been highlightedfor illustration. The background
subtraction, phase identification, and quantification were performed using MDI JADE®

software. Peaks at multiple diffracted angles from different lattice planes were verified for
each phase using the database to ensure accuracy in phase identification. The quantification
from the fit that yielded the lowest residual is reported in Tables 1 and 2.
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Table 1. Quantification of crystalline phases in Cement dust from XRD.

Phases wt.%

Portlandite 38.5
Thaumasite 31.6

Lamite 7.8
Alite monoclinic 7.3

Calcite 6.9
Gypsum 4.8
Periclase 3.0

Table 2. Quantification of crystalline phases in concrete dust from XRD.

Phases wt.%

Dolomite 45.1
Quartz 32.2
Calcite 18.3

Portlandite 2.2
Pseudo-wollastonite 2.3

2.3. TEM

Transmission electron microscopy (TEM) uses a beam of highly energetic electrons
which transmits through the specimen to form an image on a fluorescent screen. The
images were taken using a FEI TalosTM F200X scanning/transmission electron microscope
equipped with an FEG source providing 0.12 nm resolution. The TEM samples were
prepared by sonicating the cement and concrete powder in ethanol for 5 min and then
dropping 2–3 drops of the solution on single-layer graphene (SLG) supported on a copper
TEM grid. The instrument was operated at 200 kV, and the samples were imaged at various
magnifications in the range of 10 kX to 500 kX. Unlike other indirect particle size charac-
terization techniques, direct TEM imaging can also reveal the particle morphology and
compositional homogeneity. It was observed that the smaller particles (typically < 50 nm)
are spherical, while the bigger particles have highly irregular shapes with sharp edges.
Aggregates with varying mass thickness contrast were also observed, indicating inhomoge-
neous composition of primary particles. TEM images in Figure 4 show that most of the
particles are below 100 nm, are non-agglomerated, and are a mix of non-spherical particles.
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2.4. Electron Diffraction

Selected area electron diffraction (SAED) patterns were obtained from samples on
lacey carbon to assess the crystallinity of the particles. SAED is a unique technique in
that it allows examination of a single particle. Both cement and concrete showed SAED
patterns representing highly crystalline particles. A few particles showed a well-defined
spot pattern as seen in Figure 5a, representing mono-crystallinity; while others, as seen in
Figure 5b, exhibited a mixture of ring and spot patterns, representing both mono-crystalline
and poly-crystalline phases in the same particle. This confirms that some elements like
copper form separate mono-crystalline particles. The remainder of the particles consisted of
a mixture of elements together wherein each element appears in its own crystalline phase.
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2.5. EDS

Energy-dispersive spectroscopy (EDS) was performed for elemental composition
and mapping in an FEI TalosTM F200X. The EDS mapping was performed in scanning
transmission electron microscopy (STEM) mode with a low background sample holder.
Using the instrument in STEM mode gives spatial resolution close to the minimum probe
size, which is around 1.6 Å. The EDS maps were collected from a sample suspended on a
single-layer graphene grid, while the elemental composition data were collected from a
sample suspended in the vacuum region of the lacey carbon grid to avoid the background
signal from the carbon in the lacy grid.

The EDS maps in Figure 6 show that particles of different size ranges are highly
inhomogeneous in their chemical composition. Copper is seen to form a separate phase
with relatively smaller particles (<100 nm). Magnesium and iron were found both in small
and big particles (>100 nm). Calcium and aluminum were found in large but selective
particles, while silicon was found in almost all large particles. Tables 3 and 4 show the
chemical composition of larger size particles (~500 nm).

2.6. SEM

Scanning electron microscopy (SEM) was used to study the surface structure, morphol-
ogy, and particle size of the samples. The images were taken using Thermo ScientificTM

Apreo 2S SEM. The SEM images shown in Figure 7 suggest that the majority of the particles
are pseudo-spherical and of size less than 100 nm. The large aggregates have a highly
rough surface with many sharp edges and pointed corners. In addition, Figure 8 shows the
fine-edged particles seen in SEM have potential for mechanical irritation to the tissues in
contact with them.
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Table 4. Elemental composition of concrete dust from EDS.

Element wt.%

Silicon 32.56
Calcium 2.79
Oxygen 38.85

Aluminum 9.52
Magnesium 0.31

Iron 0.17
Sulfur 0.08

Carbon 3.20
Potassium 12.40

Sodium 0.132
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2.7. XPS

X-ray photoelectron spectroscopy (XPS) is a widely used technique to probe surface
composition, typically within the first 10 nm. XPS measurements were performed using a
Physical Electronics VersaProbe II instrument equipped with a monochromatic Al kα x-ray
source (hν = 1486.7 eV) and a concentric hemispherical analyzer. Charge neutralization was
performed using both low-energy electrons (<5 eV) and argon ions. The binding energy
axis was calibrated using sputter-cleaned Cu and Au foils. Peaks were charge referenced to
the C1s band at 284.8 eV. Measurements were made at a takeoff angle of 45◦ with respect to
the sample surface plane. Figure 9 shows XPS survey spectra from cement and concrete
dust. Quantification was done using instrumental relative sensitivity factors (RSFs) that
account for the incident X-ray cross section and inelastic mean free path of the emergent
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electrons. Tables 5 and 6 give surface elemental composition from quantification of XPS
survey spectra of cement and concrete dust.
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Table 5. Surface elemental composition of cement dust from XPS.

Element wt.%

Aluminum 1.1
Calcium 17.8

Iron -
Potassium 0.8

Magnesium 1.2
Sodium -
Oxygen 59.1
Silicon 4.4
Carbon 15.5

Table 6. Surface elemental composition of concrete dust from XPS.

Element wt.%

Aluminum 3.7
Calcium 12.4

Iron 0.2
Potassium 0.6

Magnesium 4.4
Sodium 2.8
Oxygen 52.7
Silicon 8.8
Carbon 14.3

3. Discussion
3.1. Particle Size

Particle size is a key characteristic of any respirable dust, as it determines lung pene-
tration and the ultimate fate of the particle thereafter [26]. The particle size distribution
due to saw-cutting of cement and concrete was found to be very broad, ranging from
ultrafine (<100 nm) to a few microns. This particle size range is similar to what is found
in PM emissions from cement plants—0.05 to 10 µm [27]—and hence saw-generated dust
from cement and concrete has similar potential for negative health effects as seen in cement
plant workers based on particle size.
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Most of the primary particles appear roughly spherical. As a measure of physical size,
aerodynamic diameter is defined as the diameter of an equivalent spherical particle with
unit density and having the same terminal velocity in air as the particle being analyzed.
The aerodynamic diameter is thus relevant to particle transport and deposition within
the airway passages. The particles between 2.5 and 10 µm are accumulated in the upper
part of the respiratory system [27]. The PM2.5 (particulate matter < 2.5 µm) can go deeper
into the lungs, and some can even enter the bloodstream, and hence pose the greatest
health risks [33]. Particles in the range of 7 to 15 µm are deposited in the bronchi and
bronchioles [34,35]. Particles larger than 15 µm are generally deposited on the mucous
membranes in the nose and pharynx [12].

3.2. Composition

Cement can contain various materials which are deemed hazardous, such as calcium
oxide (lime), aluminum oxide, magnesium oxide, sulfur dioxide, hexavalent chromium, al-
kaline oxides, and so on [36]. Silicosis is the most well-known hazard caused by inhalation
of respirable dust containing silica and is predominantly an. occupational disease. Crys-
talline silica is especially hazardous because it is stable, insoluble in water, and generates
reactive oxygen species on exposed surfaces which are responsible for oxidative damage to
lipids, proteins, and even DNA [37,38]. Silicosis is marked by inflammation and scarring
of tissues [39] and is dependent upon severity of exposure. Crystalline silica exposure can
also result in many other respiratory diseases such as pulmonary tuberculosis, chronic
bronchitis, emphysema, cancer, and other renal and immunologic diseases [38].

Inflammation is believed to be the principal cause for pathogenesis of diseases due
to PM exposure [40]. The declining ventilatory function in cement workers is attributed
to inflammation [41] and is observed in animals as well as humans subjected to cement
dust exposure [42,43]. Meanwhile, the hydration reaction product calcium hydroxide
causes irritation of the nose and throat with potential for severe and permanent lung
damage [29,30].

As shown here, cement and concrete dust also contains several metal compounds
which are of particular concern, as even trace amounts of metals in particulates can gener-
ate inflammation via receptor-mediated cell activation or oxidative stress pathways [40].
Reactive oxygen species (ROS), generated by the well-known Fenton reaction (due to iron
redox catalysis), are recognized as initiators and mediators of cell death [44]. Inhalation
of dust containing magnesium can irritate mucous membranes and the upper respiratory
tract [45], while dolomite (calcium magnesium carbonate) causes shortness of breath and
reduced respiratory function [31]. Inhalation of aluminum can cause pulmonary fibrosis
and lung damage and increase the risk of cardiovascular disease [46,47].

Concrete dust contained more than 30 wt.% of crystalline silica, while cement paste
had very little crystalline silica. Most of the silicon in the cement paste was in the form of
calcium silicates and in compounds such as thaumasite, lamite, and alite. Cement dust
contained more than 35 wt.% of calcium hydroxide in the crystalline phases. Concrete
dust contained much higher wt.% of silicon, aluminum, and potassium than cement paste,
while the cement was rich in calcium.

4. Conclusions

This study reports a comprehensive size and chemical characterization of dust gener-
ated during saw-cutting of cement and concrete. Such data is lacking, despite thousands of
workers being routinely exposed to this dust. Cutting generates particles of great health
concern, as >90% of the particles are smaller than 2.5 µm. Larger aggregates have morphol-
ogy with sharp edges and protrusions. Concrete dust could have more potential to cause
silicosis compared to cement, as it contains >30 wt.% crystalline silica, while cement dust
contains mainly calcium silicates. Metal content and other compounds in cement and con-
crete dust pose a risk of lung damage and other secondary impacts. Most exposure surveys
were conducted for the workers exposed to particles from cement plants. No such surveys
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exist for construction workers performing cement and concrete sawing actions at worksites.
Follow-on health effects of these dust particles can be investigated with animal studies. Ap-
propriate precautions and protective equipment should be recommended for the workers
being exposed to cement and concrete dust generated during construction activities.
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A B S T R A C T   

A controlled experimental model of exposure to aerosols particularly for cement dust was recently invented in a 
study from the laboratory that found high serum levels of heavy metals, decrease gastrointestinal motility, and 
altered hematological variables in cement dust exposed rats. However, reproducibility was not considered. This 
work aims at standardizing the model and investigating preliminary toxicological indicators. Thirty male rats 
used in this study were divided into 3 groups (n = 10). Group 1; control, while groups 2 and 3 were exposed to 
cement dust for 14 days and 28 days respectively. We assessed clinical signs of toxicity, tissue heavy metal 
concentration, histopathological, and body weight (BW) changes. We observed poor movement coordination, 
abnormal posture, cephalic fur loss. Evidence of ischemia and fibrotic pneumoconiosis were grossly observed in 
the lungs of the exposed groups. There was a significant increase in tissue level of heavy metals with pulmonary 
and gastric heavy metal content showing a trendy relationship during the period of the exposure as the value of 
Lead, Chromium, Cadmium, Iron, Calcium, and Nickel increased by nearly similar percentages in both tissues. 
Organs weights increased; the 14-day exposed (198 ± 31; 168 ± 22) and 28-day exposed (198 ± 22; 187 ± 26) 
groups had significantly reduced body weight at the first and second weeks of exposure compared to the control 
group (265 ± 26; 357 ± 40) respectively. Exposure to cement dust induced low bone density in the exposed rats 
(p < 0.05). Histopathological alterations include necrosis, inflammatory cellular infiltration, and alveolar hy-
perplasia suggestive of the proliferative response of pulmonary tissue to the dust. The operation of the stan-
dardized apparatus mimics a typical occupational exposure and the findings show that cement dust induces 
systemic toxicity via respiratory perturbation and body/organ weight discordance mediated by heavy metal 
bioaccumulation.   

1. Introduction 

Cement industries constitute a notable source of environmental 
toxicants [1,2] encountered during the manufacturing, distribution, and 
utilization of cement product. Occupational and environmental expo-
sure to cement dust has been known to precede a number of systemic 
injuries with particular reference to the respiratory, gastrointestinal, 
and integumentary systems characterized by fibrosis, emphysema, 
cough, cancer, inflammation, and liver diseases among workers and host 
community residents of cement factories [3,4]. Cement product which 
has wide application in the construction industry is a homogenous 
mixture of hazardous heavy metals such as Cobalt (Co), Iron (Fe), lead 
(Pb), cadmium (Cd), Chromium (Cr), Nickel (Ni), Manganese (Mn), and 
arsenic (As) at different relative proportions [5–7] which have been 

considered to be toxic to the body system. Deleterious health effects of 
cement production at host communities such as Kashmir valley and 
Krew in India [8,9]; Ewekoro in Nigeria [10] and Oromia, Addis Ababa 
in Ethiopia [11] have been severally reported. These reports have 
attracted the attention of researchers to cement dust studies. 

Increased level of consciousness on the adverse health effects of 
cement dust culminates in scientific research since over two decades 
ago; an intervention which has been overtly impeded by the dearth of a 
known model of experimental exposure. Data hitherto analyzed stem-
med basically from questionnaires [12–17,9], examination of health/-
medical records [18,19], interviews [16,20,21] and case report [22]. 

Toxicosis of cement dust is still poorly understood because, hitherto, 
empirical investigations have been achieved only by the deployment of 
crude experimental procedures of merely placing experimental animals 
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in proxy distance to cement factories [10,23]. Meanwhile, this method 
of exposure gives wide room for controversies as a number of other 
confounding environmental factors could be responsible for the reported 
pathologies considering the appreciable physical distance between the 
location of the experimental animals and the actual cement factory. The 
need for experimental research on the pathophysiological mechanisms 
involved in the reported effects of cement dust is required for validation 
and further investigation of its toxicosis. Therefore, an exper-
imental/laboratory method of exposure characterized by simplicity and 
reproducibility is required. Recently, our laboratory developed a model 
for regulated exposure which has been deployed in a preliminary study 
to access the effect of cement dust on some hematological variables and 
indices with interesting outcomes. Emanating data suggest that an in-
crease in serum concentration of some heavy metals including the 
alteration of hematological variables accompany the exposure to cement 
dust [24]. Although the results from this study mimic earlier reports in 
the literature on human subjects, however, the efficacy and reproduc-
ibility of the model cannot be guaranteed. The initial generation and 
distribution of dust by the chamber is characterized by significant en-
tropy, a condition that may be substantially different from the instan-
taneous distribution. These provisions make the effusion rate of the 
chamber dust generation unquantifiable. Also, some important param-
eters of the chamber such as the diameter were not taken into cogni-
zance which further precipitates the challenge of reproducibility. Hence, 
the rationale for this study is to standardize the chamber and since 
inhalation is one of the three major routes of exposure to respirable 
particulate matters from the external environment, we set to investigate 
the attendant effect of cement dust exposure on the pulmonary 
cytoarchitecture and the probable accompanying heavy metal accu-
mulation tendency particularly in the visceral tissues. 

2. Materials and methodology 

2.1. Animals 

Thirty (30), 3-month-old male Wistar rats weighing between 
150− 180 g were purchased from the animal house of the college of 
Medicine, University of Ibadan, and were kept in plastic cages with 
wood shavings. They were housed under standard conditions of tem-
perature (23 ± 2 ◦C), humidity (55 ± 15 %), and natural 12 h light and 
dark cycle in the Animal house of Department of Physiology, University 
of Ibadan, Ibadan. They were allowed access to water and standard 

laboratory chow ad libitum. 
Following two weeks of acclimatization, they were exposed to 

cement dust with the aid of an exposure chamber fabricated according to 
the specifications below (Fig. 1A and B). This study was conducted in 
accordance with the current Animal Care Regulations and standards 
approved by the Institute for Laboratory Animal Research [25] and the 
experimental protocol was approved by the Animal Care and Use 
Research Ethics Committee, University of Ibadan, Ibadan, Nigeria hav-
ing been assigned the approval number UI-ACUREC/18/0129. 

2.2. Standardized design and operation of the Exposure Apparatus 

The dust exposure was carried out with the use of a fabricated non- 
mobile apparatus designed to simulate a cement factory environment for 
the exposure of experimental animals to particulate matters. Unlike the 
previous report [24], the method was standardized by modifying it into 
a perfect square of 60 cm in height, breadth, and width, made of 
transparent plexiglass. An internal subchamber of height 20 cm, breadth 
26 cm, and diameter of 32.8 cm is specifically designed to house the 
dust. Made of plexiglass, the subchamber is designed to contain cement 
dust with its walls adequately perforated to ensure constant effusion of 
cement dust-laden air into the portion of the chamber housing the rats. 
There is no available entrance to the subchamber from the internal 
portion of the apparatus. This is with the intention to prevent the 
explorative animals from mechanical injury, to prevent the interruption 
of the dispensing circuitry of the chamber to ensure sustained; main-
taining constant effusion rate, and to prevent direct ingestion of the dust. 
The apparatus which is particularly designed to avail the experimental 
animals a wide range of movement consists of a manipulative chimney 
of 30 cm by 10 cm dimension located on the apparatus lid (dorsally) and 
diagonally to the internal subchamber, perpendicularly to the internal 
subchamber and opened during operational periods but closed 
thereafter. 

The subchamber houses two miniature metallic quadri-bladded 
aerators situated at an anterodorsal right angle to each other. The aer-
ators are heavy duty type of model CNS-3− 20/620 (serial number 
S40141392) running in main alternating current of 220 V, power of 
27 W, current of 0.25A, and frequency of 50/60 Hz. They are capable of 
moving with a speed of 2400/3400 rpm. When connected to a power 
source, sufficient torque equips the aerators as they synergistically 
generate, propel and deliver the dust in inhalable form from the sub-
chamber to the internal portion of the apparatus housing the 

Fig. 1. A: The Description of the apparatus. B: The apparatus in operation (Advancement and modifications stated in Table 2).  
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experimental animals. The specificity of the aerators enables the gen-
eration and dispensation of about 0.2 g/h of the dust. 

2.3. Cement material and exposure 

A full intact and freshly supplied bag of Nigeria Portland cement was 
purchased from an accredited depot in Ibadan, Oyo state, Nigeria. The 
exposure began daily by introducing 100 g of cement dust into the 
subchamber. Old and remnant dust were evacuated prior to exposure 
every other day. This routine practice was maintained on daily basis. 
Exposure was 5 h daily for periods of 14 days and 28 days using the 
exposure chamber. The control rats received sham exposure to normal 
atmospheric oxygen. They were all sacrificed thereafter. 

2.4. Experimental rats grouping 

There were three (3) groups in this study each with 10 animals. The 
first group (Group 1) of rats were the control group. The second group 
(Group 2) received cement dust exposure for 14 days (14-day group) 
while the last group (Group 3) were exposed to cement dust for 28 days 
(28-day group). Exposure was carried out 5 h daily. The control Group 
animals were allowed to thrive in completely dust-free environment. 
The experimental animals were all allowed free access to standard lab-
oratory chow and water. 

2.5. Body and organ weights 

The weekly weight changes of the animals in the groups each were 
determined using Acculab® USA, Model-vic-303 electronic analytical 
weighing balance and recorded while weekly percentage change in 
weight throughout the study was calculated as:  

[(B – A)/A x 100]                                                                            (1) 

Where “A” represents the “initial weight”, “B” is the “final weight”. 
During sacrifice, visceral organs including the stomach, lungs, heart, 

spleen and brain were collected. The relative organ weight was calcu-
lated by using the formula;  

(X/ Y) x100 g                                                                                 (2) 

Where “x” represents the “Absolute Organ Weight”; the raw weight of 
the organ as obtained from the weighing balance while “y” is the 
“Terminal Body Weight (TBW)”; the instantaneous weight of the animal 
at the point of sacrifice. 

Mean Femoral Weight (MFW) is the sum of the weight of the femur 
divided by “n” per group while Relative Femoral Weight (RFW) was 
calculated from the equation below  

(FW/TBW) g                                                                                  (3) 

Mean Relative Femoral Weight (MRFW) is the sum of the RFW 
divided by “n” per group 

The same as above was applicable to the femur after collecting and 
the attached muscles carefully trimmed off. 

2.6. Clinical observations 

Each animal in the different groups were carefully examined on daily 
basis before and after experimental exposure for possible clinical signs of 
cement dust-induced toxicity in the respiratory and behavioural pat-
terns, skin, fur, eyes and other mucous areas while morbidity/mortality 
case was equally noted. At the end of the experiment, the animals were 
fasted overnight but were allowed access to water. All visceral organs 
including the stomach, spleen, lungs and brain were excised, carefully 
examined before weighing and thereafter digested for heavy metal 
analysis except the lungs tissue that was divided into two and part of it 
was fixed in 10 % formalin for histopathology. 

2.7. Digestion of tissue and heavy metal analysis 

Heavy metal level in the lungs, brain, stomach and spleen of the 
exposed animals were investigated according to [26]. Nitric acid (1 mL) 
followed by perchloric acid (1 mL) was added to 100 mg of the tissues 
each in a clean sample bottle. The mixtures were then digested over a 
sand bath until the solution becomes clear and yellow in colour. In the 
instance of the outcome of brown-coloured digest, the above process was 
repeated. The digests were aliquoted after being made up to known 
volume of ionized water and read using Atomic Absorption spectro-
photometer model (Buck Scientific AAS Model 210/211 VGP, Con-
necticut, USA) at various wavelengths according to the standard 
working parameters stated in Table 1 below. Results of accumulated 
heavy metals were recorded in mg/L and presented as mean ± SEM. 
Radiation source were the hollow cathode lamp of Lead (Pb), Chromium 
(Cr), Cadmium (Cd), Nickel (Ni), Iron (Fe), Manganese (Mn), Cobalt 
(Co) and Calcium (Ca) while the fuel was air acetylene. 

2.8. Macroscopy and histomorphological investigation 

Following the sacrifice of the animals, the lungs were excised and 
carefully examined for any macroscopic pathology before fixing in 10 % 
formalin for histological examinations. They were thereafter embedded 
in paraffin wax; sectioned at 5 μm and were stained with haematoxylin 
and eosin before viewing under light microscope (PEC MEDICAL USA; 
X400 Mag) for any pneumopathological alterations according to [27]. 
The histological and pathological evaluations were carried out by a 
blinded pathologist. 

2.9. Statistical analysis 

Statistical analyses were done using Graphpad prism 5.0® and data 
presented as mean ± SEM for n = 5 per group while One-way ANOVA 
and Dunnette post-hoc test were used for mean comparison between the 
different groups with p < 0.05 considered significant as stated at each 
case. 

3. Results 

The chamber as modified and standardized is pictorially represented 
above in Fig. 1A and B. The major discrepancies and the standardizing 
factors are analysed in Table 2 below. 

The width of the chamber and the subchamber had been slightly 
adjusted to suit that of a perfect square. Although the height of the 
chamber remains the same but that of the subchamber was slightly 
reduced. The diameter and the dust effusion rate were determined. This 
is expected not only to increase the internal space of the major part of 
the chamber but also to modify the aerosolized dust. Overall, the 
modifications ensured effective and calculable dust effusion rate. 

3.1. Clinical signs 

One rat died after two weeks of exposure out of the 28-day exposed 
animals (Group 3) while the period of exposure lasted. A number of 
clinical signs of toxicities such as mortality, laboured breathing, 

Table 1 
Operational parameters of atomic absorption spectrophotometer.  

S/NO METAL WAVELENGTH (nm) SLIT WIDTH 

1 Lead 283.3 0.7 
2 Chromium 357.9 0.7 
3 Cadmium 228.9 0.7 
4 Cobalt 352.7 0.7 
5 Manganese 279.5 0.7 
6 Iron 248.3 0.7  
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increased fur lability and cephalic fur loss. Other signs were frequent 
sneezing, abnormal posture and hypoactivity. There was evidence of 
poor nervous coordination resembling that of hemiballism and tremor. It 
was equally observed that the vigor and boisterous tendencies exhibited 
by the exposed animals at the beginning of the experiment gave way for 
docility, weakness and anorexia occasioned by restricted movement 
before the end of the experiment Fig. 2B. The exposed animals also show 
sign of drastic weight loss than the control. During sacrifice, there were 
grossly observable conditions of fibrotic pneumoconiosis at the caudal 
lobe alongside with being pus-gorged portions (black arrows in Fig. 2D, 
E and F) near the deep respiratory zone. There was also evidence of 
pulmonary ischemia with grossly observable pale red patches at the 
serosal surface of the anterior lobes (yellow arrow in Fig. 2F) in the 14- 
and 28-days exposed animals. 

3.2. Body and organ weight changes 

Table 4 shows that the 14-day exposed group and 28-day exposed 
group had significantly reduced body weight at the first and second 
weeks of exposure (Week 1 – week 4 in the table) compared to the 
control group. The rate of body weight gain in the test groups (14-day 
and 28-day exposed) was significantly reduced in the weeks of exposure 
when compared with the control. Also, the TBW and weight changes of 
the femur present an interesting statistic with the 14-day group showing 
marginal difference and 28-day showing a significant difference when 
compared with the control group. For instance, TBW of the 14-day 
exposed groups decreased by 10.67 % while the 28-day group 
decreased by 16.42 % when compared with the control. The MFW of the 
14-day exposed group present 9.34 % while the 28-day exposed group 
present 31.78 %. MRFW shows the same trend with the 28- and 14-days 
exposed group showing 27.14 % and 8.57 % respectively. The foregoing 

Table 2 
Modifications entrenched to standardize the earlier model of cement dust 
exposure.  

PARTS SPECIFICATIONS MODIFICATIONS FUNCTIONAL 
ALLOWANCES 

DUST 
GENERATOR 

1Plastic and 1 iron 
bladed industrial fan 

2 iron bladed 
aerators 

CHAMBER 
WIDTH 

59.9cm 60 cm 

CHAMBER 
HEIGHT 60 cm 60 cm 

CHAMBER 
DIAMETER Unknown 84.9cm 

SUBCHAMBER 
WIDTH 

26.1cm 26 cm 

SUBCHAMBER 
HEIGHT 

19.6 cm 20 cm 

SUBCHAMBER 
DIAMETER Not stated 32.8 cm 

CHIMNEY AREA 10.6cm × 9.9cm 30cm × 10cm 

FAN SPEED 2400− 3000rpm 2400− 3000rpm 

DUST EFFUSION 
RATE 

Unknown 0.2 g/hr Reproducible  

Fig. 2. A-F: Observed clinical signs of toxicity 
among cement dust exposed animals; A: Ce-
phalic fur loss (black arrow) and abnormal 
posture following 28-day cement dust exposure. 
B: Docility and hypoactivity of exposed animals 
showing maintenance of stationary position. D, 
E and F: pulmonary emphysema and haemor-
rhages of caudal lobe of the lungs in the 14- and 
28-days exposed animals. E and F: pus-gorged 
and pulmonary ischemia of the caudal lobes 
respectively (black arrows) and pale red 
patches on the anterior lobe of the lungs (yel-
low arrow); all compared with C: A normal 
lungs (from the control group) showing normal 
appearance and intact gross morphology. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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shows that the body weight of the 28-day exposed group is more affected 
than the 14-day group. 

3.3. Histoarchitectural alterations 

Fig. 3A-F, represent the photomicrographs of experimental animals 
from the control, 14-day and 28-day exposed groups respectively. The 
control animals (Fig. 3A and B) show normal lungs cytoarchitecture 
while the treated groups (3C-F) had an array of pathological manifes-
tations including fibrinoid necrosis, evidence of emphysema and in-
flammatory response of the tissue marked by mononuclear cell 
infiltration. Alveolar type II pneumocyte hyperplasia was observed in 
addition to those alterations at the 28-day exposed group. Table 6 shows 

the distribution and severity of the pulmonary histopathological 
changes observed in this study with hyperplasia of histiocytes, mono-
nuclear cell infiltration in alveoli, medial hypertrophy of muscular ar-
teries and fibrinoid necrosis being the most predominant pathologies 
while presence of eosinophilic substance, fibroblast proliferation, 
oedema and alveolar septal thickening were the least observed which 
were all completely absent in the control animals. 

Fig. 4A-F represent the relative weights of the stomach, spleen, lungs, 
heart, brain and femur respectively while Table 3 shows femoral bone 
weight changes. The relative weight of the lungs (F-value = 16.25, p- 
Value = 0.0010), stomach (F-value = 5.307, p-Value = 0.0223), and 
spleen (F-value = 27.64, p-Value = 0.009) were significantly higher in 
14-day and 28-day groups when compared to the control. However, the 

Fig. 3. A and B: Lung tissue showing normal 
architecture of control animals. C and D: Lung 
tissue showing alveolar congestion and hemor-
rhage (Fig. 3C brown arrow), Alveolar septal 
thickening with congestion, hemorrhages, 
diffuse mild type II pneumocyte proliferation 
and infiltration of mononuclear cell infiltration 
(Fig. 3D; black arrow) of 14-day Exposed ani-
mal. E and F: Lungs showing effect of cement 
dust on pulmonary tissue with evidence of se-
vere alveolar type II pneumocyte cell hyper-
plasia (Fig. 3E green arrow) and mononuclear 
cell infiltration (Fig. 3F black arrow) and 
medial hypertrophy of muscular arteries and 
fibrinoid necrosis of 28-day exposed animals. 
Mag: X400. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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relative weights of the brain (F-value = 5.323, p-Value = 0.0298) and 
femur (F-value = 50.33, p-Value = 0.0002) was significantly higher only 
in the 28-day group while that of the heart increased significantly only 
in the 14-day exposed group when compared with the control at 
p < 0.05. Lung, stomach and brain tissues shows somewhat similar 
pattern of response to cement dust exposure. While other organs (Heart 
and Spleen) show a mithridatic reduction in the 28-day group when 
compared with the 14-day group, stomach, lungs and brain tissues in 

Fig. 4A, B and E respectively depicted a persistent increase in weight 
from the 14-day to the 28-day. 

3.4. Heavy metals analysis 

Heavy metals analysis as found in Table 5 above represents a 
considerable output. Analysis of the heavy metal content of the various 
visceral organs shows that the lung tissue has a significantly high level of 

Fig. 4. A Effect of cement dust on relative 
lungs weight. ** Significant when compared 
with the control. B: Effect of cement dust on 
relative stomach weight. ** Significant when 
compared with the control. C: Effect of cement 
dust on relative heart weight. ** Significant 
when compared with the control. D: Effect of 
cement dust on relative spleen weight. ** Sig-
nificant when compared with the control. E: 
Effect of cement dust on relative brain weight. 
** Significant when compared with the control. 
F: Effect of cement dust on femoral weight and 
mean femoral weight. ** Significant when 
compared with the control.   

M.W. Owonikoko et al.                                                                                                                                                                                                                        



Toxicology Reports 8 (2021) 1169–1178

1175

Ni at 14-day and 28-day groups, Cr and Co showed significantly high 
level only at 28-day while Cd was significant only at the 14-day exposed 
group when compared with the control. The stomach tissue has signif-
icantly high Pb, Fe at both exposed groups (14-day and 28-day expo-
sure), while Cr and Ni were significantly high only at the 28-day exposed 
group when compared with the control. The brain tissue as shown by the 
14-day and 28-day groups had significantly high levels of Pb, Cd, Mn, 
and Ni while Cr and Fe were only significantly higher in the 28-day 
group compared to the control. The spleen at both 14-day and 28-day 
groups depicted a significantly high level of Pb, Cr, Co, Ni while Cd 
and Mn were only significantly high at the 28-day group when compared 
with the control. 

The values of Fe in the respective organs (brain, spleen, lungs, and 
stomach) are significantly higher in the test groups when compared with 
the control. Moreover, values of this metal in the 14-day exposed group 
approximately twice as found in the 28-day exposed group. This is 

consistent with all the assessed organs. Values of Ca in the test groups 
(14- and 28-day) in the respective organs are significantly higher than in 
the control. However, the 28-day group produced multiple folds of value 
as found in the 14-day except for the stomach sample where the 14-day 
is approximately half. Values of Pb and Cr are also significantly higher in 
the test group when compared with the control. Similarly, almost none 
of the values presents a double or multiple fold of the other. The 28-day 
group only show a marginal increase when compared with the 14-day 
group. With respect to the data from the lungs, Pb and Cr show a mar-
ginal increase over time as found in the comparison between the 14-day 
and the 28-day groups, Cd decreased, Co and Mn increased in multiple 
(5 and 7 times respectively). Only, Fe and Ni doubly increased in line 
with what might be expected considering the double length of exposure. 
In the brain tissue, only Fe increased doubly while other metals appear 
about the same level at both the 14- and 28-day groups. In the spleen, 
however, Pb and Cr increase are similar to the findings in the lungs, 
whereas Cd, Co, Mn, Fe, and Ni all increased 5, 3, 4, 2, and 3 times 
respectively, showing substantial accumulation from 14 to 28 day of 
exposure. Available data at the 14- and 28-day exposed groups partic-
ularly for the lungs and stomach are interesting when compared with the 

Table 3 
Mean relative femoral weight of experimental animal following exposure to 
cement dust.  

GROUPS TBW(g) MFW(g) MRFW 

CONTROL 168.7 ± 4.1 1.07 ± 0.03 0.7 ± 0.03 
14-DAY 150.7 ± 2.4* 0.97 ± 0.03* 0.64 ± 0.01 
28-DAY 141.0 ± 5.51* 0.73 ± 0.13* 0.51 ± 0.07* 

Only values of the MRFW are presented in mean ± SEM. 
TBW- Terminal body weight; MFW; mean Femoral Weight; MRFW; mean 
Relative Femoral Weight. 

* p < 0.05 are significant when compared with control.  

Table 4 
Weekly percentage mean body weight change induced by 4 weeks exposure to 
cement dust.  

GROUPS WEEK 1 WEEK 2 WEEK3 WEEK 4 

CONTROL 165 ± 26 257 ± 40 373 ± 50 463 ± 58 
14-DAY 98 ± 31* 68 ± 22*   
28-DAY 96 ± 22* 87 ± 26* 152 ± 45* 166 ± 52* 

Values are presented in percentages. 
* p < 0.05 is significant when compared to the control.  

Table 5 
Heavy metal analysis of the various tissues (mg/L) of experimental animals exposed to cement dust.  

PARAMETERS ORGANS 

HEAVY METAL GROUPS LUNGS BRAIN SPLEEN STOMACH 

Pb 
CONTROL 0.03 ± 0.00 0.05 ± 0.01 0.04 ± 0.00 0.03 ± 0.01 
14-DAY 0.95 ± 0.07* 1.05 ± 0.06* 1.29 ± 0.14* 1.02 ± 0.04* 
28-DAY 1.02 ± 0.07* 1.08 ± 0.33* 1.43 ± 0.24* 1.10 ± 0.03* 

Cr 
CONTROL 0.02 ± 0.00 0.06 ± 0.03 0.07 ± 0.01 0.03 ± 0.01 
14-DAY 0.17 ± 0.04* 0.11 ± 0.00 0.12 ± 0.01* 0.12 ± 0.00* 
28-DAY 0.26 ± 0.08* 0.15 ± 0.00* 0.17 ± 0.01* 0.35 ± 0.12* 

Cd 
CONTROL 0.04 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 
14-DAY 0.35 ± 0.05* 0.05 ± 0.02* 0.05 ± 0.01* 0.06 ± 0.01 
28-DAY 0.12 ± 0.07* 0.05 ± 0.01* 0.27 ± 0.03* 0.05 ± 0.01 

Co 
CONTROL 0.02 ± 0.00 0.05 ± 0.00 0.01 ± 0.00 0.11 ± 0.01 
14-DAY 0.16 ± 0.05* 0.44 ± 0.17* 0.20 ± 0.07* 0.39 ± 0.02* 
28-DAY 0.84 ± 0.15* 0.45 ± 0.13* 0.74 ± 0.13* 0.30 ± 0.03* 

Mn 
CONTROL 0.05 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.07 ± 0.01 
14-DAY 0.13 ± 0.01* 0.06 ± 0.00 0.04 ± 0.01 0.06 ± 0.01 
28-DAY 0.98 ± 0.00* 0.08 ± 0.0* 0.18 ± 0.08* 0.06 ± 0.01 

Fe 
CONTROL 0.02 ± 0.00 0.16 ± 0.02 0.04 ± 0.00 0.06 ± 0.01 
14-DAY 0.59 ± 0.07* 1.18 ± 0.13* 0.14 ± 0.01* 1.81 ± 0.27* 
28-DAY 1.15 ± 0.00* 2.52 ± 0.22* 0.25 ± 0.02* 3.76 ± 0.33* 

Ni 
CONTROL 0.05 ± 0.01 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 
14-DAY 0.14 ± 0.01* 0.14 ± 0.01* 0.05 ± 0.02* 0.06 ± 0.01 
28-DAY 0.24 ± 0.01* 0.18 ± 0.01* 0.15 ± 0.02* 0.40 ± 0.08* 

Values are presented as mean ± SEM; *p < 0.05 are significant when compared with control. 

Table 6 
Observed pulmonary histomorphometry of rats exposed to cement dust.  

ALTERATIONS/GROUPS CONTROL 14 DAY 28 DAY 

Alveolar type II Pneumocyte Hyperplasia ̶ þþ þþþ

Alveolar mononuclear cell infiltration ̶ þþ þþþ

Focal Hemorrhage ̶ þþ þþ

Alveolar Septal thickening ̶ þ ̶ þþ

Emphysema ̶ þþ þþ

Periarteitis ̶ þþ þþ

Medial hypertrophy of muscular arteries ̶ þ ̶ þþþ

Eosinophilic Substance ̶ þ ̶ þþ

Fibroblast tissue proliferation ̶ þ ̶ þþ

Fibrinoid Necrosis of blood vessels ̶ þþ þþþ

Oedema ̶ þ ̶ þþ

The observed morphological alteration of the erythrocyte was assessed using the 
grade below: 
̶ : morphological change absent in animals in a group. 
+ ̶ : morphological change rarely found in animals in a group. 
+: morphological change found in some animals in a group. 
++: morphological change common to all animals of a particular group. 
+++: morphological change common to most animals in the exposed groups. 
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control. There was a substantially significant difference between the 
treated and control groups. A more interesting difference is observable 
between the 14-day and 28-day groups. Asides from Co and Mn, all other 
heavy metals assessed in this study follow a similar pattern of bio-
accumulation in the two tissues. 

4. Discussion 

This study presents a standardized form of the earlier presented and 
deployed exposure model [24]. The morphology, operation, and modi-
fication of the model were presented in Fig. 1A, B, and Table 2. It meets 
the need to simplify, substantiate and normalize the suitability of the 
model in the assessment of the systemic effect of inhalable/particulate 
matters. It was deployed in this study to assess the effect of cement dust 
on the respiratory tract; the foremost points of call for investigation in 
aerosol-mediated toxicity. The primitive exposure chamber was fabri-
cated and immediately deployed for use. Initially, it was not clear if the 
chamber would fill the gap of the experimental toxicological evaluation 
model particularly with respect to occupational/residential scale of 
exposure or not. However, subsequent results emanating from the study 
featured a number of pathological manifestations that closely mimic 
those earlier reported in the literature on human subjects in many 
conditions of case reports, questionnaires, interviews, etc. hence, the 
need to standardize the exposure chamber became overtly expedient. 
The “modification” column of Table 2 outlines the advancement of the 
chamber with a view to standardizing it. For the present study, the dust 
generation rate was stabilized at 0.2 g/hr. 

Cement particles have been reported to consist of toxic metals in 
varied proportions [28,29] depending particularly on the raw materials 
used. Nigeria cement dust particles contain very high concentrations of 
heavy metals known to be lethal even at small doses such as Cd, Pb, and 
mercury (Hg) [30]. The significantly high levels of Pb, Cd, Cr, Co, Ni, 
Mn, and Fe observed in the stomach, lungs, heart, and brain tissues of 
the exposed animals confirm intoxication with heavy metallic compo-
nents of the dust. There is a considerable siamese relationship between 
the pattern of heavy metals deposition at the lungs and stomach tissues 
as shown by Table 5. Almost all the heavy metals show a similar trend of 
bioaccumulation, particularly when the test groups are compared. This 
similarity is probably borne out of the anatomical relationship between 
the lungs and the gastrointestinal tract (GIT) as established by the 
mucociliary escalator. The GIT is susceptible to the toxicosis of any 
toxicant found within the upper respiratory tract. Germs, particles, dust, 
and other pollutants in the inspired air are trapped by mucus before the 
mucociliary escalator moves them up and out of the lungs. These ma-
terials can then be removed from the body via coughing or swallowing. 
The latter makes the GIT become vulnerable to the debris moved out of 
the lungs. In the case of this study, the heavy metal-loaded dust removed 
from the lungs may have found its way to the GIT where they stimulate 
similar pathophysiological mechanisms. Similar evidence was recently 
reported by [31] who found significantly high levels of heavy metal in 
visceral organs of rats co-exposed to cadmium and lead, and [32] who 
similarly found significantly high levels of heavy metals in various tis-
sues of snails picked around cement factory. Also, in plant physiology, 
similar evidence has been reported where heavy metallic constituents of 
cement dust have been demonstrated to leach into the soil around 
cement factory site causing a significantly higher proportion of toxic 
metal within the factory neighborhood [2,33,34]. Recently, our labo-
ratory reported an increase in plasma concentration of heavy metals 
following exposure to cement particles [24]. The present study provides 
the first evidence using experimental animals that cement dust could 
trigger heavy metal bioaccumulation in living tissues. After heavy metal 
intoxication; sequestration and bioaccumulation precede a number of 
pathological manifestations [35] as they are not easily metabolized or 
excreted [36]. Apart from Cd, Pb, and Hg that are known to elicit sys-
temic toxicities even at low concentrations [37,38], most divalent cat-
ions have been implicated in effective cytophysiology as they participate 

in most intracellular activities such as oxidative phosphorylation, 
enzymatic activities, nucleic acid, and protein synthesis, membrane 
stabilization, and transport. However, regulation of their relative bio-
logical abundance and bioavailability is a requirement for the effective 
functioning of the cell. Asides from the sole toxicities of heavy metals, 
their influx into the cell as typified by cement dust exposure is delete-
rious as they compete for transporters with essential trace elements 
especially when they exceed the homeostatically tolerable limit [39,40]; 
thereby leading to loss of function as a result of deficiencies of essential 
minerals [41]. 

Clinical presentations are often indicators of systemic toxicity. The 
observed clinical signs following exposure in this study confirm the 
systemic toxicity of cement dust. The animals exhibited vigour at the 
initial stage of the study exploring every accessible point within the 
apparatus including the top of the subchamber. The fabricated chamber 
differs significantly in internal morphology and space from the plastic 
cages they were housed. This answers for the rambunctious behavior 
initially exhibited by the animals. However, towards the end of the 
experiment, they appeared docile, hypoactive, and anorexic constantly 
maintaining a stationary position. This could be due to the stress accu-
mulation occasioned by the exposure to the dust or perhaps due to 
anorexia. The mortality of one animal which occurred while the expo-
sure was ongoing may be due to multi-organ failure caused by the acute 
effect of the heavy metal in the dust. The observed laboured breathing 
and frequent sneezing are suggestive of respiratory distress induced by 
cement dust. 

The source of bodily functions, regulation, and integration is the 
central nervous system (CNS) being principally composed of the brain 
and the spinal cord. It gathers information from far and near extremities 
for coordination and control. Maintenance of gait, posture, and coor-
dination of movement right from thought to execution are all the 
functions of the CNS. Dyskinesia and other poor movement coordination 
resembling hemiballism, abnormal posture, and hypoactivity as 
observed in this study following the exposure to cement dust indicate a 
central nervous disorder. The dermal route is one of the major routes of 
exposure to cement aerosol; others being inhalation and gastrointestinal 
routes. Since cement dust is an airborne toxicant, the skin, by virtue of 
its large surface area remains the most affected. It quickly settles on the 
skin and exerts topical effects with toxicoses yet to be studied in detail. 
In this study, exposure to cement dust may be responsible for the 
integumentary degradation as marked by increased fur lability. It was 
evident that more than one animal showed signs of loss of fur at the 
cephalic region at different times during the study. 

Abnormal body weight change is considered a veritable toxicity 
index [42–44]. Similarly, organ weight is an indicator of the physio-
logical or pathological condition of experimental animals [45,46]. There 
was a significant reduction in weekly body weight gain which is in 
contrast with an increase in the relative visceral organs (stomach, 
spleen, lungs, and brain) weights of the exposed groups when compared 
with the control (Fig. 4A-F). Although daily food intake was not 
assessed, the exposed and the control were equally allowed free access to 
food and water. The weight discrepancies observed in this study may 
either be due to anorexia or the direct systemic toxicity induced by the 
dust. The foregoing is expected since visceral organs are directly 
exposed to the deleterious effect of toxicants [47]. Most organs have the 
ability to sequester heavy metals following entry into the body [35]. 
This finding is in concert with several other findings [48–50]. Also, [51] 
in their study involving exposure of experimental animals to silica found 
significantly higher lung weight of the exposed animals when compared 
with the control. The condition of organomegaly observed in this study 
is an indication that the exposed rats bioaccumulated the heavy metals. 
The latter which is a condition typical of heavy metal toxicity remains an 
inevitable precursor to pathological manifestations especially during 
carcinogenesis [52]. 

Bone density changes have been shown to inversely correlate with 
heavy metal toxicity (Hee-Sook et al., 2016). Bone has been regarded as 
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one of the major target sites for heavy metal toxicosis [53–55]. Heavy 
metals such as Pb and (Cd) which accumulate in the bone matrix can 
store up significantly and displaced calcium, leading to bone deminer-
alization, and in the process makes the bone susceptible to osteoporosis. 
Even though the comprehensive and holistic explanation is not yet 
available in the literature, exposure to a higher concentration of Cd 
alone has been strongly linked to lower bone densities, decrease 
trabecular number and decrease thickness [53,55,56]. Co-exposure to 
Pd and Cd stimulates bone histopathological damage [57]. As the largest 
bone in the body, the decrease in femoral density observed in this study 
suggests the possibility of chelation of essential minerals like calcium 
from the bone matrix causing mineral imbalance which may eventually 
predispose the bone to osteoporosis. Low bone density observed in this 
study does not only corroborate but is also suspected to be responsible 
for the low body weight gain observed in the exposed groups. 

Pulmonary tissue reaction to dust particles is known to be dependent 
on a number of factors such as the composition of the dust, the length of 
exposure, and the immunological status of the exposed [58]. Of more 
significance is the composition of cement dust owing to its multi-heavy 
metallic composition. Pneumoconiosis was grossly observed in the lung 
tissue of the exposed groups (Fig. 2D-F) when compared to the control 
(Fig. 2C). The topical pulmonary effect of the dust culminates the 
observed pneumoconiosis; the fibrogenic tendency of the dust is thereby 
suspected. The onset of the pneumopathology may be the stimulus for 
the respiratory distress observed in some of the exposed animals as they 
show irregular and laboured breathing. The clinical signs of toxicity 
observed in this study show a wide range of semblance with the path-
ological manifestations that accompany occupational exposure to 
cement dust [12,16,59,60]. In addition, the serosal surface of the lungs 
shows signs of infarction (Fig. 2F). This is suggestive that exposure to 
cement dust may significantly affect blood supply at the organ level. 
Cytoarchitectural investigations play a significant role in establishing 
pathological alterations at the tissue level following exposure to toxi-
cants. It gives reliable information about the extent of degradation in 
exposed tissues difficult to be observed macroscopically, cellularly, or 
even with the aid of subcellular biomarkers [61]. Pulmonary histo-
pathological disruptions after exposure to cement dust had been earlier 
reported by a study of in-situ exposure [10] where inflammation, dis-
rupted bronchiole and bronchus, and degenerated the epithelial lining 
were observed. Fig. 3A–F shows an array of histopathological alterations 
while Table 6 shows the frequency and severity of the observed alter-
ations secondary to cement dust exposure. The black arrow in Fig. 3D 
shows infiltration of inflammatory cells. Inflammatory cells play sig-
nificant roles in the development and healing of either chemical or 
topical injuries. Analogous to any condition of heavy metal intoxication, 
infiltration of inflammatory cells is considered a reliable yardstick for 
the assessment of the pathogenesis of heavy metal-induced toxicosis as 
they are known to produce and release pro-inflammatory cytokines, 
proteolytic enzymes, reactive oxygen, and nitrogen species [62]. 
Neutrophilic infiltration is known to precede the cascade of mechanisms 
that herald injuries on tissues. Hence, the histopathological changes 
observed in this study which feature inflammatory cell and mononuclear 
cell infiltration are indicators of the pro-inflammatory tendency of the 
dust. Meanwhile, according to Balduzzi and colleagues, crystalline silica 
elicits inflammatory cell production which ultimately leads to free 
radical generation [63]. The respiratory distress observed in the exposed 
animals may be due to the free radicals generated via the topical pul-
monary effect of crystalline silica, a major compound constituent of 
cement dust, or by the inflammatory cell infiltration observed in the 
histoarchitectural alteration above. The “black arrow” in Fig. 4B depicts 
alveolar hyperplasia in the lung tissues. This condition is suggestive of 
the proliferative reaction of pulmonary tissue to the dust; a notable 
characteristic of the onset of carcinogenesis. Howbeit, [64] and [65] had 
established the positive correlations between cancer of the respiratory 
system and the length of cement dust exposure period, the literature has 
been devoid of laboratory-based support for the claim. Air space 

enlargement is an early sign of emphysema. 

5. Conclusion 

This study provides a standardized laboratory-based experimental 
model of exposure for investigation on cement dust toxicity. It generally 
revealed heavy metal bioaccumulation and histoarchitectural alteration 
as organ damaging mechanisms with respect to the respiratory system. 
The exposure apparatus has been modified and standardized to mimic 
the cement factory environment and host communities of cement fac-
tories alike who are equally vulnerable to cement dust toxicities as 
occupationally exposed individuals. The results from this study add to 
the relatively few experimental-based data available on cement dust and 
therefore advance the existing claims of its toxicity. The pathogenesis of 
cement dust-induced toxicities is not limited to bioaccumulation of the 
heavy metal content of cement dust but also includes organomegaly and 
pneumopathological alterations. Further studies on the toxicosis of 
cement dust are hereby encouraged in order to validate the epidemio-
logical reports in the literature on cement dust-induced pathologies and 
to incite policies geared towards the protection of occupationally and 
geographically exposed individuals. 
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Abstract 

Adverse health effects of cement plant exposure have been found in occupational 
contexts but are less defined for the general population living near plants. We aimed to 
summarize the evidence on the health effects of people exposed to ambient air 
pollution by cement plants. A systematic review using Embase, PubMed and Web of 
Science was performed. We included only non-occupational studies with a comparison 
group that focused on adverse health outcomes and biomarkers of internal dose or 
subclinical effect associated with cement plant exposure. Selection of articles was 
performed by two authors independently. Of 1491 articles identified by the initial search, 
24 were included: 17 of them were included in the analysis of adverse health outcomes 
and 9 in the analysis of biomarkers of internal dose or subclinical effects. The studies 
were very heterogeneous in study design, measure of cement plant exposure, outcome 
detection, measure of association and adjustment for confounding. Almost all the 
studies found positive associations between cement plant exposure and respiratory 
diseases and symptoms. An excess risk of cancer incidence and mortality in both 
children and adults mainly concerning respiratory tract cancers was also reported in 
some studies. Higher values of heavy metals and of a biomarker of renal toxicity were 
found in the exposed compared to unexposed populations. In conclusion, there is some 
evidence for a possible role of cement plant exposure on health adverse effects, 
although many studies had serious or critical risk of bias and overall level of certainty 
was low. 
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