Springdale Apartments Multi-Family Housing Traffic Impact Study

Submitted to:

Kentucky Transportation Cabinet, District 3

Jefferson County, County Engineer

City of Louisville, City Engineer

Prepared by: HMB Professional Engineers 3 HMB Circle Frankfort, KY 40601

July 13, 2021

Executive Summary

This report presents the Traffic Impact Study for the proposed Springdale Apartments Multi-Family Housing in Louisville, Jefferson County, Kentucky. The new development will be located just south of Gene Snyder Freeway along the northern side of Springdale Road.

Study Area

Traffic data was collected at the following study intersection:

1) Springdale Road at Asbury Park Boulevard - Unsignalized

Traffic data was collected on a typical weekday (Wednesday, June 23, 2021) for the peak hours of 7:00 - 9:00 AM and 4:00 - 6:00 PM to determine the AM and PM peak period volumes. The AM peak period was determined to be from 7:45 - 8:45 AM and the PM peak period was from 5:00 - 6:00 PM.

Trip Generation and Traffic Assignment

Trip generation was conducted using the *ITE Trip Generation Manual (10th Edition, Institute of Transportation Engineers)* and information from the applicant. A conceptual site layout was provided by the applicant. Information from the site layout was used to determine the number of units to be used for the trip generation analysis. The generated new site trips are detailed in **Table 4-1**. In total, the development is projected to generate 109 AM peak hour trips and 133 PM peak hour trips.

Table ES-1 - Trip Generation Summary

ITE	Land Use	Size	Daily	AM Peak				PM Pea		
Code	Description	0.20	Trips	Total	Entering	Exiting	Total	Entering	Exiting	
221	Multifamily Housing (Mid-Rise)	302 Dwelling Units	1,643	109	28	81	133	81	52	

Capacity Analysis Results

Traffic operations analysis was performed at all the study intersections under the following analysis scenarios:

- Open Year (2023) No Build and Build Conditions
- Design Year (2033) No Build and Build Conditions

Synchro 11 was used to conduct intersection capacity analysis for each intersection and time period based on the *KYTC Traffic Impact Study Requirements (2012 Policy)*, and the software outputs were evaluated to determine if any roadway improvements (additional or lengthened turn lanes, installation of traffic signals, etc.) are warranted in order to maintain an acceptable level of service. Additional traffic operations analysis was conducted to analyze performance with the added roadway improvements. Open and Design Year LOS and delay results are summarized in **Table ES-2**.

Conclusions

With and without the new development, LOS for all intersections and scenarios was B or better. The addition of the facility and associated traffic will add additional trips to the network, but not substantially to result in the recommendation for any improvements. No turn lanes were found to be warranted for any scenario.

Table ES-2. 2023 (Open Year) and 2033 (Design Year) Intersection Level of Service and Delay Summary

Intersections and	2023 No Build				2023 Build					
Movements /	AM Peak		PM	Peak	AM	Peak	PM	Peak		
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)		
1-Asbury Park Blvd /	1-Asbury Park Blvd / Springdale Rd									
Westbound Left	Α	7.5	Α	7.6	Α	7.6	Α	7.7		
Northbound	Α	9.5	Α	9.6	В	10.0	В	10.0		
2-Springdale Rd / En	trance 1	-								
Eastbound Left	-	-	-	-	Α	7.5	Α	7.9		
Southbound	-	-	-	-	В	10.3	В	11.9		
3-Springdale Rd / En	trance 2									
Eastbound Left	-	-	-	-	Α	7.4	Α	7.8		
Southbound	-	-	-	-	Α	9.3	Α	10.3		
Intersections and		2033 N	No Build			2033	Build			
Intersections and Movements /	AIV	2033 N I Peak		Peak	AM	2033 Peak		Peak		
Intersections and Movements / Approaches	AN LOS			Peak Delay (sec/veh)	AM LOS			Peak Delay (sec/veh)		
Movements /	LOS	Peak Delay (sec/veh)	PM	Delay		Peak Delay	PM	Delay		
Movements / Approaches	LOS	Peak Delay (sec/veh)	PM	Delay		Peak Delay	PM	Delay		
Movements / Approaches 1-Asbury Park Blvd /	LOS	Delay (sec/veh)	PM LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)		
Movements / Approaches 1-Asbury Park Blvd / Westbound Left	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)		
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)		
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2	LOS A B	Delay (sec/veh) 7.8 10.1		
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En Eastbound Left	Springe A A trance 1	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2 7.5	LOS A B	7.8 10.1		
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En Eastbound Left Southbound	Springe A A trance 1	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2 7.5	LOS A B	7.8 10.1		

Table of Contents

Section 1	Project Background	
	1.1 Site Description	
	1.2 Study Area	1
Section 2	Existing (2021) Condition Analysis	
Section 2		
	2.1 Existing Roadway Conditions	
	2.1.1 Springdale Road	
	2.1.2 Asbury Park Boulevard	
	2.2 Existing Turning Movement Data	
	2.3 Level of Service Criteria2.4 Existing Conditions Analysis	
	2.4 Existing Conditions Analysis	
Section 3	2023 and 2033 No Build Scenario Analysis	7
	3.1 Traffic Volume Projections	7
	3.2 Level of Service Analysis	7
Section 4	Trip Generation and Traffic Assignment	10
	4.1 Trip Generation	
	4.2 Trip Distribution and Assignment	10
Section 5	2023 and 2033 Build Condition Analysis	13
	5.1 Level of Service Analysis	13
	5.2 Turn Lane Warrants	13
_		
Section 6	Conclusions	

List of Figures

Figure 1-1 Study Area	2
Figure 2-1. 2021 Turn Movement Volumes	4
Figure 3-1. 2023 No Build AM and PM Turning Movement Volumes	8
Figure 3-2. 2033 No Build AM and PM Turning Movement Volumes	9
Figure 4-1. Trip Distribution Percentages	
Figure 4-2. AM and PM Peak Site Generated Trips	12
Figure 5-1. 2023 Build AM and PM Turning Movement Volumes	14
Figure 5-2. 2033 Build AM and PM Turning Movement Volumes	
ist of Tables	
Table 2-1 Level of Service Criteria for Signalized and Unsignalized Intersections	
Table 2-2. Intersection Level of Service and Delay Summary – 2021 Existing Conditions	
Table 3-1. Intersection Level of Service and Delay Summary – 2023 No Build Conditions	
Table 3-2. Intersection Level of Service and Delay Summary – 2033 No Build Conditions	
Table 4-1. Site Generated Trips	10

Table 5-1. Intersection Level of Service and Delay Summary – 2023 Build Conditions16
Table 5-2. Intersection Level of Service and Delay Summary – 2033 Build Conditions16

Appendices

Appendix A: Conceptual Site Plan

Appendix B: Intersection Turning Movement Counts

Appendix C: Synchro HCM 6th Outputs - 2021 Existing, 2023 No Build, and 2033 No Build

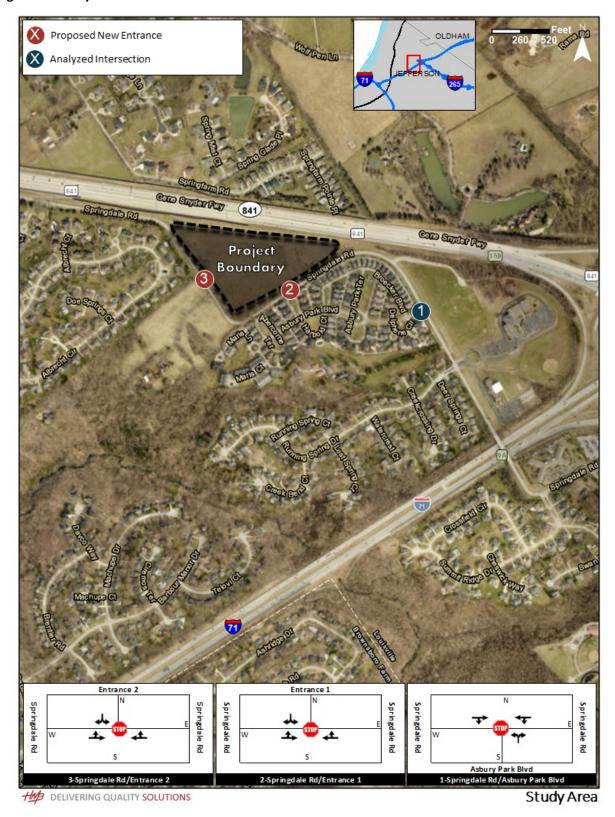
Appendix D: Synchro HCM 6th Outputs - 2023 Build and 2033 Build

Appendix E: Turn Lane Warrants

Section 1 Project Background

The consultant team was contracted by Sabak, Wilson & Lingo, Inc. to prepare a Traffic Impact Study for the proposed Springdale Apartments Multi-Family Housing in Louisville, Jefferson County, Kentucky. The purpose of this report is to document the study area, site conditions, analysis, and findings. Kentucky Transportation Cabinet (KYTC) Traffic Impact Study Requirements (2012 Policy) was followed.

1.1 Site Description


The new development will be located along Springdale Road between Gene Snyder Freeway and I-71, near Asbury Park Boulevard. The conceptual site plan is shown in **Appendix A**. There are two main proposed site entrances for the development located along the northern side of Springdale Road. A third access location is located on the eastern edge of the development, but it is disconnected from the other parking lots and was not evaluated given the low utilization of this parking lot.

1.2 Study Area

The study area is illustrated in **Figure 1-1**. Traffic data was collected at the following study intersection:

1. Springdale Road at Asbury Park Boulevard - Unsignalized

Figure 1-1 Study Area

Section 2 Existing (2021) Condition Analysis

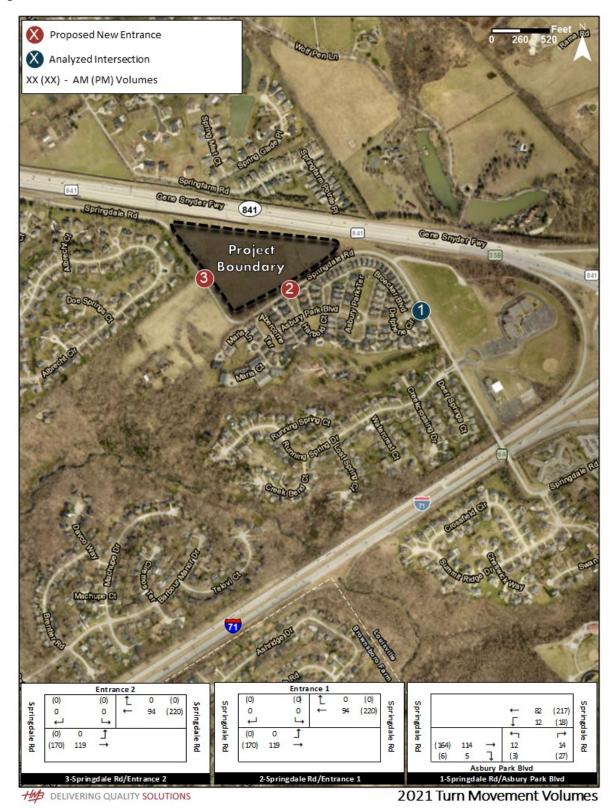
This section describes the existing roadways in the vicinity of the proposed development.

2.1 Existing Roadway Conditions

The consultant team collected intersection geometry as required for capacity analysis including approach lane configurations, departure lane configurations, number and length of turn lanes, presence of channelizing devices, and type of traffic control.

2.1.1 Springdale Road

- Springdale Road is a two-lane urban major collector running east-west in the study area with a posted speed limit of 35 miles per hour (mph). The road ends at the intersections with Brownsboro Road in the east and Wolf Pen Branch Road in the west near Green Spring Drive.
- The last AADT collected by KYTC for Springdale Road between Brownsboro Road and Wolf Pen Branch Road was 4,000 vehicles per day (vpd) in 2016.
- There are 10-foot lanes, no median, no turn lanes, and one-foot paved shoulders within the study area.


2.1.2 Asbury Park Boulevard

 Asbury Park Boulevard is a neighborhood roadway for a small subdivision with no additional outlets.

2.2 Existing Turning Movement Data

Traffic data was collected on a typical weekday (Wednesday, June 23, 2021) for the peak hours of 7:00 - 9:00 AM and 4:00 - 6:00 PM to determine the AM and PM peak period volumes. The AM peak period was determined to be from 7:45 - 8:45 AM and the PM peak period was from 5:00 - 6:00 PM. The peak hour data collected is presented in **Appendix B**.

Figure 2-1. 2021 Turn Movement Volumes

2.3 Level of Service Criteria

Level of Service (LOS) is a term used to represent different traffic conditions and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists or passengers". Level of Service varies from Level A, representing free flow, to Level F, where traffic breakdown conditions are evident. Level B represents good progression with minimal congestion. At Level C, the number of vehicles stopping is significant, although many still pass through the intersection without stopping. Level D represents more congestion, but the overall operations are generally considered acceptable by most agencies. At Level E, freedom to maneuver within the traffic stream is more difficult with driver frustration being higher.

For signalized intersections, service levels pertain to each approach as well as an overall intersection. The unsignalized intersection analysis method in the *Highway Capacity Manual 6th Edition* assigns LOS values for each movement that yields the right-of-way, but not to the overall intersection. This movement is generally a secondary movement from a minor street. At an unsignalized intersection, the primary traffic on the main roadway is virtually uninterrupted. Therefore, the overall level of service is usually much better than what is represented by the results of the minor street movements. With the current method of reporting levels of service for unsignalized intersections, it is not uncommon for some of the minor street movements to be operating at LOS F during the peak hours. The delay thresholds for Level of Service are higher for signalized intersections since drivers know that their turn is coming and are willing to wait longer. They also don't have the decision making involved in looking for a gap to proceed through the intersection.

Level of Service and delay for each intersection using methods outlined in the *Highway Capacity Manual* were calculated using Synchro 11. **Table 2-1** displays the current Level of Service criteria for signalized and unsignalized intersections.

Table 2-1 Level of Service Criteria for Signalized and Unsignalized Intersections

Lavel of Camina	Description	Control Delay Per Vehicle (sec/veh)			
Level of Service	Description	Signalized Intersections	Unsignalized Intersections		
А	Little or no delay	<10	<10		
В	Short traffic delay	>10 and <20	>10 and <15		
С	Average traffic delay	>20 and <35	>15 and <25		
D	Long traffic delay	>35 and <55	>25 and <35		
E	Very long traffic delay	>55 and <80	>35 and <50		
F	Unacceptable delay	>80	>50		

Source: Highway Capacity Manual, 6th Edition, Transportation Research Board

2.4 Existing Conditions Analysis

Table 2-2 displays the 2021 Existing LOS and delay for the existing study intersection. The full Existing and No Build Synchro outputs can be found in **Appendix C**. Since the intersection of Springdale Road and Asbury Park Boulevard is aligned at a skewed angle from the cardinal direction of Springdale Road, it should be noted that Asbury Park Boulevard was chosen to be the north-south road in the analysis so that Springdale Road could have a coordinated direction amongst intersections.

The intersection of Springdale Road and Asbury Park Boulevard currently operates at LOS A for all movements and approaches for both AM and PM peaks.

Table 2-2. Intersection Level of Service and Delay Summary – 2021 Existing Conditions

	2021 Existing					
Intersections and Movements /	AM	Peak	PM Peak			
Approaches	LOS Delay (sec/veh)		LOS	Delay (sec/veh)		
1-Asbury Park Blvd / Springdale Rd						
Westbound Left	Α	7.5	Α	7.6		
Northbound	Α	9.5	Α	9.6		

Section 3

2023 and 2033 No Build Scenario Analysis

3.1 Traffic Volume Projections

The expected future analysis open year for the proposed Springdale Apartments Multi-Family Housing is 2023. Based on historical KYTC count data near the study area, an annual growth factor of one percent (1%) was applied to existing traffic volumes to account for the expected ambient traffic growth between the base year (2021), open year (2023) and design year (2033).

Figure 3-1 displays the 2023 No Build turning movement volumes and **Figure 3-2** displays the 2033 No Build conditions.

3.2 Level of Service Analysis

Intersection level of service analysis was performed for a typical weekday peak hour using Synchro 11. **Tables 3-1** and **3-2** display the 2023 and 2033 LOS and delay for the study intersection. The full No Build HCS output can be found in **Appendix C** which includes 95th percentile queueing in addition to the LOS and delays presented in the following tables. LOS did not change between any No Build scenarios which were all LOS A.

Table 3-1. Intersection Level of Service and Delay Summary - 2023 No Build Conditions

	2023 No Build					
Intersections and	AM	Peak	PM Peak			
Movements / Approaches	LOS Delay (sec/veh)		LOS	Delay (sec/veh)		
1-Asbury Park Blvd / Springdale Rd						
Westbound Left	Α	7.5	Α	7.6		
Northbound	Α	9.5	Α	9.6		

Table 3-2. Intersection Level of Service and Delay Summary - 2033 No Build Conditions

	2033 No Build						
Intersections and	AM	Peak	PM Peak				
Movements / Approaches	LOS Delay (sec/veh)		LOS	Delay (sec/veh)			
1-Asbury Park Blvd	1-Asbury Park Blvd / Springdale Rd						
Westbound Left	Α	7.5	Α	7.7			
Northbound	Α	9.7	Α	9.8			

Figure 3-1. 2023 No Build AM and PM Turning Movement Volumes

Figure 3-2. 2033 No Build AM and PM Turning Movement Volumes

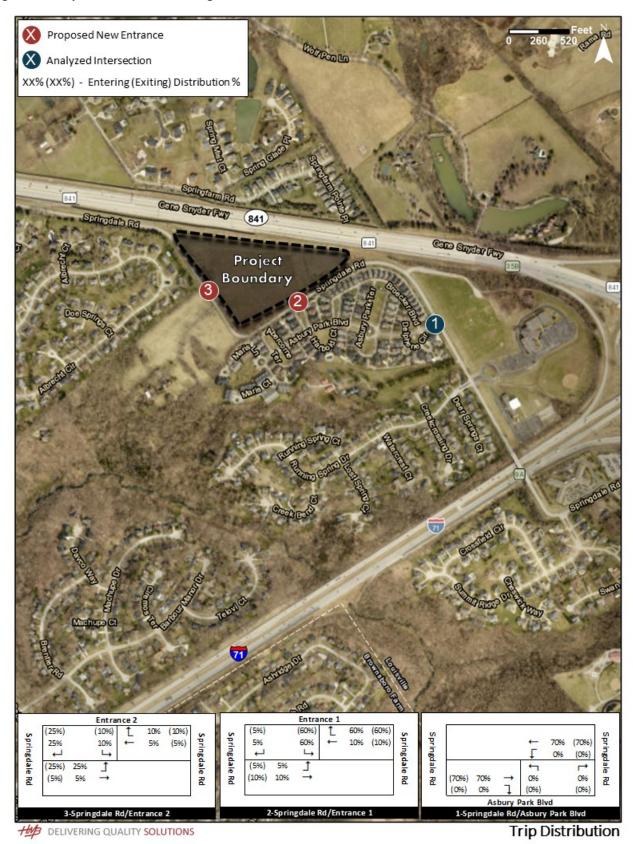
Section 4

Trip Generation and Traffic Assignment

There are two main proposed access points for the Springdale Apartments Multi-Family Housing along Springdale Road. A third access location is located on the eastern edge of the development, but it is disconnected from the other parking lots and was not evaluated given the low utilization of this parking lot. Trip generation and distribution were developed based on information from the applicant and conceptual site plan presented in **Appendix A** and as described below.

4.1 Trip Generation

Trip generation was conducted using the *ITE Trip Generation Manual (10th Edition, Institute of Transportation Engineers)* and information from the applicant. A conceptual site layout was provided by the applicant. Information from the site layout was used to determine the number of units to be used for the trip generation analysis. The generated new site trips are detailed in **Table 4-1**. In total, the development is projected to generate 109 AM peak hour trips and 133 PM peak hour trips.


Table 4-1. Site Generated Trips

ITE	Land Use	Size	Daily	AM Peak		PM Peak			
Code	Description	Tri	Trips	Total	Entering	Exiting	Total	Entering	Exiting
221	Multifamily Housing (Mid-Rise)	302 Dwelling Units	1,643	109	28	81	133	81	52

4.2 Trip Distribution and Assignment

Figure 4-1 depicts the peak hour trip distribution percentages. The existing trip distribution derived from the Asbury Park Boulevard subdivision was used as a starting point for the estimated trip distribution for the development and then refined based on analyzing the network. **Figure 4-2** presents the number of expected new trips derived from the estimated trip generation and distribution.

Figure 4-1. Trip Distribution Percentages

Proposed New Entrance X Analyzed Intersection XX (XX) - AM (PM) Volumes COD SWIDT FOR Springdale Rd COLD STATE FOR Project Boundary (13) 20 (8) Springdale Rd Springdale Rd Springdale Rd Springdale Rd (0) 1 (4) (5) 1 (20) (Q) Asbury Park Blvd 1-Springdale Rd/Asbury Park Blvd 2-Springdale Rd/Entrance 1 3-Springdale Rd/Entrance 2

Figure 4-2. AM and PM Peak Site Generated Trips

HIS DELIVERING QUALITY SOLUTIONS

Trip Generation

Section 5 2023 and 2033 Build Condition Analysis

The 2023 Build Condition analysis included the 2023 No Build traffic as described in Section 3 as well as site generated trips from the proposed Springdale Apartments Multi-Family Housing as described in Section 4.

5.1 Level of Service Analysis

As shown in **Table 5-1** and **Table 5-2**, LOS is B or better for all scenarios and intersections. The Asbury Park Boulevard northbound approach changes from LOS A in the No Build to LOS B in the Build scenario with a maximum increase in delay of 0.5 seconds.

5.2 Turn Lane Warrants

KYTC turn lane warrants were evaluated at the proposed entrances and Asbury Park Boulevard. No turn lanes were warranted for any scenario analyzed. The turn lane warrant results are presented in **Appendix E**. While each scenario was analyzed, the appendix only includes the worst-case scenarios.

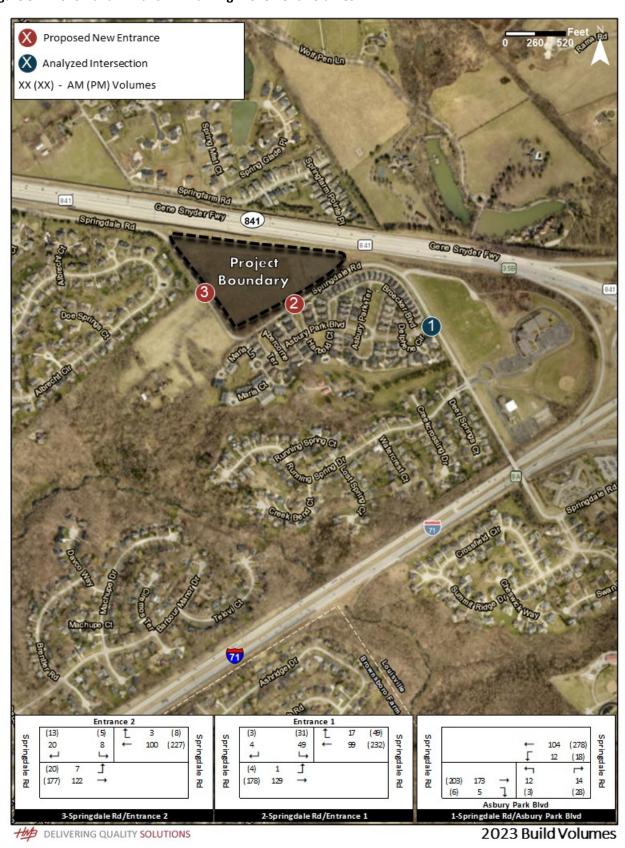


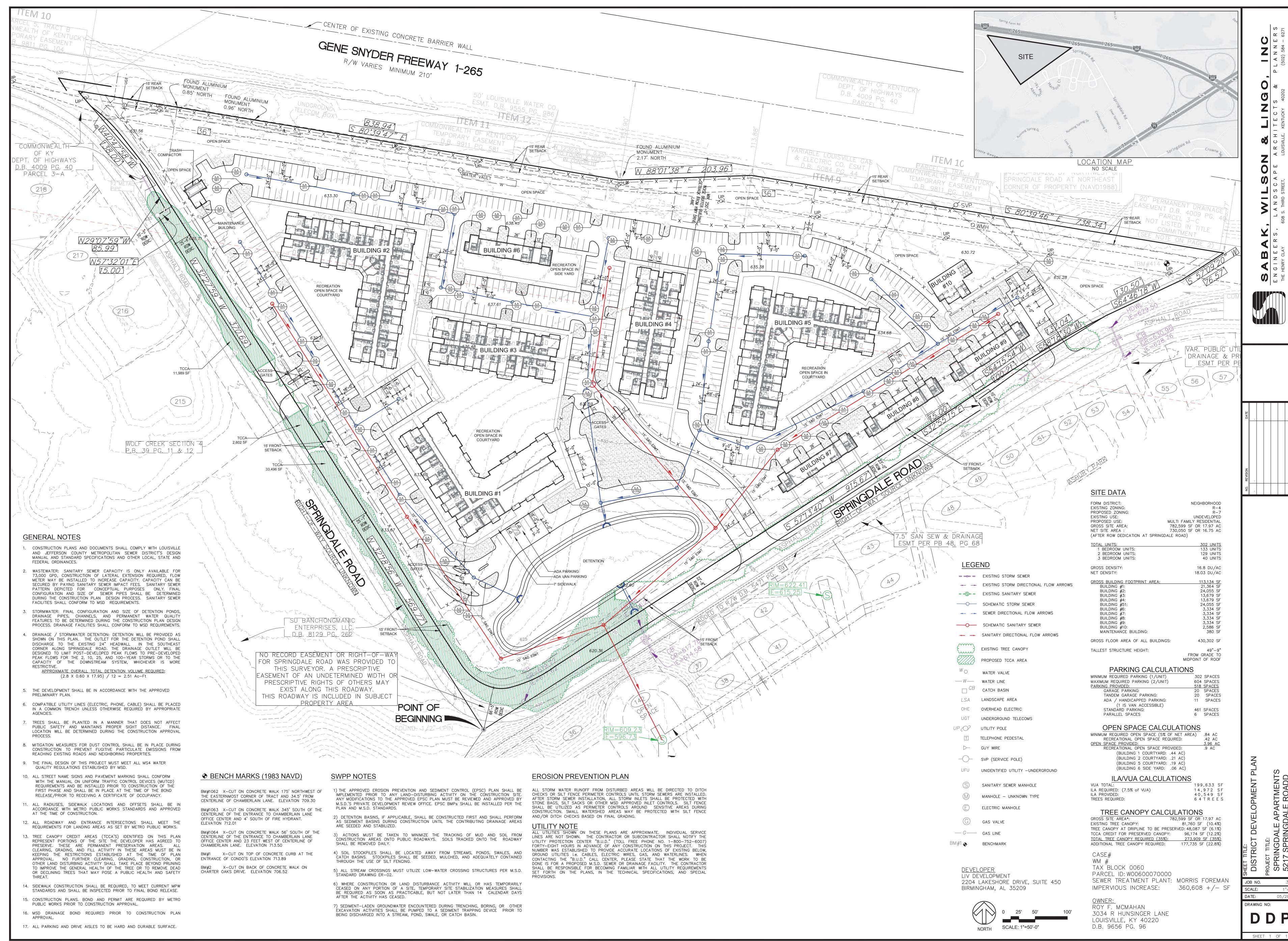
Figure 5-1. 2023 Build AM and PM Turning Movement Volumes

Figure 5-2. 2033 Build AM and PM Turning Movement Volumes

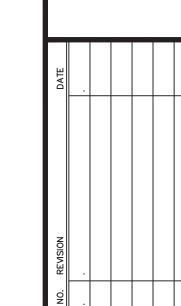
Table 5-1. Intersection Level of Service and Delay Summary – 2023 Build Conditions

Intersections and	2023 Build					
Intersections and Movements /	AM	Peak	PM Peak			
Approaches	LOS Delay (sec/veh		LOS	Delay (sec/veh)		
1-Asbury Park Blvd /	Springdal	e Rd				
Westbound Left	Α	7.6	Α	7.7		
Northbound	В	10.0	В	10.0		
2-Springdale Rd / Ent	rance 1					
Eastbound Left	Α	7.5	Α	7.9		
Southbound	В	10.3	В	11.9		
3-Springdale Rd / Entrance 2						
Eastbound Left	Α	7.4	Α	7.8		
Southbound	Α	9.3	Α	10.3		

Table 5-2. Intersection Level of Service and Delay Summary – 2033 Build Conditions


Intersections and	2033 Build						
Movements /	AM	Peak	PM Peak				
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)			
1-Asbury Park Blvd / Springdale Rd							
Westbound Left	Α	7.7	Α	7.8			
Northbound	В	10.2	В	10.1			
2-Springdale Rd / Ent	rance 1		•				
Eastbound Left	Α	7.5	Α	7.9			
Southbound	В	10.4	В	12.4			
3-Springdale Rd / Entrance 2							
Eastbound Left	А	7.5	Α	7.9			
Southbound	Α	9.4	В	10.6			

Section 6 Conclusions


With and without the new development, LOS for all intersections and scenarios was B or better. The addition of the facility and associated traffic will add additional trips to the network, but not substantially to result in the recommendation for any improvements. No turn lanes were found to be warranted for any scenario.

The analysis and conclusions from this traffic study are for the development plan and site use as currently provided by the developer. If substantial alterations to either the development plan or site use change, additional study may be required.

Appendix A: Conceptual Site Plan

0 4

05/28/ DRAWING NO:

Appendix B:

Intersection Turning Movement Counts

www.ccsdata.com < http://www.ccsdata.com >

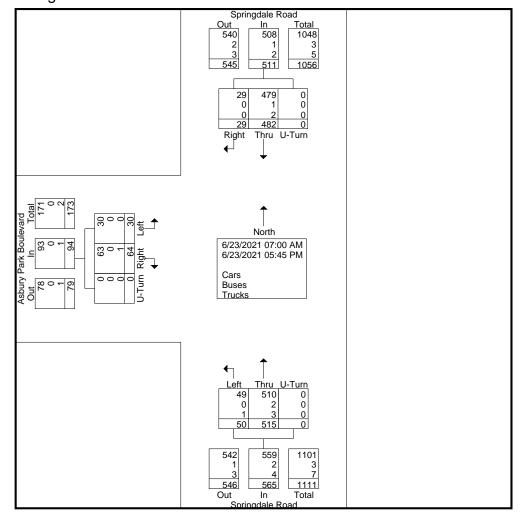
Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

80 Degrees - SiterOyode : Site 1 - Wednesday

Start Date : 6/23/2021

				Gro	ups Print			s - Trucks					
			dale Roa	d			dale Roa	d	As	bury Pa	rk Boule	vard	
		Fron	n North			From	South			Fron	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
07:00 AM	18	1	0	19	1	6	0	7	5	1	0	6	32
07:15 AM	20	0	0	20	0	17	0	17	2	1	0	3	40
07:30 AM	19	2	0	21	2	13	0	15	2	5	0	7	43
07:45 AM	31	0	0	31	1	23	0	24	3	4	0	7	62
Total	88	3	0	91	4	59	0	63	12	11	0	23	177
08:00 AM	28	1	0	29	5	19	0	24	3	2	0	5	58
08:15 AM	28	3	0	31	2	24	0	26	2	5	0	7	64
08:30 AM	27	1	0	28	4	16	0	20	4	3	0	7	55
08:45 AM	35	3	0	38	3	12	0	15	0	4	0	4	57
Total	118	8	0	126	14	71	0	85	9	14	0	23	234
04:00 PM	19	3	0	22	2	42	0	44	3	1	0	4	70
04:15 PM	31	2	0	33	8	38	0	46	1	4	0	5	84
04:30 PM	33	5	0	38	3	51	0	54	1	1	0	2	94
04:45 PM	29	2	0	31	1	37	0	38	1	6	0	7	76
Total	112	12	0	124	14	168	0	182	6	12	0	18	324
05:00 PM	30	3	0	33	7	53	0	60	1	8	0	9	102
05:15 PM	39	0	0	39	5	56	0	61	0	7	0	7	107
05:30 PM	50	1	0	51	3	50	0	53	0	3	0	3	107
05:45 PM	45	2	0	47	3	58	0	61	2	9	0	11	119
Total	164	6	0	170	18	217	0	235	3	27	0	30	435
Grand Total	482	29	0	511	50	515	0	565	30	64	0	94	1170
Apprch %	94.3	5.7	0		8.8	91.2	0		31.9	68.1	0		
Total %	41.2	2.5	0	43.7	4.3	44	0	48.3	2.6	5.5	0	8	
Cars	479	29	0	508	49	510	0	559	30	63	0	93	1160
% Cars	99.4	100	0	99.4	98	99	0	98.9	100	98.4	0	98.9	99.1
Buses	1	0	0	1	0	2	0	2	0	0	0	0	3
% Buses	0.2	0	0	0.2	0	0.4	0	0.4	0	0	0	0	0.3
Trucks	2	0	0	2	1	3	0	4	0	1	0	1	7
% Trucks	0.4	0	0	0.4	2	0.6	0	0.7	0	1.6	0	1.1	0.6


www.ccsdata.com < http://www.ccsdata.com >

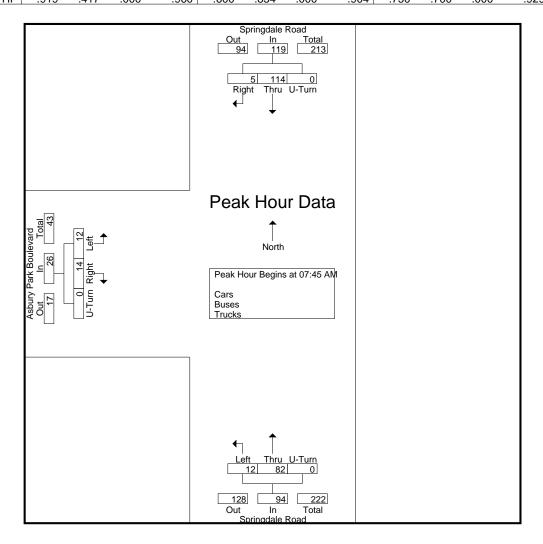
Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

www.ccsdata.com www.ccsdata.com


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

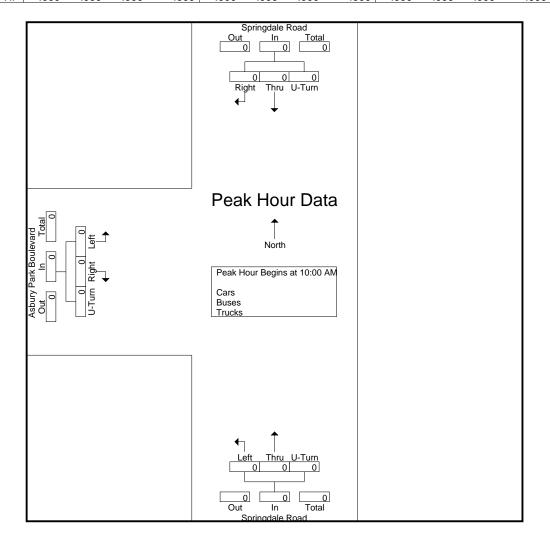
File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

													_
		Springo	dale Roa	d		Springe	dale Roa	d	As	bury Pa	rk Boule	evard	
		Fron	n North			Fron	South			Fror	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	07:00 A	M to 09:	45 AM - Pe	eak 1 of 1								
Peak Hour for En	tire Inter	section I	Begins a	t 07:45 AM									
07:45 AM	31	0	0	31	1	23	0	24	3	4	0	7	62
08:00 AM	28	1	0	29	5	19	0	24	3	2	0	5	58
08:15 AM	28	3	0	31	2	24	0	26	2	5	0	7	64
08:30 AM	27	1	0	28	4	16	0	20	4	3	0	7	55
Total Volume	114	5	0	119	12	82	0	94	12	14	0	26	239
% App. Total	95.8	4.2	0		12.8	87.2	0		46.2	53.8	0		
PHF	919	417	000	960	600	854	000	904	750	700	000	929	934

www.ccsdata.com www.ccsdata.com


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

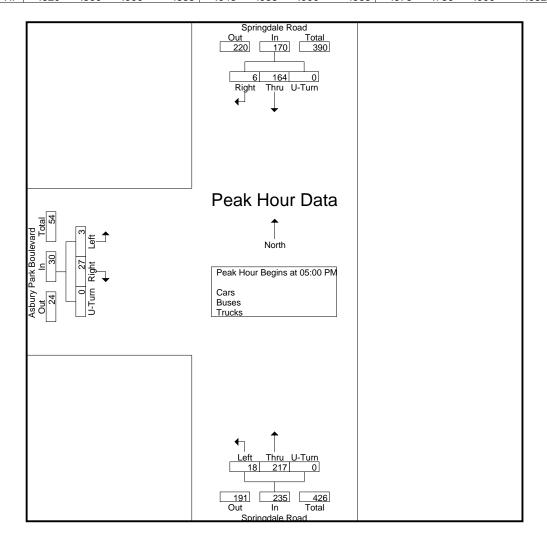
File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

		Springo		d			dale Roa	d	As	,	rk Boule	vard]
		From	North			Fron	n South			Fron	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	10:00 A	M to 01:	45 PM - Pe	ak 1 of 1					_			
Peak Hour for En	tire Inter	section E	Begins a	t 10:00 AM									
10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0		0	0	0		0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

www.ccsdata.com www.ccsdata.com


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

		Springd	ale Roa	d		Springe	dale Roa	d	As	bury Pa	rk Boule	vard]
		From	North			Fron	n South			Fror	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	02:00 P	M to 05:	45 PM - Pe	ak 1 of 1								
Peak Hour for En	tire Inter	section E	Begins a	t 05:00 PM									
05:00 PM	30	3	0	33	7	53	0	60	1	8	0	9	102
05:15 PM	39	0	0	39	5	56	0	61	0	7	0	7	107
05:30 PM	50	1	0	51	3	50	0	53	0	3	0	3	107
05:45 PM	45	2	0	47	3	58	0	61	2	9	0	11	119
Total Volume	164	6	0	170	18	217	0	235	3	27	0	30	435
% App. Total	96.5	3.5	0		7.7	92.3	0		10	90	0		
PHF	.820	.500	.000	.833	.643	.935	.000	.963	.375	.750	.000	.682	.914

Appendix C:

Synchro HCM 6th Outputs – 2021 Existing, 2023 No Build, and 2033 No Build

Intersection						
Int Delay, s/veh	1.4					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	114	5	12	82	12	14
Future Vol, veh/h	114	5	12	82	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	123	5	13	88	13	15
			4 1 0			
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	128	0	240	126
Stage 1	-	-	-	-	126	-
Stage 2	-	-	-	-	114	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1458	-	748	924
Stage 1	-	-	-	-	900	-
Stage 2	-	-	_	_	911	-
Platoon blocked, %	_	_		_		
Mov Cap-1 Maneuver	_	_	1458	_	741	924
Mov Cap-1 Maneuver	_		-	_	741	- 727
Stage 1			-	_	900	-
Stage 2	_	_			903	_
Staye 2	-	-	-	-	703	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		9.5	
HCM LOS					Α	
N. 1. (5.0.1. N.O.		IDL 4	EST	ED.5	MAID	MOT
Minor Lane/Major Mvmt	<u> </u>	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		829	-		1458	-
HCM Lane V/C Ratio		0.034	-	-	0.009	-
HCM Control Delay (s)		9.5	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	, A	
Traffic Vol, veh/h	164	6	18	217	3	27
Future Vol, veh/h	164	6	18	217	3	27
Conflicting Peds, #/hr	0	0	0	0	0	0
ğ	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	_	0	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	180	7	20	238	3	30
IVIVIII I IOVV	100		20	200	J	30
	ajor1	N	Major2	1	Minor1	
Conflicting Flow All	0	0	187	0	462	184
Stage 1	-	-	-	-	184	-
Stage 2	-	-	-	-	278	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	_	_	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1387	-	558	858
Stage 1	_	_	-	_	848	-
Stage 2	_	_	_	_	769	_
Platoon blocked, %	_			_	,07	
Mov Cap-1 Maneuver	_	_	1387	_	549	858
Mov Cap-1 Maneuver	_	_	1307	-	549	- 000
	-	-	-	-	848	-
Stage 1		-	-			
Stage 2	-	-	-	-	756	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.6	
HCM LOS			5.5		A	
					,,	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		812	-	-	1387	-
HCM Lane V/C Ratio		0.041	-	-	0.014	-
HCM Control Delay (s)		9.6	-	-	7.6	0
HCM Lane LOS		Α	-	-	Α	А
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	- W	
Traffic Vol, veh/h	116	5	12	84	12	14
Future Vol, veh/h	116	5	12	84	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage, #	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	125	5	13	90	13	15
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	130	0	244	128
Stage 1	-	-	-	-	128	-
Stage 2	_		-	-	116	-
Critical Hdwy	_	_	4.12	_	6.42	6.22
		-			5.42	
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1455	-	744	922
Stage 1	-	-	-	-	898	-
Stage 2	-	-	-	-	909	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1455	-	737	922
Mov Cap-2 Maneuver	-	-	-	-	737	-
Stage 1	-	-	-	-	898	-
Stage 2	-	-	-	-	901	-
5 ta g5 =						
A			MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		9.5	
HCM LOS					Α	
Minor Lanc/Major Mymt	N	IDI n1	CDT	EDD	\\/DI	\M/DT
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		826	-	-	1455	-
HCM Lane V/C Ratio		0.034	-	-	0.009	-
HCM Control Delay (s)		9.5	-	-	7.5	0
HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	-	-	A 0	Α

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			र्स	- W	
Traffic Vol, veh/h	167	6	18	221	3	28
Future Vol, veh/h	167	6	18	221	3	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	_	0	-
Veh in Median Storage,	# 0	_	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	184	7	20	243	3	31
IVIVIIIL FIOW	104	1	20	243	3	31
Major/Minor M	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	191	0	471	188
Stage 1	-	_	-	_	188	-
Stage 2	_	_	_	_	283	_
Critical Hdwy	_		4.12	-	6.42	6.22
Critical Hdwy Stg 1	_		7.12	_	5.42	- 0.22
Critical Hdwy Stg 2	-	-	-	_	5.42	-
Follow-up Hdwy	-	-	2.218		3.518	
	-	-		-		
Pot Cap-1 Maneuver	-	-	1383	-	551	854
Stage 1	-	-	-	-	844	-
Stage 2	-	-	-	-	765	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1383	-	542	854
Mov Cap-2 Maneuver	-	-	-	-	542	-
Stage 1	-	-	-	-	844	-
Stage 2	-	-	-	-	752	-
Annroach	EB		WB		NB	
Approach Dalassa						
HCM Control Delay, s	0		0.6		9.6	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	<u> </u>	809	LDI	LDIK	1383	1101
			-	-		-
HCM Central Delay (c)		0.042	-		0.014	-
HCM Control Delay (s)		9.6	-	-	7.6	0
HCM Lane LOS		A	-	-	A	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1.5					
		===	14/5	14/5=		NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	Y	
Traffic Vol, veh/h	128	6	14	92	14	16
Future Vol, veh/h	128	6	14	92	14	16
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	138	6	15	99	15	17
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	144	0	270	141
Stage 1	-	-	-	-	141	-
Stage 2	-	-	-	-	129	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1438	-	719	907
Stage 1	-	-	-	-	886	-
Stage 2	-	-	-	-	897	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	1438	_	711	907
Mov Cap-1 Maneuver			1430	_	711	707
Stage 1	-	-	-	-	886	-
	-	-	-	-	887	-
Stage 2	-	-	-	-	007	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		9.7	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		804	-	-	1438	-
HCM Lane V/C Ratio		0.04	-	-	0.01	-
HCM Control Delay (s)		9.7	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
		ED5	MAI	MOT	ND	NIDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			-4	- W	
Traffic Vol, veh/h	185	7	20	245	3	30
Future Vol, veh/h	185	7	20	245	3	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	203	8	22	269	3	33
WWW. Tiow	200	U		207	9	00
	ajor1	<u> </u>	Major2		Vinor1	
Conflicting Flow All	0	0	211	0	520	207
Stage 1	-	-	-	-	207	-
Stage 2	-	-	-	-	313	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	_	_	5.42	-
Critical Hdwy Stg 2	_	-	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_		3.318
Pot Cap-1 Maneuver	_	_	1360	_	516	833
Stage 1	-		1300	-	828	- 033
Stage 2		-	-		741	-
	-	-	-	-	741	
Platoon blocked, %	-	-	12/0	-	ΓΩ/	022
Mov Cap-1 Maneuver	-	-	1360	-	506	833
Mov Cap-2 Maneuver	-	-	-	-	506	-
Stage 1	-	-	-	-	828	-
Stage 2	-	-	-	-	727	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.8	
HCM LOS	U		0.0		9.0 A	
FICIVI LUS					A	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		787			1360	
HCM Lane V/C Ratio		0.046	_		0.016	_
HCM Control Delay (s)		9.8	_	_	7.7	0
HCM Lane LOS		Α.	_	_	Α.	A
HCM 95th %tile Q(veh)		0.1	_	_	0	-
HOW YOU WILL Q(VEN)		U. I	-	-	U	-

Appendix D:

Synchro HCM 6th Outputs – 2023 Build and 2033

Build

Intersection						
Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	- MA	
Traffic Vol, veh/h	173	5	12	104	12	14
Future Vol, veh/h	173	5	12	104	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	_	_	0	-
Veh in Median Storage,	# 0	-	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	186	5	13	112	13	15
IVIVIIIL I IOW	100	J	13	112	13	10
Major/Minor M	lajor1	N	Major2	ا	Vinor1	
Conflicting Flow All	0	0	191	0	327	189
Stage 1	-	-	-	-	189	-
Stage 2	-	-	-	-	138	-
Critical Hdwy	-	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_	-	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3 318
Pot Cap-1 Maneuver	_	_	1383	_	667	853
Stage 1	_	_	1303	_	843	- 000
	-	-	-		889	-
Stage 2	-	-	-	-	889	-
Platoon blocked, %	-	-	1202	-	///	050
Mov Cap-1 Maneuver	-	-	1383	-	660	853
Mov Cap-2 Maneuver	-	-	-	-	660	-
Stage 1	-	-	-	-	843	-
Stage 2	-	-	-	-	880	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.8		10	
HCM LOS	U		0.6		В	
HCIVI LUS					Б	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		752			1383	_
HCM Lane V/C Ratio		0.037	-	_	0.009	-
HCM Control Delay (s)		10	-	_	7.6	0
HCM Lane LOS		В	-	-	7.0 A	A
HCM 95th %tile Q(veh)		0.1		-	0	
HOW YOU WILL Q(VEN)		U. I	-	_	U	-

Intersection						
Int Delay, s/veh	1.9					
	EBL	ГОТ	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	4	\$	17	Y	4
Traffic Vol, veh/h	1	129	99	17	49	4
Future Vol, veh/h	1	129	99	17	49	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	140	108	18	53	4
Major/Minor	Major1	N	/lajor2		Minor2	
Conflicting Flow All	126	0	najorz -	0	259	117
		U				
Stage 1	-	-	-	-	117	-
Stage 2	- 4 1 2	-	-	-	142	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1460	-	-	-	730	935
Stage 1	-	-	-	-	908	-
Stage 2	-	-	-	-	885	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1460	-	-	-	729	935
Mov Cap-2 Maneuver	-	-	-	-	729	-
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	885	-
Annroach	ED		WB		SB	
Approach	EB					
HCM Control Delay, s	0.1		0		10.3	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1460			_	
HCM Lane V/C Ratio		0.001	_	_		0.078
HCM Control Delay (s)		7.5	0	_	-	
HCM Lane LOS		7.5 A	A	_	-	В
HCM 95th %tile Q(veh)	0	-	_	_	0.3
HOW FOUT MITTE Q(VEH	J	U	-	-		0.5

Intersection						
Int Delay, s/veh	1.2					
		EDT	MPT	MDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	-	4	^	•	¥	0.0
Traffic Vol, veh/h	7	122	100	3	8	20
Future Vol, veh/h	7	122	100	3	8	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	133	109	3	9	22
N / a i a w / N / i w a w	11-11	N.	1-:0		\	
	Major1		/lajor2		Minor2	444
Conflicting Flow All	112	0	-	0	260	111
Stage 1	-	-	-	-	111	-
Stage 2	-	-	-	-	149	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1478	-	-	-	729	942
Stage 1	-	-	-	-	914	-
Stage 2	-	-	-	-	879	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1478	-	-	-	725	942
Mov Cap-2 Maneuver	-	-	_	-	725	-
Stage 1	_	_	-	-	909	-
Stage 2	_	-	_	_	879	_
Jugo Z					017	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		9.3	
HCM LOS					Α	
Minor Long/Major May	.+	EDI	CDT	WDT	WDD	CDI ~1
Minor Lane/Major Mvm	l	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1478	-	-	-	868
HCM Lane V/C Ratio		0.005	-	-		0.035
HCM Control Delay (s)		7.4	0	-	-	9.3
HCM Lane LOS HCM 95th %tile Q(veh)		A 0	Α	-	-	A 0.1

Intersection						
Int Delay, s/veh	0.9					
		E55	14/5	14/5-		NES
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	203	6	18	278	3	28
Future Vol, veh/h	203	6	18	278	3	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	223	7	20	305	3	31
	220	•	20	000		01
	ajor1	N	Major2	ľ	Vinor1	
Conflicting Flow All	0	0	230	0	572	227
Stage 1	-	-	-	-	227	-
Stage 2	-	-	-	-	345	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_		-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1338	-	482	812
Stage 1	_	_	-	_	811	-
Stage 2	_	_	_	_	717	_
Platoon blocked, %	_			_	717	
Mov Cap-1 Maneuver	-	-	1338	_	473	812
	-	-				
Mov Cap-2 Maneuver	-	-	-	-	473	-
Stage 1	-	-	-	-	811	-
Stage 2	-	-	-	-	704	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		10	
HCM LOS	U		0.0		В	
HOW LOS					U	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		759	-	-	1338	-
HCM Lane V/C Ratio		0.045	-		0.015	-
HCM Control Delay (s)		10	-	-		0
HCM Lane LOS		В	_	_	A	A
HCM 95th %tile Q(veh)		0.1	_	-	0	-
HOW FOUT MILE Q(VEII)		U. I	_		U	-

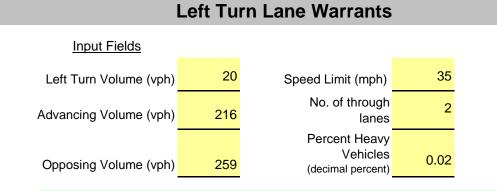
Intersection						
Int Delay, s/veh	0.9					
			==		0=:	0.5.5
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		सी	₽		¥	
Traffic Vol, veh/h	4	178	232	49	31	3
Future Vol, veh/h	4	178	232	49	31	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	193	252	53	34	3
N / a ! a w / N / ! . a a w	N / a ! a 1		1-:2		/!: ^	
	Major1		Major2		Minor2	070
Conflicting Flow All	305	0	-	0	480	279
Stage 1	-	-	-	-	279	-
Stage 2	-	-	-	-	201	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1256	-	-	-	545	760
Stage 1	-	-	-	-	768	-
Stage 2	-	-	-	-	833	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1256	-	-	-	543	760
Mov Cap-2 Maneuver	-	-	-	-	543	-
Stage 1	-	_	-	-	765	_
Stage 2	_	_	_	-	833	_
olage 2					000	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		11.9	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SRI n1
	π		LDI	VVDI		
Capacity (veh/h) HCM Lane V/C Ratio		1256	-	-	-	557
		0.003	-	-		0.066
HCM Long LOS		7.9	0	-	-	11.9
HCM Lane LOS	\	A	А	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.2

Intersection						
Int Delay, s/veh	0.8					
		EDT	MDT	MDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	00	4	^}	0	Y	10
Traffic Vol, veh/h	20	177	227	8	5	13
Future Vol, veh/h	20	177	227	8	5	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	-, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	192	247	9	5	14
Major/Minor N	Major1	ı	/laior?		Minor	
	Major1		Major2		Minor2	252
Conflicting Flow All	256	0	-	0	488	252
Stage 1	-	-	-	-	252	-
Stage 2	-	-	-	-	236	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1309	-	-	-	539	787
Stage 1	-	-	-	-	790	-
Stage 2	-	-	-	-	803	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1309	-	-	-	529	787
Mov Cap-2 Maneuver	-	-	-	-	529	-
Stage 1	-	-	-	-	775	-
Stage 2	_	_	_	_	803	_
5 10 95 =						
Approach	EB		WB		SB	
HCM Control Delay, s	0.8		0		10.3	
HCM LOS					В	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SRI n1
	IL		LDI			
Capacity (veh/h)		1309	-	-	-	0,0
HCM Cardy Dates (4)		0.017	-	-		0.028
HCM Control Delay (s)		7.8	0	-	-	
HCM Lane LOS		A	Α	-	-	В
HCM 95th %tile Q(veh)		0.1	-	-	-	0.1

Intersection						
Int Delay, s/veh	1.2					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			ની	14	
Traffic Vol, veh/h	185	6	14	112	14	16
Future Vol, veh/h	185	6	14	112	14	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	199	6	15	120	15	17
	.,,		.0	0		.,
	ajor1		Major2		Vinor1	
Conflicting Flow All	0	0	205	0	352	202
Stage 1	-	-	-	-	202	-
Stage 2	-	-	-	-	150	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1366	-	646	839
Stage 1	-	-	-	-	832	-
Stage 2	-	-	-	-	878	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	1366	_	638	839
Mov Cap-2 Maneuver	_	_	-	_	638	-
Stage 1	_		-	_	832	_
Stage 2					867	-
Staye 2	-	-	-	-	007	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		10.2	
HCM LOS					В	
Minor Lang/Major Mares		UDI1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	<u> </u>	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		731	-	-	1366	-
HCM Lane V/C Ratio		0.044	-	-	0.011	-
HCM Control Delay (s)		10.2	-	-	7.7	0
HCM Lane LOS HCM 95th %tile Q(veh)		В	-	-	Α	Α
		0.1	_		0	-

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	₽		N/F	
Traffic Vol, veh/h	1	142	109	17	49	4
Future Vol, veh/h	1	142	109	17	49	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	154	118	18	53	4
	Major1		/lajor2		Minor2	
Conflicting Flow All	136	0	-	0	283	127
Stage 1	-	-	-	-	127	-
Stage 2	-	-	-	-	156	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1448	-	-	-	707	923
Stage 1	-	-	-	-	899	-
Stage 2	-	-	-	-	872	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1448	-	-	-	706	923
Mov Cap-2 Maneuver	-	-	-	-	706	-
Stage 1	-	-	-	-	898	-
Stage 2	-	-	_	-	872	_
olugo 2					0,2	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.4	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SRI n1
	IC		LDI	VVDI		
Capacity (veh/h)		1448	-	-	-	719
HCM Cantrol Doloy (c)		0.001	-	-	-	0.08
HCM Long LOS		7.5	0	-	-	10.4
HCM Lane LOS	\	A	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.3

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	Þ		N/	
Traffic Vol, veh/h	7	135	110	3	8	20
Future Vol, veh/h	7	135	110	3	8	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	147	120	3	9	22
			.20			
	Major1		Major2		Minor2	
Conflicting Flow All	123	0	-	0	285	122
Stage 1	-	-	-	-	122	-
Stage 2	-	-	-	-	163	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1464	-	-	-	705	929
Stage 1	-	-	_	-	903	-
Stage 2	-	-	-	-	866	-
Platoon blocked, %		_	_	_	- 500	
Mov Cap-1 Maneuver	1464	_	_	_	701	929
Mov Cap-1 Maneuver	1404		_	_	701	727
Stage 1	-	-	-	-	898	-
	-	-	-	-	866	-
Stage 2	-	-	-	-	000	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		9.4	
HCM LOS	0.1				A	
					, ,	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1464	-	-	-	850
HCM Lane V/C Ratio		0.005	-	-	-	0.036
HCM Control Delay (s))	7.5	0	-	-	9.4
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0.1
	,					


Intersection						
Int Delay, s/veh	0.8					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	N/	
Traffic Vol, veh/h	221	7	20	302	3	30
Future Vol, veh/h	221	7	20	302	3	30
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	243	8	22	332	3	33
IVIVIIIL FIOW	243	0	ZZ	332	3	აა
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	251	0	623	247
Stage 1	-	_	_	_	247	_
Stage 2	_	_	_	_	376	_
Critical Hdwy	_	_	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	7.12	_	5.42	- 0.22
Critical Hdwy Stg 2		-	-	_	5.42	_
	-	_	2.218		3.518	
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	1314	-	450	792
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	694	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1314	-	441	792
Mov Cap-2 Maneuver	-	-	-	-	441	-
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	679	-
Approach	ED.		MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		10.1	
HCM LOS					В	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
	<u> </u>			LDK		VVDT
Capacity (veh/h)		739	-	-	1314	-
HCM Cantral Dalay (a)		0.049	-		0.017	-
HCM Control Delay (s)		10.1	-	-	7.8	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	Þ		W	
Traffic Vol, veh/h	4	197	256	49	31	3
Future Vol, veh/h	4	197	256	49	31	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	<u> </u>	None
Storage Length	-	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	4	214	278	53	34	3
IVIVIIIL FIOW	4	214	210	55	34	3
Major/Minor	Major1	N	Najor2	1	Minor2	
Conflicting Flow All	331	0	_	0	527	305
Stage 1	_	_	-	_	305	-
Stage 2	_	_	_	_	222	_
Critical Hdwy	4.12	_	_	-	6.42	6.22
Critical Hdwy Stg 1	7.12	_	_	_	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
		-	-			
Pot Cap-1 Maneuver	1228	-	-	-	512	735
Stage 1	-	-	-	-	748	-
Stage 2	-	-	-	-	815	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1228	-	-	-	510	735
Mov Cap-2 Maneuver	-	-	-	-	510	-
Stage 1	-	-	-	-	745	-
Stage 2	-	-	-	-	815	-
, and the second						
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		12.4	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SBI n1
Capacity (veh/h)		1228	LDI	1101	WEICE	524
HCM Lane V/C Ratio		0.004	-	-	_	0.071
HCM Control Delay (s	١		-	-		
	1	7.9	0	-	-	12.4
	/		٨			
HCM Lane LOS HCM 95th %tile Q(veh	•	A 0	A	-	-	B 0.2

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	₽		14	
Traffic Vol, veh/h	20	196	251	8	5	13
Future Vol, veh/h	20	196	251	8	5	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	-
Grade, %	- -	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	22	213	273	9	5	14
IVIVIIIL FIOW	22	213	213	7	5	14
Major/Minor	Major1	N	Najor2	١	Minor2	
Conflicting Flow All	282	0	-	0	535	278
Stage 1	-	-	-	-	278	-
Stage 2	-	-	-	_	257	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	-
Follow-up Hdwy	2.218	_	_	_	3.518	
Pot Cap-1 Maneuver	1280	-	-	_	506	761
•	1200	-	-	-	769	701
Stage 1		-	-			
Stage 2	-	-	-	-	786	-
Platoon blocked, %	1000	-	-	-	407	7/4
Mov Cap-1 Maneuver	1280	-	-	-	496	761
Mov Cap-2 Maneuver	-	-	-	-	496	-
Stage 1	-	-	-	-	754	-
Stage 2	-	-	-	-	786	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		10.6	
HCM LOS	0.7		U		В	
FICIVI LOS					D	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1280	_	-	-	663
HCM Lane V/C Ratio		0.017	-	-	-	0.03
HCM Control Delay (s))	7.9	0	-	-	10.6
HCM Lane LOS		A	A	_	_	В
HCM 95th %tile Q(veh)	0.1	-	_	_	0.1
116W 73W 76WE Q(VEH	7	0.1	_	_		0.1

Appendix E:

Turn Lane Warrants

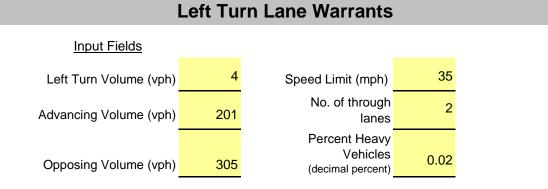
Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

3 - Springdale Rd / Entrance 2 EBL 2033 PM Build

Right Turn Lane Warrants

Right Turn Volume (vph) 8

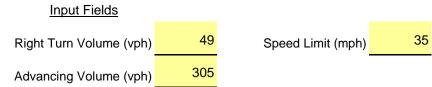
Advancing Volume (vph) 259


Input Fields

Speed Limit (mph) 35

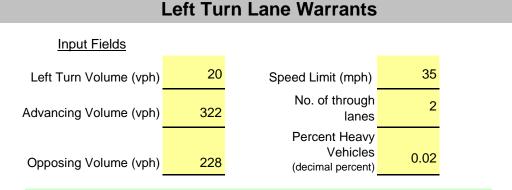
Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

3 - Springdale Rd / Entrance 2 WBR 2033 PM Build



Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

2 - Springdale Rd / Entrance 1 EBL 2033 PM Build


Right Turn Lane Warrants

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

2 - Springdale Rd / Entrance 1 WBR 2033 PM Build

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

1- Springdale Rd / Asbury Park Blvd WBL 2033 PM Build

Right Turn Lane Warrants Input Fields Right Turn Volume (vph) 7 Speed Limit (mph) 35 Advancing Volume (vph)

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

1- Springdale Rd / Asbury Park Blvd EBR 2033 PM Build