Louisville Metro Planning Commission October 22, 2015

Docket No. 15SUBDIV1003

Conservation Subdivision on 122 acres on already zoned R-4 property located at 13605 and 13615 Factory Lane

Attorneys: Bardenwerper Talbott & Roberts, PLLC

Land Planners, Landscape Architects and Engineers: Sabak Wilson & Lingo

Traffic Engineer: Diane B. Zimmerman Traffic Engineering, LLC

<u>Index</u>

- 1. LOJIC Zoning Map
- 2. Aerial photographs of the site and surrounding area
- 3. Explanation of progression of development in this east Louisville Metro area, leading to development of remaining infill sites, notably the St. Joseph Catholic Orphan Society properties
- 4. 3/17/15 neighborhood meeting notice list map, letter to neighbors inviting them to the meeting and summary of meeting
- 5. Ground level photographs of the site and surrounding area
- 6. Environmental Resource Map (and infrastructure plan)
- 7. Conservation Subdivision Plan
- 8. Photographs of proposed home types
- 9. Traffic Study
- 10. Statutory/Case Law regarding contents of subdivision regulations and review of subdivisions
- 11. Written justification, in addition to Conservation Plan and exhibits, demonstrating compliance with LDC Section 7.11.4.B.9 requirement

Tab 1 LOJIC Zoning Map

Tab 2 Aerial photograph of the site and surrounding area

Tab 3 Explanation of progression of development in this east Louisville Metro area, leading to development of remaining infill sites, notably the St. Joseph Catholic Orphan Society properties

SNYDER FREEWAY CORRIDOR STUDY:_

Louisville and Jefferson County Planning Commission

OLD HENRY ROAD Subarea Plan

FINAL DRAFT
MARCH, 2000
PLANNING COMMISSION
TRANSMITTAL FOR FISCAL COURT

OLD HENRY SUBAREA PLAN

Figure 10: Recommended Land Use Plan

1 Neighborhood Activity Center

2 Workplace

3 Residential (Low to Medium)

Southern half of St. Joseph Catholic Orphan Society property

(development, including Bush Farm Road extension pending for 2016 review)

Tab 4
3/17/15 neighborhood meeting notice list map, letter to neighbor inviting them to the meeting and summary of meeting

3609 Walden Drive Lexington, KY 40517 Phone: 859-268-1191

March 3, 2015

Re: Proposed Conservation Subdivision on a portion of the vacant St. Joseph Orphanage land, specifically 122 acres located at 13605 & 13615 Factory Lane

Dear Neighbor,

We are writing to invite you to a meeting we have scheduled to present neighbors with our plan for a conservation subdivision with 408 lots to be located as above.

This meeting will be held on <u>Tuesday</u>, <u>March 17th</u>, at <u>7:00 p.m.</u> at <u>The Community Presbyterian Church located at 13902 Factory Lane</u> to discuss our plan with you.

As a neighbor, you are invited to this meeting so that we may describe our plan and address questions or concerns that you or your neighbors may have.

If you cannot attend the meeting but have questions or concerns; please call me, our attorney Bill Bardenwerper at 426-6688, or our land planning and engineering firm representative Kelli Jones at 584-6271.

We look forward to seeing you.

Sincerely,

Rena Wiseman

Associate General Counsel/Development Manager

Cc: Hon. Glen Stuckel, District 17, Metro Councilman

Joe Reverman, Planning Manager with Department of Planning & Design Services

Bill Bardenwerper attorney with Bardenwerper, Talbott & Roberts, PLLC Kelli Jones, RLA/ASLA, land planner with Sabak, Wilson & Lingo, Inc.

E:\CLIENT FOLDER\Ball Homes\St. Joseph Orphanage\Neigh Mtg\Neigh Mtg Letter 02 25 15.doc

Ball Homes/St. Joe's Property Neighbor Meeting

The neighborhood meeting was called to order by local zoning attorney Bill Bardenwerper at 7 PM on March 17, 2015 at the Community Presbyterian Church on Factory Lane close to the subject property. People invited included more than just two tiers of adjoining property owners but actually multiple tiers, thus a large crowd was present. Among those present were Ball Homes representative Rocco Pigneri and land planner/landscape architect Kelli Jones was the land planning/landscape architecture/engineering firm of Sabak, Wilson and Lingo.

Mr. Bardenwerper began the meeting with a PowerPoint presentation. It showed aerial photographs of the site and area, including farther-out and nearer-in views, in order that neighbors could determine exactly where their homes are located relative to the subject property. Also the proposed subdivision plan was shown, as were plans of the site's varied environmental features.

Mr. Bardenwerper explained the conservation subdivision plan regulatory process and how it involves a ministerial, not discretionary, review. He explained how the plan was designed and why it lays out the way it does with lots as shown. Ms. Jones went into greater detail about plan details. Mr. Pigneri explained home designs based on the elevation renderings that Mr. Bardenwerper showed. Diane Zimmerman, transportation engineer with Jacobs group, explained expected traffic generation and distribution at the morning and evening peak hours.

After these introductory comments, the following issues were specifically raised:

- Klemenz Family will—Orphanage cannot sell property due to conditions of Klemenz Family Will providing property to the orphanage.
- Perimeter buffer depth—30' buffer should be bigger, up to 300' suggested.
- Additional buffer landscaping—Additional landscaping should be added to buffer at north boundary where vegetation has been removed on the orphanage property behind several Forest Springs homes.
- Stub street to west—Representative of Klemenz family to contact me for meeting to discuss why stub at this location, their plans, etc.
- Traffic on Factory Lane—Traffic already too much, current unacceptable conditions to I-265 from site along Factory Lane and Old Henry intersections.
- More brick, less or no siding—especially for houses on lots backing to 30' buffer.
- Many environmental and traffic concerns cited from analysis of south parcel for VA hospital location.
- Lot size, house size, home prices incompatible with surrounding homes. No real attention given to the townhouses so did not discuss size or rental status. Was mentioned that townhomes are planned with front garages.
- We are too greedy with already too many yachts to ski behind.

Many attendees stayed after the meeting to ask questions. Mr. Bardenwerper gave them contacts at the Metro Division of Planning and Design Services (DPDS), Metro Works and Metro Transportation Planning Department.

Tab 5
Ground level photographs of the site and surrounding area

Looking east down Factory Lane towards Old Henry Road. Site is to the left.

Looking west down Factory Lane towards LaGrange Road. Site is to the right.

Tab 6 Environmental Resource Map (and infrastructure plan)

Environmental Resource and Infrastructure Legend

Tab 7 Conservation Subdivision Plan

SECONDARY CONSERVATION AREA 50% CREDIT (SCA 50%)

CONSERVATION AREA MAP

NOT TO SCALE

Tab 8 Photographs of proposed home types

Examples of likely Ball homes

Examples of likely Ball townhomes

Examples of likely Ball townhomes

Tab 9 Traffic Study

St. Joseph Orphanage Site

Ball Homes

Traffic Impact Study

August 5, 2015

Prepared for: Metro Transportation Planning

St. Joseph Orphanage Site

Project no: C9X22800

Document title: Traffic Impact Study

Document No.:

Revision: <revision>

Date: August 5, 2015
Client name: Ball Homes Inc.

Client no: Prepared for: Metro Transportation Planning

Project manager: Diane Zimmerman Author: Diane Zimmerman

File name: C:\Users\diane.zimmerman\Documents\Ball Homes\Factory Lane\St. Joe Factory Lane

TIS Report.docx

Jacobs Engineering Group Inc.

11940 Highway 42, Suite 1 Goshen, KY 40026 502-228-0393 502-228-0393 www.jacobs.com

© Copyright 2015 Jacobs Engineering Group Inc. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Traffic Impact Study

Contents

1.	Introduction	
2.	Existing Conditions	2
3.	Future Conditions	5
4.	Trip Generation and Distribution	
5.	Analysis	12
6.	Conclusion	1 5 1 12 1 14 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 <td< th=""></td<>
	e 1 : Location Map	
_	·	
	e 10 : Build P.M. Peak Hour Volumes	
Figure	e 11 : Build Peak Hour Volumes at the Entrances	11
	Trip Generation Results	
Table	2 : Level of Service Summary	12

Appendix A. Traffic Counts

Appendix B. Highway Capacity Software Printouts

1. Introduction

The subdivision plan for the St. Joseph Orphanage site shows 325 detached lots and 80 attached lots. The site is located on the north side of Factory Lane in Louisville, KY. Access to the subdivision will be through two entrances on Factory Lane. The sole purpose of this study is to examine the traffic operation impacts of the proposed subdivision on the highway network. For this study, the impact area was defined to be the proposed intersections with Factory Lane, and six additional intersections: Factory Lane at La Grange Road (KY 146), Factory Lane at Colonial Springs Drive, Factory Lane at Terrace Springs Drive, Factory Lane at Old Henry Road, Old Henry Road at Arnold Palmer Boulevard, and Old Henry Road at Bush Farm Road. A map of the site is shown in **Figure 1**.

Figure 1: Location Map

1

2. Existing Conditions

Factory Lane is a Metro maintained road with an estimated 2015 Average Annual Daily Traffic (AADT) of 6,600 vehicles per day at the proposed entrance, as estimated from the turning movement count. The road is a two-lane highway with ten-foot lanes with a one foot shoulder along the property frontage. The speed limit is 35 mph. There are sidewalks on both sides of Factory Lane from La Grange Road to Terrace Hill Drive.

The intersection of Factory Lane with La Grange Road (KY 146) is controlled with a traffic signal. The Factory Lane approach has a dedicated left turn lane, a shared thru and left lane and a dedicated right turn lane. The signal operates as split phase for Factory Lane and Chamberlain Lane. The signal also has train preemption.

The intersections of Factory Lane with Colonial Springs Road and Terrace Spring Drive are controlled with two-way stop signs. Factory Lane is the primary route. There are dedicated left turn lanes on Factory Lane to Colonial Springs Road and to Terrace Spring Drive. There are no dedicated turn lanes on either Colonial Springs Road or Terrace Spring Drive.

The intersection with Old Henry Road is currently an all-way stop without dedicated turn lanes. Old Henry Road is scheduled for reconstruction beginning in the summer of 2016. The project will add a two-way left turn lane from the Bush Farm Road intersection to Ash Avenue (KY 362) in Oldham County. Old Henry Road will become the primary route (will not stop) and Factory Lane will be controlled with a stop sign. The eastbound Factory Lane approach will have a dedicated left turn lane. The design speed of Old Henry Road is 45 mph. There will be a sidewalk on the southeast side of the road and a multi-use path on the northwest side of the road.

The intersection of Arnold Palmer Boulevard/Hamilton Springs Drive is controlled with a two-way stop sign for the minor streets. The existing eastbound right turn lane on Old Henry Road will be removed. Neither Arnold Palmer Boulevard nor Hamilton Springs Drive have dedicated turn lanes.

The intersection of Old Henry Road with Bush Farm Road is controlled with a traffic signal. Eastbound Old Henry Road has a dedicated left turn lane and a dedicated right turn lane. Westbound Old Henry Road will have a dedicated left turn lane, a thru lane and a shared thru and right turn lane. Bush Farm Road will have dedicated left turn lane and a shared thru and right turn lane in both directions.

Jacobs Engineering Group Inc. obtained a.m. and p.m. peak hour traffic counts at the intersections. The full count data for each intersection are included in Appendix A. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes for these intersections.

Figure 2 : A.M. Peak Hour Counts

Figure 3 : P.M. Peak Hour Counts

3. Future Conditions

The projected completion year for this development is 2022, so the analysis year for this study is 2022. To predict traffic conditions in 2022, two and one third percent (2.33%) annual growth in traffic was added to Factory Lane and La Grange Road (KY 146). This growth is based upon a review of the traffic forecast for the Old Henry Road Extension dated June 16, 2011. Old Henry Road growth is taken from the forecast. Growth on Hamilton Springs Drive and Bush Farm Road is from the Old Henry Road Traffic Impact Study dated November 2014. **Figures 4 and 5** display the 2022 No Build peak hour volumes.

Figure 4: No Build A.M. Peak Hour Volumes

Figure 5 : No Build P.M. Peak Hour Volumes

4. Trip Generation and Distribution

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 9th Edition contains trip generation rates for a wide range of developments. The land use of "Single-Family Detached Housing (210)" and "Residential Condominium/Townhouse (230)" best describe this development. The trip generation results are listed in **Table 1**. The results of the trip generation analysis are that this additional development will generate 280 a.m. peak hour trips and 354 p.m. peak hour trips. The trips for the development were assigned to the highway network with percentages shown on **Figure 6**. **Figures 7 and 8** show the trips generated by this development and distributed throughout the road network for the year 2022 during the peak hours. **Figures 9 and 10** display the individual turning movements for the year 2022 for the peak hours when the development is completed.

	A.M.			P.M.			
	Total Trips	Entering	Exiting	Total Trips	Entering	Exiting	
325 Detached lots (210)	237	59	178	304	192	112	
80 Attached lots (230)	43	7	36	50	34	16	
Total Peak Hour	280	66	214	354	226	128	

Table 1. Trip Generation Results

Figure 6: Site Trip Distribution Percentages

To simplify diagrams, the development is shown with a single access point in Figures 7 through 10. Figure 11 focuses on the turning movements for the entrances. Trip generation for 36 townhouses were assigned to the secondary entrance.

Figure 7: Site Trip Distribution A.M. Peak Hour Volumes

Figure 8 : Site Trip Distribution P.M. Peak Hour Volumes

Figure 9: Build A.M. Peak Hour Volumes

Figure 10: Build P.M. Peak Hour Volumes

Figure 11 : Build Peak Hour Volumes at the Entrances

5. Analysis

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service" or LOS. Level of Service is a ranking scale from A through F with each level representing a range. LOS results depend upon the type of facility that is analyzed. In this case, the LOS is based upon the average vehicle delay each minor movement experiences at an intersection.

To evaluate the impact of the proposed development, the vehicle delays at the intersection were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 2010 edition. Future delay and Level of Service were determined for the intersection using HCS 2010 Streets (version 6.65) and HCS+ (version 5.6) software. **Table 2** shows the results of the analysis for the three scenarios analyzed.

Metro Transportation Planning evaluates the need and length of auxiliary turn lanes using the Kentucky Transportation Cabinet <u>Auxiliary Turn Lane</u> Policy dated 7/20/2009. Using the volumes in **Figure 11**, an eastbound left turn lane is required at the main entrance. A westbound right turn lane is not required. An eastbound left turn lane is included in the results of the analysis in **Table 2**.

Table 2: Level of Service Summary

	A.M. Peak Hour			P.M. Peak Hour			
Approach	2015	2022 No Build	2022 Build	2015	2022 No Build	2022 Build	
La Grange Road at Factory Lane	D	E	F	C	D	D	
	39.7	70.5	102.2	26.9	35.4	46.0	
La Grange Road Northbound	B	B	B	C	C	D	
	16.4	16.8	16.8	23.7	29.9	40.8	
La Grange Road Southbound	C	C	C	C	C	C	
	27.9	31.1	31.1	27.5	31.1	32.2	
Chamberlain Lane Eastbound	C	D	D	D	D	D	
	34.6	39.1	39.3	37.9	43.8	45.0	
Factory Lane Westbound	F	F	F	C	D	E	
	88.8	210.4	310.3	28.5	52.8	77.6	
Factory Lane at Colonial Springs Road							
Factory Lane Eastbound Left Turn	A	A	A	A	A	A	
	8.0	8.2	8.6	8.2	8.4	8.7	
Colonial Springs Road Southbound	B	B	B	B	B	C	
	11.4	12.0	13.5	14.8	16.3	19.0	
Factory Lane at Terrace Springs Drive							
Factory Lane Eastbound Left Turn	A	A	A	A	A	A	
	7.7	7.8	8.1	8.2	8.4	8.7	
Factory Lane Westbound Left Turn	A	A	A	A	A	A	
	7.6	7.6	7.7	8.0	8.2	8.6	
Terrace Springs Drive Northbound	B	B	B	C	C	C	
	11.6	12.1	13.7	15.1	16.4	19.7	
Terrace Springs Drive Southbound	B	B	B	B	B	B	
	12.0	12.5	14.4	11.4	12.0	13.3	

	A.M. Peak Hour			P.M. Peak Hour		
Approach	2015	2022 No Build	2022 Build	2015	2022 No Build	2022 Build
Factory Lane at Main Entrance						
Factory Lane Eastbound Left Turn			A 7.8			A 9.0
Main Entrance Southbound			B 12.4			C 16.8
Factory Lane at Secondary Entrance						
Factory Lane Eastbound Left Turn			A 7.6			A 8.5
Secondary Entrance Southbound			B 10.4			B 14.4
Old Henry Road at Factory Lane	(This intersection currently operates as an all-way stop. The construction project will create Old Henry as the major street.)					
Old Henry Road Northbound Left Turn	B 11.3	B 10.1	B 10.4	C 17.6	A 9.2	A 9.7
Old Henry Road Southbound (currently Westbound)	B 10.5			E 46.2	0.2	
Factory Lane Eastbound	C 24.9	C 24.0	E 38.1	B 14.8	E 42.4	F 74.2
Old Henry Road at Hamilton Springs			9911			
Old Henry Road Northbound Left Turn	A 8.7	A 9.8	B 10.2	A 7.9	A 8.3	A 8.5
Old Henry Road Southbound Left Turn	A 7.6	A 7.8	A 7.9	A 9.9	B 12.2	B 13.5
Arnold Palmer Boulevard Westbound	D 25.2	E 38.5	E 49.9	D 32.4	E 44.2	F 64.2
Hamilton Springs Drive Eastbound	B 12.4	C 17.3	C 19.1	A 9.9	B 12.2	B 13.1
Old Henry Road at Bush Farm Road	C 31.4	E 77.2	E 76.9	C 20.1	F 116.5	F 124.8
Old Henry Road Northbound	B 17.8	C 23.3	C 25.3	B 18.6	D 50.4	E 74.7
Old Henry Road Southbound	C 28.4	B 19.1	B 19.8	B 16.4	E 76.5	E 71.9
Bush Farm Road Eastbound	B 13.7	C 21.7	C 22.0	B 19.3	C 21.1	C 21.1
Bush Farm Road Westbound	D 40.8	F 188.2	F 192.7	C 28.6	F 317.3	F 317.3

Key: Level of Service, Delay in seconds per vehicle

6. Conclusion

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2022, there will be impacts to the existing highway network. At the main entrance to the subdivision a left turn lane will be installed per Metro policy. Turn lanes are not required at the secondary entrance.

This report identifies capacity deficiencies at both signalized intersections in the study area. At the La Grange Road intersection with Factory Lane improvements should be realized with the installation of a signal at the intersection of Springs Station Road. This signal has been requested by the shopping center owner and is currently in the review process at KYTC. This proposed signal could divert as much as 30 percent of the shopping center traffic currently using Factory Lane.

At the Old Henry Road intersection with Bush Farm Road, the capacity deficiency is caused by the traffic forecast from the Old Henry Crossings development to utilize Bush Farm Road (westbound left turn). The proposed development does not add traffic to that movement. Once the proposed traffic signal at Terra Crossings is installed, the traffic volumes on Bush Farm Road should decrease.

Appendix A. Traffic Counts

Study Name LaGrange Rd & Chamberlain Ln Start Date 02/24/2015 Start Time 7:00 AM

		ange F uthboui			ctory La		L	aGrano Northl	ge Road bound	d		berlain astbour	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	178	3	118	16	8	25	77	33	0	16	3	27
7:15 AM	3	240	2	122	10	7	20	107	39	0	14	7	38
7:30 AM	2	286	5	118	21	12	30	108	50	0	8	5	32
7:45 AM	8	217	4	133	25	10	38	108	58	3	12	18	34
	13	921	14	491	72	37	113	400	180	3	50	33	131
8:00 AM	4	231	8	132	20	9	44	109	42	1	5	10	16
8:15 AM	7	194	11	111	21	8	36	95	47	0	8	10	33
8:30 AM	1	202	9	96	20	2	39	84	50	0	6	14	22
8:45 AM	9	155	11	97	18	13	25	81	55	0	9	15	26
	21	782	39	436	79	32	144	369	194	1	28	49	97
4:00 PM	8	115	10	64	27	12	29	180	113	0	36	35	99
4:15 PM	4	134	17	58	24	18	38	234	141	0	23	28	87
4:30 PM	1	120	12	55	36	8	48	210	142	0	30	38	86
4:45 PM	4	97	24	67	46	10	33	217	138	0	35	24	50
	17	466	63	244	133	48	148	841	534	0	124	125	322
5:00 PM	7	106	19	56	38	12	56	239	156	0	28	20	42
5:15 PM	8	110	24	68	63	7	34	245	170	0	27	19	59
5:30 PM	9	111	30	58	62	11	65	264	142	0	23	22	46
5:45 PM	4	99	15	52	40	15	32	241	134	0	24	23	46
	28	426	88	234	203	45	187	989	602	0	102	84	193

		ange Fouthbou			ctory La		L	aGranç Northi		d		nberlain astbour	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right
7:15 AM	3	240	2	122	10	7	20	107	39	0	14	7	38
7:30 AM	2	286	5	118	21	12	30	108	50	0	8	5	32
7:45 AM	8	217	4	133	25	10	38	108	58	3	12	18	34
8:00 AM	4	231	8	132	20	9	44	109	42	1	5	10	16
	17	974	19	505	76	38	132	432	189	4	39	40	120
4:45 PM	4	97	24	67	46	10	33	217	138	0	35	24	50
5:00 PM	7	106	19	56	38	12	56	239	156	0	28	20	42
5:15 PM	8	110	24	68	63	7	34	245	170	0	27	19	59
5:30 PM	9	111	30	58	62	11	65	264	142	0	23	22	46
	28	424	97	249	209	40	188	965	606	0	113	85	197

JACOBS

11940 Highway 42, Suite 1 Goshen, KY 40026

Counted by: Andy Wolak File Name: ColonialSpringsAM Site Code: 00512151

Start Date : 5/12/2015

Page No : 1

Groups Printed- Unshifted

								a Lillinga	estimate	00.04							
	- 0		Springs North	Rd	213-0-0-1		ry Lane n East			From	South		-1.55		ry Lane West		
Start Time	Left	Thru	Right	App. Tetal	Left	Thru	Right	App. Total	Left	Thru	Right	App: Total	Left	Thru	Right	App. Total	Int. Tot
07:00 AM	7	0	7	14	0	62	1	63	0	0	0	0	0	23	0	23	10
07:15 AM	9	0	11	20	0	62 75	0	75	0	0	0	0	0	22	0	22	11
07:30 AM	7	0	14	21	0	85	3	88	0	0	0	0	1	38	0	23 22 39 42	14
07:45 AM	13	0	9	20 21 22	0	90	4	94	0	0	0	0	3	22 38 39	0	42	15
Total	36	0	41	77	0	312	8	320	0	0	0	0	4	122	0	126	52
08:00 AM	34	0	. 9	13	0	79	- 4	83 [0	0	0	0	2	50	0	52	14
08:15 AM	2	0	8	10	0	68	3	71	0	0	0	0	0	40	Ū	40 34	12
08:30 AM	5	0	- 4	9	0	69	3	72	0	0	0	0	3	31	0	34	11
08:45 AM	4	0	9	13	0	53	- 3	56	0	0	0	0	2	30	0	32	10
Total	15	0	30	9 13 45	0	269	13	282	0	0	0	0	7	151	0	32 158	10 48
Grand Total	51	0	71	122	0	581	21	602	0	0	0	0	11	273	0	284	100
Approh %	41.8	0	58.2		0	96.5	3.5		0	0	0		3.9	96.1	0		
Total %	5.1	0	7	12.1	0	57.6	2.1	59.7	0	0	0	0	1.1	27.1	0	28.2	

- 2000 - 2000	C		Springs North	Rd			ry Lane n East		1000	From	South		115.00		ry Lane West		
Start Time	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Left	Thru	Right	Agg. Total	Int. Total
Peak Hour Anal	ysis Fro	m 07:00	AM to	08:45 AM	- Peak	1 of 1			-								
Peak Hour for E	ntire Int	ersectio	n Begin	is at 07:30	AM												
07:30 AM	7	0	14	21	0	85	3	88	0	0	0	0	1	38	0	39	148
07:45 AM	13	0	.9	22	0	90	4	94	0	0	0	0	3	39	0	42	158
08:00 AM	4	0	9	13	-0	79	4	83	0	0	0	0	2	50	0	52	148
08:15 AM	2	0	. 8	10	0	68	3	71	0	0	0	0	0	40	0	52 40	121
Total Volume	26	0	40	66	0	322	14	336	0	0	0	0	6	167	0	173	575
% App. Total	39.4	0	60.6		0	95.8	4.2		0	0	0		3.5	96.5	0		1,115,115
PHF	.500	.000	714	750	000	894	875	894	000	000	000	.000	500	835	.000	832	910

Groups Printed-Unshifted

	C		Springs North	Rd			ry Lane n East		(Scoribilis	Teles	South				ry Lane n West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Int. Total
04:00 PM	12	0	4	16	0	. 59		64	.0	0	0	0	6	73	0	79	159
04:15 PM	6	.0	5	11	0	61	5	66	0	0	0	0	3	109	0	112	189
04:30 PM	8	0	4	12	0	79	6	84	0	0	0	0	8	132	0	140	236
04:45 PM	18	0	4	22	0	82	6	88	0	0	0	0	3	94	0	97	207
Total	44	.0	17	61	0	281	21	302	0	0	0	0	20	408	0	428	791
05:00 PM	17	0	5	22	0	90	11	101	0	0	0	0	11	125	0	136	259
05:15 PM	17	0	6	23	0	93	8	101	0	0	0	.0	8	125	0	133	267
05:30 PM	10	0	4	14	0	84	9	93	0	0	0	0	6	94	0	100	207
05:45 PM	11	0	7	18	0	82	6	88	0	0	0	0	15	127	0	142	248
Total	55	0	22	77	0	349	34	383	0	0	0	0	40	471	0	511	971
Grand Total	99	0	39	138	0	630	55	685	0	0	0	0	60	879	0	939	1762
Apprch %	71.7	0	28.3	90.5	0	92	- 8	333	0	0	0	84	6.4	93.6	0		27,500
Total %	5.6	0	2.2	7.8	0	35.8	3.1	38.9	0	0	0	0	3.4	49.9	0	53.3	le le

	С	olonial S From	Springs North	Rd			ry Lane n East			From	South				ry Lane West		
Start Time	Left	Thru	Right	App. Tetal	Left	Thru	Right	App Yorlet	Left	Thru	Right.	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fro	m 04:00	PM to	05:45 PM	- Peak	1 of 1											
Peak Hour for E	ntire Int	ersectio	n Begin	is at 05:00	PM												
05:00 PM	17	0	- 5	22	0	90	11	101	0	0	0	0	11	125	0	136	259
05:15 PM	17	0	6	23	0	93	8	101	0	0	0	0	8	125	0	133	257
05:30 PM	10	0	4	14	0	84	9	93	0	0	0	0	6	94	0	100	257 207
05:45 PM	11	0	7	18	0	82	6	88	0	0	0	0	15	127	0	142	248
Total Volume	55	- 0	22	77	0	349	34	383	0	- 0	0	Ð	40	471	0	511	971
% App. Total	71.4	. 0	28.6		0	91.1	8.9	0.00	. 0	. 0	0		7.8	92.2	. 0	500	100
PHF	.809	000	786	837	.000	.938	773	.948	.000	.000	000	.000	.667	927	.000	900	937

Counted by: Andy Wolak

JACOBS

11940 Highway 42, Suite 1 Goshen, KY 40026

File Name : FactoryLnAM rot

Site Code : 00022515 Start Date : 2/25/2015

Page No : 1

Groups Printed- Unshifted

	Ter		prings (North	Orive			ry Lane n East		Ter		prings (South	Drive			ry Lane n West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	Age Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM 07:15 AM	4 3	0	13 18	17 21	0	40 31	0	42 31	26 15	D 1		26 16	1	22 18	5	24 27	109 95
07:30 AM 07:45 AM	3	0	21 19	22 22	0	41 50	0	41 50	16 18	0	2 3	18 22	6	23 42	3 5	28 53	109 147
Total	11	0	71	82	1	162	1	154	75	- 2	5	82	13	105	14	132	450
08:00 AM	1	0	13	14	1	53	2	56	13	0	3	16	4	42	5	51	137
08:15 AM 08:30 AM	0	0	20 16 9	20 17	0	40 30 35	1 2	41 32	16	0	7 3	23 18	6	32 30 33	5 2	43 36	127
08:45 AM	- 1	ō	9	10	2	35	ō	37	7	0	1	8	5	33	5	43	98
Total	- 3	0	58	61	3	158	- 5	166	51	0	14	65	19	137	17	173	465
Grand Total Approh %	14 9.8	0	129 90.2	143	12	320 97	1.8	330	126 85.7	1.4	19 12.9	147	32 10.5	242 79.3	31 10.2	305	925
Total %	1.5	0	13.9	15.5	0.4	34.6	0.6	35.7	13.6	0.2	2.1	15.9	3.5	26.2	3.4	33	ì

			onga Sine (Nath				oy Lane.				orega Gride South				o une		
ENITH:	Let	796	791	No. Tox			11000						. 7.1				
Peak Hour Anal	ysis Fro	m 07:00	of MAC	08:45 AM	- Peak	1 of 1											
Peak Hour for E	ntire Int	ersectio	n Begin	s at 07:30	MAC												
07:30 AM	1	0	21	22	0	41	0	41	16	0	2	18	2	23	3	28	109
07:45 AM	3	0	19	22	0	50	0	50	18	1	3	22	6	42	5	53	147
08:00 AM	1	0	13	14	1	53	2	56	13	0	3	16	4	42	5	51	137
08:15 AM	0	0	20	20	0	40	1	41	16	0	7	23	6	32	- 5	43	127
Total Volume	- 5	0	73	78	1	184	3	188	63	- 1	15	79	18	139	18	175	520
% App. Total	6.4	0	93.6		0.5	97.9	1.6		79.7	1.3	19	100000	10.3	79.4	10.3		
PHF	417	.000	869	.886	250	868	375	839	875	250	536	.859	.750	.827	900	825	884

File Name: FactoryLnPM rot
Counted by: Andy Wolak
Site Code: 00022415

Start Date : 2/24/2015

Page No : 1

Groups Printed- Unshifted

	Ter		prings (North	Drive			ry Lane n East		Ter		prings (South	Orive			ry Lane West	in in	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
04:00 PM	1	0	6	7	2	44	3	49	11	0	1	12	17	54	12	83	151
04:15 PM	5	D	11	16	0	50	0	50	5	0	0	5	14	74	21	109	180
04:30 PM	1	D	7	8	1	37	4	42	6	0	1	7	20	65	11	96	153
04:45 PM	0	0	10	10	3	52	0	55	7	1	3	11	20	52	18	90	166
Total	7	.0	34	41	6	183	7	196	29	1	- 5	35	71	245	62	378	650
05:00 PM	1	0	4	5	0	67	5	72	9	0	2	11	8	52	15	75	163
05:15 PM	3	1	13	5 17	4	75	8	87	6	0	- 1	7	26	72	16	114	225
05:30 PM	1	0	9	10	3	93	7	103	5	0	- 1	6	17	66	23	106	225
05:45 PM	1	0	10	11	2	56	4	62	6	0	4	10	23	64	12	99	182
Total	6	1	36	43	9	291	24	324	26	0	8	34	74	254	66	394	795
Grand Total Approh %	13 15.5	1.2	70 83.3	84	15 2.9	474 91.2	31 6	520	55 79.7	1.4	13 18.8	69	145 18.8	499 64.6	128 16.6	772	1445
Total %	0.9	0.1	4.8	5.8	1	32.8	2.1	36	3.8	0.1	0.9	4.8	10	34.5	8.9	53.4	

	ļ)		orings Drive North				n Lane i Elest		15		prings Office r Bouth			Pacto	n desc	11	
Start Time	Left	Thou	Ret	Am Total													
eak Hour Anal	ysis Fro	m 04:0	PM to	05:45 PM	- Peak	1 of 1					170						
eak Hour for E	intire Int	ersectio	n Begin	s at 05:00	D PM												
05:00 PM	1	0	4	5	0	67	- 5	72	9	0	2	11	8	52	15	75	163
05:15 PM	3	1	13	17	4	75	8	87	6	0	1	7	26	72	16	114	225
05:30 PM	1	0	9	10	3	93	7	103	5	0	1	6	17	66	23	106	225
05:45 PM	1	0	10	11	2	56	4	62	6	0	4	10	23	64	12	99	182
Total Volume	6	1	36	43	9	291	24	324	26	0	- 8	34	74	254	66	394	798
% App. Total	14	2.3	83.7	33.5	2.8	89.8	7.4		76.5	0	23.5	A-85155	18.8	64.5	16.8	2000	
PHF	.500	.250	.692	.632	.563	.782	.750	.786	722	.000	500	.773	.712	.882	.717	.864	883

JACOBS

11940 Highway 42, Suite 1 Goshen, KY 40026

File Name : FactoryLnOldHenryAM Site Code : 05121522 Counted by: Andy Wolak

Start Date : 5/13/2015

Page No : 1

Groups Printed- Unshifted

1/1		Old	Henry	Road			Old	Henry	Road	1							Fa	ctory L	ane		
			rom N					rom E				Fr	rom So	outh				rom W			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
97:00 AM	122	0	8	- 0	130	0	18	10	- 0	28	- 0	- 0	0	0	0	- 3	27	0	- 0	30	186
07:15 AM	135	0	17	0	152	0	10	28		30		0	0	0	0	- 1	48	0	- 0	49	231
97:39 AM	133	D	13	0	148	0	19	16	0	35	8	Ū.	0	-0	0	4	36	0	ii ii	40	221
07:45 AM	105	0	12	- 1	117	.0	39	16		55	0	. 0	D	0	0		42	. 0	- 0	47	219
Total	495	0	50	0	545	0	84	62	- 0	148		0	0	.0	0	13	153	0	ū	166	857
08:00 AM	112	0	11	0	123	ū	18	25 18	9	43	6	0	0	0	0	2	42	0	0	44	210
08:15 AM	90	0	10	2	100	0	23			39	- 2	9	D	0	0	- 5	44	0	- 0	49	188
68:30 AM 68:45 AM	84 84	0	13	9.6	97 98	0	14 21	23 23	0.0	37 44	8	5	0	0	0	4	31 38	0	0	35 43	189 185
Total	370	0	48	Ú	418	0	76	87	- 0	153	- 1	9	Ð	0	0	15	158	0	0	171	752
Grand Total	885	D.	98	- 0	983	σ	180	149	0	309	8	8	D	0	0	28	309	0	0	337	1609
Approh % Total %	89.8 53.8	0	10.2	0	59.9	0	51.8	48.2 9.3	0.0	19.2	0.0	8	B B	0	D	8.3	91.7	0	9	20.9	

			d Henry I From No				O	d Henry From Ea					From So	uth		1		actory Li From We			
Start Time	Left	Thru	Flight	Peds	App. Total			100		App Total		(4)			Acc Total		13			Ago Tatal	16, 756
Peak Hour A	nalysis	From	07:00	AM to	08:45 A	M - Pe	eak 1 o	f1													
Peak Hour fo	r Entir	e Inter	section	Begin	is at 07:	15 AM															
07:15 AM	135	0	17	0	152	0	10	20	0	30	0	0	- 0	0	0	1	48	0	0	49	231
07:30 AM	133	0	13	0	146	0	19	16	0	35	0	0	0	0	0	4	36	0	0	40	221
07:45 AM	105	0	12	0	117	0	39	16	0	55	0	0	0	0	0	5	42	0	0	47	219
08:00 AM	112	0	11	0	123	0	18	25	0	43	0	0	0	0	0	2	42	0	0	44	210
Total Volume	485	0	53	0	538	0	86	77	0	163	0	0	0	0	0	12	168	0	.0	180	881
% App. Total	90.1	0	9.9	0		0	52.8	47.2	0		0	0	0	0		6.7	93.3	0	0		
PHF	898	.000	779	000	885	.000	.551	770	.000	741	.000	000	.000	.000	.000	.600	.875	.000	.000	.918	953

File Name: FactoryLnOldHenryPM Counted by: Andy Wolak

Site Code : 05111511 Start Date : 5/12/2015 Page No : 1

Groups Printed-Unshifted

				_		_				s Printed	- Ulis	mitted					_				
			Henry rom No	Road orth				Henry rom E	Road ast	T.		Fr	rom So	outh				ctory to rom W			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right.	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
54 55 PM	48	5	9		55	0	39	74		113	- 5	0	0	0	U	22	27	- 0	0	42	217
04:15 PM	43	0.	. 9	- 0	52	0	33	71		104	- 0	0	D	0	-0	11	42	0	. 0	53	204 265 224 920
54:30 PM	- 51	0	14		85	0	31	77	. 0	112		0	0	0	0	25	40	. 0	- 0	70	255
24 45 PM Total	47	0	- 6		52	0	41	75		118	0	Φ.	. 0	0	0	18	86	. 0	. 0	21	229
Total	187	0	37	- 5	227	0	148	257	- 8	445		- 0	. 0	0	0	. 79	181	- 0	- 0	251	920
06:00 PW	40	0	12		58	0	60	66	0	136		0	0	0	0	30	66	0	0	85	279
05:15 PM	46 55	0	7	0.0	62	0	84	91	. 0	175	(0)	8	0	0	0	28	01	- 0	- 8	99	279 325
05:30 PM 05:45 PM	24 50	0	9	8	43	0	85	100	0	185 158	0.0	8	0	0	0	25	66	0	0	90	318 324 124
Total	193	0	39	- 1	292	0	290	382	- 1	852	- 1	- 0	D	.0	0	118	247	0	- 0	383	124
Grand Total	380 83.3	0	Te:	0	455	0	436	859		1097		0	D	0	0	185	426	0.0	0	614	216
Approh % Total %	83.3 17.5	0	18.7	- 8	21	0	29.9	859. 60.1 30.4	8	50.6	2	0	0	0	п	20.3 8.5	19.5	0	2	28.5	

			t Harry F From Nor					From Ea				,	From So	dti :				sictory L. From We			1
Start Time	Left	Thru	Right	Pads	Ago Free					Ago how					Age Free					App From	in Pea
Peak Hour A	nalysis	From	04:00	PM to	05:45 P	M - Pe	ak 1 o	61		1.7										77.7	
Peak Hour fo	r Entire	e Inters	section	Begin	s at 05:1	00 PM															
05:00 PM	46	0	12	0	58	0	50	86	0	136	- 0	0	0	0	0	30	55	0	0	85	279
05:15 PM	55	0	7	0	62	0	84	91	0	175	0	0	0	0	0	28	61	0	0	89	326
05:30 PM	34	0	9	0	43	0	85	100	0	185	0	0	0	0	0	25	65	0	0	90	318
05:45 PM	58	0	11	0	69	0	71	85	0	156	0	0	0	0	0	33	66	0	0	99	324
Total Volume	193	0	39	0	232	0	290	362	Û	652	0	0	0	0	0	116	247	0	Ü	363	1247
% App. Total	83.2	0	16.8	0	21/2022/0	0	44.5	55.5	0		- 0	0	- 0	0	777	32	68	0	0	5.73	,11925A
PHF	832	GDD	813	000	841	.000	853	905	.000	.881	000	000	.000	.000	.000	879	936	.000	.000	917	.956

TABLE 8
WEEKDAY PEAK HOUR COUNTS
Old Henry Road @ Arnold Palmer Boulevard/Hamilton Springs Drive
Old Henry Crossing Traffic Study

Nov-14		9	Old Henr	y Parkway			Arn	old Palmer I	3lvd	Hai	milton Spring	s Dr	To	tals
Time Interval	EB Luft	EB Through	EB Right	WB Left	WB Through	WB Right	NB Left	NB Through	NB Right.	SBLeft	SB Through	SB Right	Quarter Hour	Hourty
7:00-7:15 AM	0	13	1	2	160	0	29	0	2	0	0	0	207	
7:15-7:30 AM	0	18	4	8	186	0	25	0	3	0	0	0	244	3000
7:30-7:45 AM	0	45	5	3	147	0	34	0	2	0	0	1	242	100
7:45-8:00 AM	0	39	- 6	8	149	0	29	0	6	0	0	2	239	932
8:00-8:15 AM	0	46	12	6	131	0	29	0	4	0	0	0	228	953
8:15-8:30 AM	1	36	10	3	109	0	17	0	5	0	0	2	181	890
8:30-8:45 AM	0	19	13	3	125	0	22	0	3	0	0	0	185	833
8:45-9:00 AM	1	39	17	5	101	0	26	0	11	1	0	0	196	790
TOTAL	2	255	63	38	1108	0	211	0	39	1	0	5	1722	***
2014 A.M. PEAK HR	0	148	27	25	613	0	117	0	20	0	0	3		
2016 A.M. PEAK HR	0	154	28	26	638	0	122	0	21	0	0	3	1	
2018 A.M. PEAK HR	0	160	29	27	664	0	127	0	22	0	0	3		
4:00-4:15 AM	0	88	17	9	61	0	18	1	3	0	0	2	199	121
4:15-4:30 AM	1	114	16	3	59	0	18	0	3	1	0	0	215	+-+
4:30-4:45 AM	0	90	32	5	77	0	19	0	4	0	0	0	228	777
4:45-5:00 AM	1	140	17	8	74	0	11	0	10	0	0	1	262	904
5:00-5:15 AM	1	179	20	9	67	0	17	0	10	0	0	1	304	1005
5:15-5:30 AM	1	163	23	9	90	1	15	0	5	0	0	1	298	1092
5:30-5:45 AM	0	149	22	9	63	0	18	0	2	0	0	1	264	1128
5:45-6:00 AM	1	137	18	3	67	0	17	0	9	0	0	0	252	1118
TOTAL	5	1060	165	56	548	1	133	1	46	1	0	6	2022	
2014 P.M. PEAK HR	3	631	82	35	284	1	61	0	27	0	0	4		
2016 P.M. PEAK HR	3	656	85	36	295	1	63	0	28	0	0	4]	
2018 P.M. PEAK HR	3	683	89	38	307	1	66	0	29	0	0	4	l .	

JACOBS

11940 Highway 42, Suite 1 Goshen, KY 40026

Counted by: Andy Wolak File Name : OldHenryBushFarmAM Site Code : 00062151

Site Code : 00062151 Start Date : 6/2/2015

Page No : 1

							Group	s Printed-	Unshif	ted							
:40,00,00,000			nry Roa i North	d			arm Roa n East	ad			nry Roa South	d			arm Roa n West	ad	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Left	Thru	Right	Age Total	Int. Total
07:00 AM	10	142	0	152	121	0	5	126	2	16	16	34	0	- 1	10	11	323
07:15 AM	8	169	1	178	119	0	9	128	2	12	36	50	0	0	9	9	365
07:30 AM	- 8	150	-0	158	155	0	12	167	2	33	34 42	69	0	3	19	22	416
07:45 AM	14	158	-0	172	161	1	9	171	1	20	42	63	2	31	14	17	423
Total	40	619	- 3	660	556	1	35	592	7	81	128	216	2	5	52	59	1527
08-00 AM	24	147	1	172	153	2	11	166	2	34	29	65	1	1	16	18	421
08:15 AM	23	149	0	172	146	1	5	152	2	28	33 62	63	0	0	16 23	23	410
08:30 AM	14	139	0	153	127	0	7	134	3	25	62	90	0	2	12	14	391
08:45 AM	46	126	2	174	149	1	13	163	4	31	74	109	- 1	3	- 11	15	461
Total	107	561	3	671	575	4	36	615	11	118	198	327	2	6	62	70	1683
Grand Total Approh %	147	1180 88.7	0.3	1331	1131 93.7	5 0.4	71 5.9	1207	18 3.3	199 36.6	326 60	543	3 1	11 8.5	114 88.4	129	3210
Total %	4.6	36.8	0.1	41.5	35.2	0.2	2.2	37.6	0.6	6.2	10.2	16.9	0.1	0.3	3.6	4	

	- 0		nry Roa North	đ	12		arm Roa n East	ad		10000	nry Roa South	d			arm Roa West	ed	
Start Time	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Int. Total
Peak Hour Anal	rsis Fro	m 07:00	AM to	08:45 AM	- Peak	1 of 1	117.35.								. 60		
Peak Hour for E	ntire Inti	ersectio	n Begin	s at 08:00	MA												
08:00 AM	24	147	1000	172	153	2	11	166	2	34	29	65	1	1	16	18	421
08:15 AM	23	149	0	172	146	1	5	152	2	28	33	63	0	0	23	23	410
08:30 AM	14	139	0	153	127	0	7	134	3	25	62	90	0	2	12	14	391
08:45 AM	46	126	2	174	149	1	13	163	4	31	74	109	1	- 3	11	15	461
Total Volume	107	561	- 3	671	575	- 4	36	615	- 11	118	198	327	- 2	- 6	62	70	1683
% App. Total	15.9	83.6	0.4	70,000	93.5	0.7	6.9	10315	3.4	36.1	60.6	27.075	2.9	8.6	88.6		10000
PHF	.582	.941	:375	.964	.940	500	.692	926	688	868	.669	.750	500	:500	.674	.761	913

							Group	s Printed-	Unshi	fled							
			nry Roa North	id			arm Ro			Old He	nry Roa South	d			arm Roa West	ad	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	Ago Total	Left	Thru	Right	App Total	Left	Thru	Right	Age Total	Int. Total
04:00 PM	19	57	- 1	77	97	4.	21	122	13	99	105	217	- 0	- 1	4	- 5	421
04:15 PM	12	65	- 1	78	89	3	11	103	- 5	93	108	206	0	0	7	7	394
04:30 PM	20	65	- 1	86	67	0	15	82	15	126	99	240	0	1	7	8	416
04:45 PM	32	83	2	117	78	0	15	93	10	134	123	267	2	0	9	11	488
Total	83	270	5	358	331	7	62	400	43	452	435	930	2	2	27	31	1719
05:00 PM	27	91	2	120	107	1	11	119	25	175	145	345	0	3	6	9 12 17	593
05:15 PM	16	86 81	3	105	81	1	31	113	15	185	141	341	1	3	8	12	571
05:30 PM	18	81	2	101	77	1	12	90	13	175	131	319	2	- 3	12	17	527
05:45 PM	22	80	2	104	86	2	11	99	7	161	135	303	1	2	12	15	521
Total	83	338	9	430	351	5	65	421	60	696	552	1308	4	11	38	53	2212
Grand Total Approh %	166 21.1	608 77.2	14	788	682 83.1	12	127 15.5	821	103 4.6	1148 51.3	987 44.1	2238	7.1	13 15.5	65 77.4	84	3931
Total %	4.2	15.5	0.4	20	17.3	0.3	3.2	20.9	2.6	29.2	25.1	56.9	0.2	0.3	1.7	2.1	

	- 33	Old Her From	nry Roa North	d			arm Roa n East	id			nry Roa South	d			arm Roa i West	d	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Left	Thru	Right	Adp. Total	Int. Total
Peak Hour Anal	ysis Fro	m 04:00	PM to	05:45 PM	- Peak	1 of 1			2 10 2 1 2 1	The Sec		- Indian rest	1111111111111	117.00	and the man		2 10 112 12 77
Peak Hour for E	ntire Int	ersectio	n Begin	is at 05:00	PM												
05:00 PM	27	91	2	120	107	1	- 11	119	25	175	145	345	0	- 3	6	9	593
05:15 PM	16	86	3	105	81	1	31	113	15	185	141	341	1	- 3	8	12	571
05:30 PM	18	81	2	101	7.7	1	12	90	13	175	131	319	2	3	12	17	527
05:45 PM	22	80	2	104	- 86	2	11	99	7	161	135	303	1	2	12	15	521
Total Volume	83	338	. 9	430	351	- 5	65	421	60	696	552	1308	4	11	38	53	521 2212
% App. Total	19.3	78.6	2.1		83.4	1.2	15.4	0.00	4.6	63.2	42.2		7.5	20.8	71.7	100	
PHF	769	929	.750	.896	.820	625	524	884	.600	941	.952	.948	.500	.917	792	.779	933

Appendix B. Highway Capacity Software Printouts

50000	7000						- per		10 055			-		
General Inform	nation						1	ntersec	tion Inf	-	n	1 6	200	1.5
Agency	- 8	Jacobs					_	Duration		0.25		10		
Analyst		D Zimmerman	-	sis Date	- Contraction of the Contraction	Actor and sections		Area Typ	e	Other				
Jurisdiction			Time	Period	AM Pe	ak	F	PHF		0.95		100		- 2
Intersection		Factory Lane	Analy	sis Year	2015		P	Analysis	Period	1> 7:0	00			
File Name	-	Factory AM 15 xus											1111	
Project Descrip	tion	Ball Homes										1 7	北工安里	KID:
Demand Inform	mation			EB			WB			NB			SB	
Approach Move	ement		L	T	R	L	T	R	L	II	I R	L	T	R
Demand (v), ve			39	40	120	505	76	38	132		189	17	974	15
300			3	8		Very	Sec.	11			de US	100	de o	
Signal Informa	stion			10	J	721.		<u></u>	8					-0.51
Cycle, s	88.1	Reference Phase 2		25	1-500	1 194	2		100	_	\ 4	P	-	4
Offset, s	0	Reference Point End	Green	14	5.0	30.6	15.0	10.0	0.0	- 1	+		- 1	-
Uncoordinated	Yes	Simult. Gap E/W On	Yellov		0.0	4.3	4.0	4.0	0.0		-	V.		+>
Force Mode	Fixed	Simult. Gap N/S On	Red	3.0	0.0	1.6	2.2	3.5	0.0		4		- 3	
Timer Results			EB		EBT	WB		WBT	NB		NBT	SBI		SBT
Assigned Phase	e		EB		4	3		8	1	-	6	5		2
Case Number	c .		-	_	7.3	1.0	-	3.0	1.1		3.0	1.1	_	4.0
	ase Number hase Duration, s				17.5	21.2	-	38.7	13 (41.5	7.9		36.5
Programme and the second secon	And the second s				7.5	6.2		7.5	6.5		5.9	6.5		5.9
CONTRACTOR OF THE PARTY OF THE	hange Period, (Y+R _c), s ax Allow Headway (MAH), s				4.4	4.0	_	4.4	4.0		3.7	4.0		3.7
Mark Market Company of the Company o	Senior Advantage	THE CONTRACTOR OF THE CONTRACT	-			_	_				- Contraction -			-
Queue Clearan	Automotive production	SATISFASIO	-	-	8.2	17.0	-	4.5	6.3	-	9.6	2.6		24.3
Green Extensio		(Ge), S	-	1000	1.4	0.0		1.4	0.4		6.5	0.0		6.3
Phase Call Probat Max Out Probat	ACCORDING TO THE		-		00.00	1.00	_	0.00	0.97		1.00	0.00		0.04
Max Out Proba	DIIITY		_	_	2.00	1.00		0.00	0.00		0.01	0.00		0.04
Movement Gro	oup Res	ults		EB			WB	-		NB			SB	
Approach Move	ement	0.00.00	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move	ment		7	4	14	3	8	18	1	6	16	5	2	112
Adjusted Flow F	Rate (v)	, veh/h		83	126	532	80	40	139	455	199	18	524	52
COLUMN TO PARTY AND SOME THAT A SPECIAL PROPERTY AND A SPECIAL PROPE	THE RESERVE OF THE PARTY OF THE	w Rate (s), veh/h/ln		1623	1594	1792	1881	1594	1792	1791	1594	1792	1881	186
Queue Service	Atomic and market by			2.0	6.2	15.0	2.5	1.4	4.3	7.6	5.4	0.6	22.3	22
Cycle Queue C	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	market and the second		4.0	6.2	15.0	2.5	1.4	4.3	7.6	5.4	0.6	22.3	22
Green Ratio (g/		10.00		0.11	0.19	0.31	0.35	0.37	0.43	0.40	0.57	0.36	0.35	0.3
Capacity (c), ve				245	298	480	666	590	265	1448	916	389	653	64
Volume-to-Capa	AND DESCRIPTION OF THE PERSON NAMED IN	tio (X)		0.339	0.424	1.107	0.120	0.068	0.525	0.314	0.217	0.046	0.803	0.8
Available Capa				776	840	480	854	749	946	2234	1266	767	1174	116
		n/in (50th percentile)		1.6	2.3	12.4	1.0	0.5	1.7	2.9	1.6	0.2	9.4	9.
Control Contro	radio escribidade constituido	RQ) (50th percentile)		0.08	0.12	1.49	0.12	0.07	0.10	0.07	0.13	0.01	0.24	0.2
Uniform Delay (the second second	Control of the Contro		36.3	31.7	31.1	19.2	17.9	19.7	17.9	9.1	18.2	26.1	26
Incremental De	Annual de Lanciero	****		1.0	1.2	73.5	0.1	0.0	1.6	0.1	0.1	0.0	2.0	2
Initial Queue De	the State of the S	A STATE OF THE STA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Control Delay (and the second			37.3	32.8	104.6	19.3	18.0	21.3	18.0	9.2	18.2	28.1	28
	STATE OF THE PARTY			D	C	F	В	В	C	В	A	В	C	C
WINDOWS CONTRACTOR OF THE PROPERTY OF THE PROP	proach Delay, s/veh / LOS		34.	Access to the last	С	88.8	_	F	16.4		В	27.9		С
Level of Service	tersection Delay, s/veh / LOS				39							D		
Level of Service Approach Delay	lay, s/ve	iciaccion ociay, aveni coo						70	4					
Level of Service Approach Delay Intersection De	rides.		100							0.004			10000	
Level of Service Approach Delay	sults		3.0	EB	С	2.8	WB	С	2.4	NB	В	2.3	SB	В

Copyright © 2015 University of Florida, All Rights Reserved.

HCS 20107W Streets Version 6.65

		HCS 2	010 S	ignali	ized l	nters	ection	Res	sults S	umm	ary				
	Jacobs D Zimmerman In Factory Lane Factory AM 22 NB Ball Homes In Formation Movement In Factory AM 22 NB Ball Homes In Formation In Factory AM 22 NB Ball Homes In Formation In Factory AM 22 NB Ball Homes In Formation In Factory AM 22 NB Ball Homes In Formation In Feference Phase In Fixed Simult. Gap E/W In Fixed Simult. Gap E/W In Fixed Simult. Gap N/S In Formation I														
General Inform	mation							$\neg \neg$	Intersec	tion Inf	ormatio	n	1	4741	ЬŲ
Agency		Jacobs							Duration	, h	0.25		1	411	L.
Analyst		D Zimmerman		Analys	sis Date	Jul 21	, 2015	\neg	Area Typ	e	Other		4		
Jurisdiction				Time F	Period	AM Pe	eak		PHF		0.95		*		÷
Intersection		Factory Lane		Analys	sis Yea	r 2022 i	No Build	t	Analysis	Period	1> 7:0	00	7		
File Name		Factory AM 22 NB.:	KUS											5 1 1 7	
Project Descrip	otion	Ball Homes											T	1144	tr in
									_						
					EB			W	_	+ .	NB	T 5		SB	T 5
				L	T	R	L	T		L	T	R	L	T	R
Demand (v), ve	eh/h		_	46	47	141	593	89	45	155	508	222	20	1144	22
Signal Informa	ation				T U.	FC .		$\overline{}$	R	R					
Cycle, s	_	Reference Phase	2	1	2	٦		<u> </u>	72	評	^	\ 4	>	<u> </u>	
Offset, s			End	 	27	2 ST	- :1	ц_	2 5		Ţ	1	2	5	Y 4
Uncoordinated	_		On	Green	-	5.8	39.1	15.	-		_ լ	Ĺ	-4-		4
Force Mode	_		On	Yellow Red	3.0	0.0	1.6	4.0 2.2		0.0		5	Y	7	
T Gree Widge	Tixed	Oliniaic. Cap 14/C	OII	1100	10.0	10.0	1.0	12.2	10.0	0.0					
Timer Results	;			EBI	L	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT
Assigned Phas	e					4	3	\neg	8	1		6	5	\neg	2
Case Number						7.3	1.0		3.0	1.1		3.0	1.1		4.0
Phase Duration	n. s					19.4	21.2	2	40.6	14.1		50.9	8.3	\neg	45.0
Change Period	I. (Y+R _c)). s				7.5	6.2		7.5	6.5		5.9	6.5		5.9
						4.4	4.0	\neg	4.4	4.0		3.7	4.0	\neg	3.7
						10.2	17.0		5.5	7.2		11.6	2.7		31.5
		10 //				1.6	0.0	-	1.6	0.5	-	8.4	0.0	-	7.6
Phase Call Pro		10 71				1.00	1.00		1.00	0.99	,	1.00	0.44	1	1.00
Max Out Proba	ability					0.00	1.00	7	0.00	0.00		0.03	0.00		0.17
		sults			EB		.	WB	_		NB		<u> </u>	SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
				7	4	14	3	8	18	1	6	16	5	2	12
				_	98	148	624	94	47	163	535	234	21	616	612
-					1603	1594	1792	1881	_	1792	1791	1594	1792	1881	1868
				_	3.5	8.2	15.0	3.5		5.2	9.6	6.8	0.7	29.5	29.5
		e ⊓me (g₀), s			5.5	8.2	15.0	3.5		5.2	9.6	6.8	0.7	29.5	29.5
Green Ratio (g.					0.12 245	0.20 312	0.29 429	0.33 624		0.48 253	0.45 1616	0.60 959	0.41 398	0.39 738	733
		tia (VA		-				_							_
					0.400 681	761	1.454 429	755	0.085	0.644 835	0.331 1975	0.244 1119	0.053 725	0.834 1038	0.834 1030
					2.2	3.2	28.8	_	_	2.1	3.7	2.1	0.3	12.9	12.9
	,,				0.11	0.16	3.45	1.5 0.18		0.13	0.09	0.17	0.02	0.33	0.32
		7 ()	1		41.0	35.6	35.8	23.4		21.6	17.7	9.3	17.7	27.4	27.4
					1.3	1.4	216.9	0.1		2.7	0.1	0.1	0.1	3.9	4.0
					0.0	0.0	0.0	0.0	_	0.0	0.1	0.0	0.1	0.0	0.0
		,,			42.3	37.0	252.7	23.6	_	24.3	17.8	9.4	17.8	31.3	31.3
					42.3 D	D D	252.7	23.6 C	C 21.8	C C	17.8 B	9.4 A	17.8 B	31.3	31.3
				39.1		D	210.		F	16.8		В	31.1		С
				55.).5		<u>'</u>	10.0			E 31.		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	S Score	/ LOS		3.0		С	2.8		С	2.4		В	2.3		В
				0.9		Α	1.8		Α	1.3		Α	1.5		Α

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	ized I	nterse	ection	Res	sults S	umm	arv				
											y				
General Inforn	nation								Intersec	tion Inf	ormatic	n	1	411	la la
Agency		Jacobs							Duration,	, h	0.25			4+4	
Analyst		D Zimmerman		Analys	sis Date	Jul 21	, 2015		Area Typ	e	Other		.A.		
Jurisdiction				Time F	eriod	AM Pe	eak		PHF		0.95		*		=
Intersection		Factory Lane		Analys	sis Year	2022	Build		Analysis	Period	1> 7:0	00	7		
File Name		Factory AM 22 B.xu	IS			•			-					5 1 1 7	
Project Descrip	tion	Ball Homes											T	1144	F (*
							Y	145		1	N.D.			0.0	
Demand Inform					EB			WE		-	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	h/h		_	46	53	141	697	10	5 53	155	508	253	23	1144	22
Signal Informa	ation				ΙŢ			т	5	5-					
Cycle, s	100.1	Reference Phase	2	1	2 6	3 517		₂	7	§	^	\ 4	>	- ✓	-4
Offset, s	0	Reference Point	End	Graan					7 3	0.0	ţ	1 1	2	5	¥ 4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		5.7 0.0	39.4 4.3	15.0 4.0	-	0.0	− (L	KŤ2		→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.6	2.2		0.0		5	G G	7	8
Timer Results				EBI	L	EBT	WB	L	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phas	е					4	3		8	1		6	5		2
Case Number						7.3	1.0		3.0	1.1		3.0	1.1		4.0
Phase Duration	1, s					19.5	21.2	2	40.7	14.1		50.9	8.5		45.3
Change Period	, (Y+Rc)), s				7.5	6.2		7.5	6.5		5.9	6.5		5.9
Max Allow Hea	dway (A	//AH), s				4.4	4.0		4.4	4.0		3.7	4.0		3.7
Queue Clearan	ice Time	e (g₅), s				10.3	17.0)	6.2	7.2		11.7	2.8		31.6
Green Extension	n Time	(g _e), s				1.7	0.0		1.8	0.5		8.7	0.0		7.7
Phase Call Pro	bability					1.00	1.00)	1.00	0.99	9	1.00	0.49	9	1.00
Max Out Proba						0.00	1.00		0.00	0.00		0.03	0.00)	0.18
Mayamant Cu	Das	lan			EB			WB			NB			SB	
Movement Gro	•	suits			T	R	L	T	R	L	T	R	L	T	R
Approach Move				7	4	14	3	8	18	1	6	16	5	_	
Assigned Move		1.0			_		_	_	_	_	_	- 1 -	-	2	12
Adjusted Flow I				_	104	148	734	111	56	163	535	266	24	616	612
		ow Rate (s), veh/h/ln	1	-	1607	1594	1792	1881	_	1792	1791	1594	1792	1881	1868
Queue Service				_	3.9	8.3	15.0	4.2	2.4	5.2	9.7	8.0	0.8	29.6	29.6
Cycle Queue C		e ⊓me (g₅), s		-	5.9	8.3	15.0	4.2	0.35	5.2 0.48	9.7	8.0	0.8	29.6	29.6
Green Ratio (g/				_	0.12 245	0.20 313	0.29 423	0.33 624	560	254	0.45 1612	0.60 956	0.41 400	0.39 740	735
Capacity (c), ve		tio (V)		-	_				7 0.100				-	_	
Volume-to-Cap				\vdash	0.425	_		-				0.279	0.061	0.832	0.833
Available Capa		,		-	679	759	423	751	668	832	1967	1114	722	1033	1026
		h/ln (50th percentile)		_	2.4	3.2	42.8	1.8	0.8	2.1	3.7	2.4	0.3	13.0	12.9
		RQ) (50th percentile	:)	-	0.12	0.16	5.13	0.21	_	0.13	0.09	0.21	0.02	0.33	0.33
Uniform Delay	• • • •			-	41.2	35.7	35.8	23.8		21.7	17.8	9.6	17.7	27.4	27.4
Incremental De				_	1.4	1.3	339.5	0.1	0.1	2.7	0.1	0.1	0.1	3.9	4.0
Initial Queue D					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (42.7	37.0	375.3	23.9	_	24.4	17.9	9.8	17.7	31.3	31.4
Level of Service				20.4	D	D	F 240	C	C	C 16.0	В	A	B 21.1	_ C	C
Approach Dela				39.3	5	D 10	310.	3	F	16.8		В	31.1		С
Intersection De	idy, S/VE	aii / LUS				10	2.2						F		
Multimodal Re	sults				EB			WB			NB			SB	
	Coore	/100		3.0		С	2.8		С	2.4		В	2.3		В
Pedestrian LOS	Score	/ LU3		0.0											

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ianali	ized l	nterse	ection	Res	sults S	umm	arv				
											<i>y</i>				
General Inforn	nation								Intersec	tion Inf	ormatio	on	1	4441.	ja li
Agency		Jacobs							Duration,	h	0.25		1	411	
Analyst		D Zimmerman		Analys	sis Date	e Jul 21	, 2015		Area Typ	е	Other		4		
Jurisdiction				Time F	eriod	PM Pe	eak		PHF		0.95				\equiv
Intersection		Factory Lane		Analys	sis Yea	r 2015		1	Analysis	Period	1> 7:0	00	3		
File Name		Factory PM 15.xus												5110	r
Project Descrip	tion	Ball Homes											1	বাক্দ	r r
Demand Inform	mation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R		Т	R
Demand (v), ve				113	85	197	249	209	9 40	188	965	606	28	424	97
Signal Informa	tion						1 11:	7	5	2					
		Reference Phase	2	ł	1 0	~	21/3		Ħ?	\equiv					Я
Cycle, s Offset, s	105.5	Reference Point	End		25	<u> </u>	" <u>"</u>		2 13		J	1	2	_ L3	4
	_			Green	-	1.0	35.6	14.	_		_ l	Ĺ			4
Uncoordinated Force Mode	_	Simult. Gap E/W	On On	Yellow Red	3.5	3.5	1.6	2.2	_	0.0	`	7	Y	7	Z
Force Wode	Fixed	Simult. Gap N/S	On	reu	10.0	J 3.U	1.0	12.2	10.0	0.0		3	6	-	8
Timer Results				EBI	L	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT
Assigned Phas	е					4	3		8	1		6	5		2
Case Number						7.3	1.0		3.0	1.1		3.0	1.1		4.0
Phase Duration	ase Duration, s					27.3	20.3	3	47.6	16.3	3	49.1	8.8		41.5
Change Period	ase Duration, s ange Period, (Y+R₀), s					7.5	6.2		7.5	6.5		5.9	6.5		5.9
Max Allow Hea	dway (A	<i>//AH</i>), s				4.5	4.0		4.5	4.0		3.7	4.0		3.7
Queue Clearan	ice Time	e (g₃), s				16.9	13.9	9	10.7	9.2		34.2	3.1		14.5
Green Extension	n Time	(g _e), s				2.5	0.1		3.0	0.6		8.9	0.0		10.8
Phase Call Pro	bability					1.00	1.00)	1.00	1.00)	1.00	0.58	3	1.00
Max Out Proba	bility					0.01	1.00)	0.00	0.00)	0.30	0.00)	0.07
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow I	Rate (v)	, veh/h			208	207	262	220	42	198	1016	638	29	282	267
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln			1402	1594	1792	1881	1594	1792	1791	1594	1792	1881	1760
Queue Service	Time (g	/s), S			14.7	11.3	11.9	8.7	1.7	7.2	24.7	32.2	1.1	12.3	12.5
Cycle Queue C	learanc	e Time (g₅), s			14.9	11.3	11.9	8.7	1.7	7.2	24.7	32.2	1.1	12.3	12.5
Green Ratio (g/	/C)				0.19	0.28	0.34	0.38	0.40	0.45	0.41	0.54	0.36	0.34	0.34
Capacity (c), ve	eh/h				317	449	368	715	641	426	1466	865	195	636	595
Volume-to-Cap	acity Ra	atio (X)			0.657	0.462	0.712	0.308	0.066	0.465	0.693	0.737	0.151	0.443	0.448
Available Capa	city (c _a)	, veh/h			583	753	384	715	641	937	1866	1043	495	980	917
		h/In (50th percentile)			5.2	4.3	5.4	3.7	0.6	2.9	9.9	11.0	0.5	5.3	5.1
		RQ) (50th percentile	:)		0.26	0.22	0.65	0.44	_	0.17	0.25	0.92	0.03	0.13	0.13
Uniform Delay				\vdash	40.8	31.3	28.6	23.0	19.4	19.2	25.7	18.4	23.8	27.2	27.3
Incremental De					2.8	0.9	5.8	0.2	0.0	0.8	0.7	2.1	0.4	0.4	0.5
Initial Queue D					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (- / /				43.6	32.2	34.4	23.2	_	20.0	26.4	20.5	24.2	27.6	27.7
Level of Service					D	С	С	C	В	С	C	С	С	С	С
Approach Dela				37.9	9	D	28.5	5	С	23.7	7	С	27.5	5	С
Intersection De	lay, s/ve	eh / LOS				26	5.9						С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		3.0	_	С	2.8	_	С	2.4	_	В	2.3		В
Bicycle LOS So				1.2	-	A	1.4	_	A	2.0	-	В	1.0	-	A
Dicycle LOS St	JOIC / LC	,,,		1.2		А	1.4		^	2.0		D	1.0		

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed I	nterse	ection	Res	ults S	umm	ary				
General Inforn	nation							I	Intersec	tion Inf	ormatio	n		4141	la la
Agency		Jacobs]	Duration,	, h	0.25			***	
Analyst		D Zimmerman		Analys	sis Date	Jul 21	, 2015	$\overline{}$	Area Typ	е	Other		A .		-
Jurisdiction				Time f	Period	PM Pe	eak	F	PHF		0.95		* -		<u> </u>
Intersection		Factory Lane		Analys	is Year	2022 1	No Build	d /	Analysis	Period	1> 7:0	00	7		7
File Name		Factory PM 22 NB.:	xus											1111	
Project Descrip	tion	Ball Homes											1	ৰ 1 ক ম	1 1
Demand Inform	mation				EB		Т	WE	3	Т	NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	h/h			133	100	231	293	246	3 47	221	1134	712	33	498	114
Signal Informa	ation			1	T L			_	8	R	_				
Cycle, s	123.5	Reference Phase	2	1	7	٦		_		Ħ		√ 4			_Z
Offset, s	0	Reference Point	End		26	<u> </u>	- 11	_	2 5		1	1	2		\mathbf{Y}
Uncoordinated	Yes	Simult. Gap E/W	On	Green		3.1	44.4	15.0			_ l	Ĺ			4
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	3.5	3.5	1.6	2.2	4.0 3.5	0.0		Y 5	Y	7	Y 8
T OFCE MODE	Tixeu	Simult: Oup 14/5	OII	rted	10.0	0.0	1.0		10.0	0.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	_	SBT
Assigned Phas	е					4	3		8	1		6	5		2
Case Number						7.3	1.0		3.0	1.1		3.0	1.1		4.0
Phase Duration	1, S					33.0	21.2	2	54.2	18.9)	59.9	9.3		50.3
Change Period	, (Y+Rc)), s				7.5	6.2		7.5	6.5		5.9	6.5		5.9
Max Allow Hea	dway (N	<i>IAH</i>), s			$\neg \vdash$	4.5	4.0		4.5	4.0		3.7	4.0		3.7
Queue Clearan	ce Time	e (g₅), s				23.5	17.0		14.2	11.6	;	50.3	3.5		19.1
Green Extension	n Time	(g _e), s				2.0	0.0		3.6	0.8		3.7	0.0		14.0
Phase Call Pro	bability					1.00	1.00		1.00	1.00)	1.00	0.70)	1.00
Max Out Proba	bility					0.07	1.00)	0.01	0.00)	0.96	0.00)	0.22
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow I	Rate (v)	, veh/h			245	243	308	259	49	233	1194	749	35	332	313
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln	ı		1361	1594	1792	1881	1594	1792	1791	1594	1792	1881	1760
Queue Service	Time (g	/s), S			21.5	15.4	15.0	12.2	2.4	9.6	34.7	48.3	1.5	16.9	17.1
Cycle Queue C	learance	e Time (g₀), s			21.5	15.4	15.0	12.2	2.4	9.6	34.7	48.3	1.5	16.9	17.1
Green Ratio (g/	(C)				0.21	0.31	0.34	0.38	0.40	0.48	0.44	0.56	0.38	0.36	0.36
Capacity (c), ve	eh/h				328	491	319	712	640	413	1567	891	165	676	633
Volume-to-Cap	acity Ra	atio (X)			0.749	0.496	0.968	0.364	0.077	0.563	0.762	0.841	0.211	0.490	0.494
Available Capa	city (ca)	, veh/h			487	677	319	712	640	813	1595	904	414	838	784
Back of Queue	(Q), vel	h/ln (50th percentile))		7.4	5.9	10.7	5.4	0.9	4.0	14.5	18.1	0.7	7.5	7.1
Queue Storage	Ratio (RQ) (50th percentile)		0.38	0.30	1.29	0.65	0.13	0.24	0.37	1.52	0.04	0.19	0.18
Uniform Delay	(d1), s/v	eh			47.4	34.9	36.7	27.6	22.8	21.5	29.3	22.7	27.3	30.8	30.8
Incremental De	lay (d2),	s/veh			4.2	0.9	41.7	0.3	0.1	1.2	2.1	7.0	0.6	0.5	0.5
Initial Queue D	elay (d3)), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/vel	h			51.6	35.9	78.5	28.0	22.9	22.8	31.4	29.7	27.9	31.2	31.3
Level of Service	e (LOS)				D	D	Е	С	С	С	С	С	С	С	С
Approach Dela	y, s/veh	/LOS		43.8	3	D	52.8	3	D	29.9)	С	31.1	1	С
Intersection De	lay, s/ve	eh / LOS				35	5.4						D		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/ LOS		3.0	_	С	2.8		С	2.4	_	В	2.3		В
	_				_			-		_			_		A

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed l	nterse	ection	Res	sults S	umm	arv				
											<i>y</i>				
General Inform	nation								Intersec	tion Inf	ormatic	on	1	4441	h li
Agency		Jacobs							Duration	h	0.25			411	
Analyst		D Zimmerman		Analys	sis Date	e Jul 21	, 2015		Area Typ	е	Other				
Jurisdiction				Time f	eriod	PM Pe	eak		PHF		0.95		*		\equiv
Intersection		Factory Lane		Analys	sis Yea	r 2022 I	Build		Analysis	Period	1> 7:0	00	7		
File Name		Factory PM 22 B.xu	ıs											5110	
Project Descrip	tion	Ball Homes											1	4144	1 1
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move				L	T	T R	1	T	R	1	T	R	L	T	R
	mand (v), veh/h			133	116	231	331	278	_	221	1134	_	39	498	114
Bernand (v), ve				100	110	201	001	270	01	221	1104	020	00	400	117
Signal Informa	ignal Information				7	2	25	\top	≥ 3	2					_
Cycle, s	,		2		25	<u> </u>	7 51	2		ğ	٦ì	∖∄ጘ	×	~ ⊢	♣,
Offset, s	0	Reference Point	End	Green	3.1	3.2	45.3	15.0	0 27.7	0.0	Ť	†		3	- X
Uncoordinated	coordinated Yes Simult. Gap E/W On		Yellow	-	3.5	4.3	4.0	4.0	0.0		`_	V		₹	
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	3.0	1.6	2.2	3.5	0.0		5	6	7	8
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase					-	4	3	_	8	1	-	6	5	_	2
Case Number						7.3	1.0		3.0	1.1		3.0	1.1	_	4.0
Phase Duration				_	_	35.2	21.2	_	56.4	19.2	_	60.9	9.6	_	51.2
Change Period,		١ ٩				7.5	6.2	-	7.5	6.5	_	5.9	6.5	-	5.9
Max Allow Head	. ,			4.5			4.0	_	4.5	4.0	-	3.8	4.0	-	3.8
Queue Clearan					25.7		17.0		16.4	12.0	\rightarrow	57.0		-	19.6
Green Extensio				2.0			0.0 3.8		0.8		0.0	3.8 0.1	_	15.4	
Phase Call Prof		(ge), 3				1.00	1.00 1.00			1.00		1.00		-	1.00
Max Out Probal						0.14	1.00	-	0.02	0.00	-	1.00	0.76	-	0.28
M	D				- ED			WD			ND			CD	
Movement Gro		suits		.	EB	I D		WB	I D		NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow F				_	262	243	348	293	57	233	1194	872	41	332	313
Queue Service		ow Rate (s), veh/h/ln			1358 23.7	1594 15.6	1792 15.0	1881 14.4		1792 10.0	1791 35.9	1594 55.0	1792 1.8	1881 17.5	1760 17.6
Cycle Queue C	- 10				23.7	15.6	15.0	14.4		10.0	35.9	55.0	1.8	17.5	17.6
Green Ratio (g/		c fillic (ge), 3			0.22	0.32	0.35	0.39		0.47	0.43	0.55	0.38	0.36	0.36
Capacity (c), ve					340	509	309	725	653	409	1553	880	163	672	628
Volume-to-Capa		atio (X)			0.771	_	1.127	_	3 0.087	0.569	0.769		0.252	0.494	0.497
Available Capa					472	663	309	725		794	1553	880	402	815	763
		h/ln (50th percentile)			8.3	6.0	14.9	6.3	1.0	4.1	15.2	30.4	0.8	7.8	7.3
	` ''	RQ) (50th percentile			0.42	0.30	1.79	0.76		0.25	0.38	2.55	0.05	0.20	0.19
Uniform Delay (,		48.0	34.7	37.7	28.4	_	22.4	30.5	28.1	28.3	31.8	31.9
	remental Delay (d2), s/veh				5.8	0.8	89.9	0.4	0.1	1.2	2.3	28.0	0.8	0.5	0.5
	Il Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (53.8	35.6	127.6	28.7	_	23.6	32.9	56.1	29.1	32.3	32.4
Level of Service	e (LOS)				D	D	F	С	С	С			С	С	С
Approach Delay				45.0		D	77.6	3	E	40.8	3	D	32.2	2	С
Intersection Del	lay, s/ve	eh / LOS				46	6.0						D		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				3.0	-	С	2.8	-	С	2.4	-	В	2.3	-	В
Bicycle LOS Sc	cycle LOS Score / LOS		1.3		Α	1.6		Α	2.4		В	1.1		Α	

HCS 2010™ Streets Version 6.65

		-WAY STOP								
General Information	n		Site I	nforr	nati	ion				
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Jurisd Analy	liction	ar		2015			
Project Description B	all Homes Fac	tory Lane	•							
East/West Street: Faci	tory Lane		North/	South	Stre	et: Colon	ial Springs	;		
Intersection Orientation	: East-West		Study	Period	l (hrs	s): 0.25				
Vehicle Volumes a	nd Adjustn	nents								
Major Street		Eastbound					Westbou	ınd		
Movement	1	2	3			4	5		6	
	L	Т	R			L	Т		R	
Volume (veh/h)	6	167					322	14		
Peak-Hour Factor, PHF		0.91	1.00)		1.00	0.91	0.91		
Hourly Flow Rate, HFR (veh/h)	6	183	0			0	353		15	
Percent Heavy Vehicles	1					0				
Median Type			Two V	Vay Le	eft Tu	ırn Lane	те			
RT Channelized			0							
Lanes	1	1	0			0	1		0	
Configuration	L	T							TR	
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	ınd		
Movement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
Volume (veh/h)						26			40	
Peak-Hour Factor, PHF		1.00	1.00)		0.91	1.00		0.91	
Hourly Flow Rate, HFR (veh/h)	0	0	0			28	0		43	
Percent Heavy Vehicles	0	0	0			1	0		1	
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0						0	
Lanes	0	0	0			0	0		0	
Configuration							LR			
Delay, Queue Length,	and I evel of	Service								
Approach	Eastbound	Westbound		Northb	OUDO	1	S	outhbou	nd	
Movement	1	4	7	8		9	10	11	12	
Lane Configuration	L							LR		
v (veh/h)	6							71		
C (m) (veh/h)	1196						636			
v/c	0.01						0.11			
95% queue length	0.02							0.38		
Control Delay (s/veh)	8.0						11.4		+	
LOS Approach Delay	A						11.4			
(s/veh) Approach LOS								В		

HCS+™ Version 5.6

Generated: 7/21/2015 2:18 PM

	IWC	-WAY STOP	CONTR	OL S	SUM	MARY			
General Information	n		Site I	nfori	mati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5 (Interse Jurisd Analys	liction			2022 No	Build	
Project Description B		ctory Lane							
East/West Street: Fact							ial Springs		
Intersection Orientation			Study	Period	d (hrs	s): 0.25			
Vehicle Volumes a	ınd Adjustn								
Major Street		Eastbound	1 0				Westbou	nd	
Movement	1 L	2 	3 R			4 	5 T		6 R
Volume (veh/h)	6	196	K			L	378		14
volume (ven/n) Peak-Hour Factor, PHF		0.91	1.00)		1.00	0.91		0.91
Hourly Flow Rate, HFR				-					15
(veh/h)	О	215	0			0	415	415	
Percent Heavy Vehicles	5 1					0			
Median Type			Two V	Vay Le	eft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)	4.00					26	4.00		40
Peak-Hour Factor, PHF		1.00	1.00)		0.91	1.00		0.91
Hourly Flow Rate, HFR (veh/h)	0	0	0			28	0		43
Percent Heavy Vehicles	5 0	0	0			1	0		1
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized		<u> </u>	0				Ť		0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,	and Level of	Service							
Approach	Eastbound	Westbound		Northb	ound	1	S	outhboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	7		۳			10	LR	12
v (veh/h)	6							71	+
-							+ - - - - - - - - - -		
C (m) (veh/h)	1135							587 0.12	
V/C	0.01								-
95% queue length	0.02							0.41	-
Control Delay (s/veh)	8.2							12.0	-
LOS	Α							В	
Approach Delay (s/veh)								12.0	
Approach LOS B									

HCS+™ Version 5.6

Generated: 7/21/2015 2:21 PM

	TWC	-WAY STOP	CONTR	OL S	UM	MARY			
General Information	on		Site I	nfor	nat	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Inters Jurisd Analy	liction			2022 Bui	ild	
Project Description E	Ball Homes Fac	ctory I ane							
East/West Street: Fac		nory Larro	North/	South	Stre	et: Colon	ial Springs	;	
Intersection Orientation	: East-West					s): 0.25			
Vehicle Volumes a	nd Adiustn	nents							
Major Street		Eastbound					Westbou	nd	
Movement	1	2	3			4	5		6
	L	T	R			L	Т		R
Volume (veh/h)	6	236					506		14
Peak-Hour Factor, PHF		0.91	1.00)		1.00	0.91		0.91
Hourly Flow Rate, HFR (veh/h)	0	259	0			0	556		15
Percent Heavy Vehicles	s 1					0			
Median Type			Two V	Vay Le	ft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	T	R			L	Т		R
Volume (veh/h)						26			40
Peak-Hour Factor, PHF	_	1.00	1.00)		0.91	1.00		0.91
Hourly Flow Rate, HFR (veh/h)	0	0	0			28	0		43
Percent Heavy Vehicles	s 0	0	0			1	0		1
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,	and Level of	Service							
Approach	Eastbound	Westbound	1	Northb	ound	<u> </u>	S	outhbou	nd
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L			<u> </u>				LR	1
v (veh/h)	6							71	1
C (m) (veh/h)	1007		-				492		+
v/c	0.01							0.14	+
95% queue length	0.02							0.50	-
Control Delay (s/veh)	8.6							13.5	
LOS	Α							В	
Approach Delay (s/veh)								13.5	
Approach LOS								В	

	TWC	-WAY STOP	CONTR	OL S	UM	IMARY			
General Information	n		Site I	nfori	mat	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Inters Jurisd Analy	liction			2015		
Project Description B	all Homes Fac	ctory Lane	_						
East/West Street: Fac							ial Springs		
Intersection Orientation	: East-West		Study	Period	d (hrs	s): 0.25			
Vehicle Volumes a	ınd Adjustn	nents							
Major Street		Eastbound					Westbou	nd	
Movement	1	2	3			4	5		6
	L	T	R			L	Т		R
Volume (veh/h)	40	471	1.00			4.00	349		34
Peak-Hour Factor, PHF Hourly Flow Rate, HFR (veh/h)		0.94 501	1.00)		1.00 0	0.94 371		0.94 36
Percent Heavy Vehicles	5 1					0			
Median Type			Two V	Vay Le	eft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	T	R			L	Т		R
Volume (veh/h)						55			22
Peak-Hour Factor, PHF		1.00	1.00)		0.94	1.00		0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0			58	0		23
Percent Heavy Vehicles	s 0	0	0			1	0		1
Percent Grade (%)		0	1				0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,				lorthh	0110	-1		outhbaun	d
Approach Movement	Eastbound	Westbound	7	Northb 8		9		outhboun	12
	1 ,	4	/	l °)	9	10	11	12
Lane Configuration	L			-				LR 04	-
v (veh/h)	42			-				81	-
C (m) (veh/h)	1157							447	
v/c	0.04							0.18	+
95% queue length	0.11							0.65	
Control Delay (s/veh)	8.2							14.8	1
LOS	Α							В	
Approach Delay (s/veh)								14.8	
Approach LOS				В					

HCS+[™] Version 5.6

	TWO	-WAY STOP	CONTRO	L SI	JMMARY			
General Information	on		Site Inf	orm	ation			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5 (Intersect Jurisdict Analysis	ion	r	2022 No	Build	
Project Description E		ctory Lane	North/Co	th. C	tract: Oalo	nial Caringa		
East/West Street: Fac Intersection Orientation					treet: Color (hrs): 0.25	niai Springs	;	
Vehicle Volumes a		aanta	Jolddy i C	nou	(1113). 0.20			
Major Street	HILL AUJUSTI	Eastbound		Т		Westbou	ınd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)	40	553				410		34
Peak-Hour Factor, PHF		0.94	1.00		1.00	0.94		0.94
Hourly Flow Rate, HFR (veh/h)	42	588	0		0	436		36
Percent Heavy Vehicle	s 1				0			
Median Type			Two Way Left Turn Lane					
RT Channelized			0				0	
Lanes	1	1	0		0	1		0
Configuration	L	T						TR
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	ınd	
Movement	7	8	9		10	11		12
	L L	T	R		L	T		R
Volume (veh/h)	1.00	4.00	4.00	_	55	1.00		22 0.94
Peak-Hour Factor, PHF Hourly Flow Rate, HFR		1.00	1.00		0.94 58	0		
(veh/h)		0	0	_		0		23
Percent Heavy Vehicle	s 0		0	_	1	0		1
Percent Grade (%)		0	<u> </u>	_				
Flared Approach		N		_		N		
Storage		0				0		
RT Channelized			0	_				0
Lanes	0	0	0	+	0	0		0
Configuration						LR		
Delay, Queue Length,				41-1-				-1
Approach	Eastbound	Westbound		rthbo			outhboun	_
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	-
v (veh/h)	42						81	-
C (m) (veh/h)	1095						398	-
v/c	0.04						0.20	
95% queue length	0.12						0.75	
Control Delay (s/veh)	8.4						16.3	
LOS	Α						С	
Approach Delay (s/veh)							16.3	
Approach LOS							С	
,								

	IVVC	-WAY STOP	CONTR	OL S	SUM	MARY			
General Information	n		Site I	nfori	mati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Inters Jurisd Analy	iction			2022 Bui	ld	
Project Description B East/West Street: Fac		cory Lane	North/	South	Stre	et: Colon	ial Springs		
Intersection Orientation						s): 0.25	iai opinigo		
Vehicle Volumes a	nd Adiustn	nante			_				
Major Street	Hu Aujusti	Eastbound					Westbou	nd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
Volume (veh/h)	40	689					487		34
Peak-Hour Factor, PHF		0.94	1.00)		1.00	0.94		0.94
Hourly Flow Rate, HFR (veh/h)	42	732	0			0	518		36
(ven/n) Percent Heavy Vehicles	3 1					0			
Median Type	, ,		Two V	Vay I e	ff Tu	ırn Lane			
RT Channelized			1 0	vay Le	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IIII Lanc			0
Lanes	1	1	0			0	1		0
Configuration	L	T					,		TR
Upstream Signal		0					0		773
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)						55			22
Peak-Hour Factor, PHF	1.00	1.00	1.00)		0.94	1.00		0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0			58	0		23
Percent Heavy Vehicles	s 0	0	0			1	0		1
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,	and Level of	Service							
Approach	Eastbound	Westbound	1	Northb	ounc	t	S	outhboun	d
Movement	1	4	7	8	}	9	10	11	12
Lane Configuration	L							LR	
v (veh/h)	42							81	
C (m) (veh/h)	1021							338	
v/c	0.04							0.24	
95% queue length	0.13							0.92	
Control Delay (s/veh)	8.7							19.0	
LOS	A							C	
Approach Delay (s/veh)							19.0		1
(3/1011)					С				

HCS+™ Version 5.6

	TWC	-WAY STOP	CONTR	OL SI	JM	MARY				
General Information	n		Site I	nform	ati	on				
Analyst	D Zimme	erman	Inters	ection						
Agency/Co.	Jacobs		Jurisd	liction						
Date Performed	7/21/201		Analy	sis Yea	r		2015			
Analysis Time Period	AM Peak	(
Project Description E		ctory Lane								
East/West Street: Fac							ce Springs	Drive		
Intersection Orientation	: East-West		Study	Period	(hrs	6): 0.25				
Vehicle Volumes a	ınd Adjustn			<u> </u>						
Major Street		Eastbound					Westbou	ınd		
Movement	1	2	3			4	5		6	
	L	T	R			L	T		R	
Volume (veh/h)	18	139	18	, +		1	184		3	
Peak-Hour Factor, PHF Hourly Flow Rate, HFR		0.88	0.88	5		0.88	0.88		0.88	
nouny riow Rate, HFR (veh/h)	20	157	20			1	209		3	
Percent Heavy Vehicles	5 1					1				
Median Type			Two V	Way Left Turn Lane						
RT Channelized			0				(
Lanes	1	1	0			1	1		0	
Configuration	L		TR			L			TR	
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	und		
Movement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
Volume (veh/h)	63	1	15			73	0		5	
Peak-Hour Factor, PHF	0.88	0.88	0.88	3		0.88	0.88		0.88	
Hourly Flow Rate, HFR	71	1	17			82	0		5	
(veh/h)										
Percent Heavy Vehicles	3 1	1	1			1	1		1	
Percent Grade (%)		0	T				0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0						0	
Lanes	0	1	0			0	1		0	
Configuration		LTR					LTR			
Delay, Queue Length,										
Approach	Eastbound	Westbound	1	Northbo	und	l	S	outhboun	d	
Movement	1	4	7	8		9	10	11	12	
Lane Configuration	L	L		LTR				LTR		
v (veh/h)	20	1		89				87		
C (m) (veh/h)	1364	1405		635			602			
v/c	0.01	0.00		0.14	$\overline{}$			0.14		
95% queue length	0.04	0.00		0.49	$\overline{}$		0.50			
Control Delay (s/veh)	7.7	7.6		11.6	$\overline{}$			12.0		
LOS Approach Delay	Α	Α		В			В			
(s/veh)				11.6				12.0		
Approach LOS				В				В		

Copyright © 2010 University of Florida, All Rights Reserved HCS+TM Version 5.6 Generated: 7/21/2015 2:30 PM

	TWC	-WAY STOP											
General Informati	on		Site I	nforn	nati	ion							
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Interse Jurisd Analys		ar		2022 No	Buil	d				
Project Description I	Ball Homes Fac	ctory Lane											
East/West Street: Fac			North/	South (Stre	et: Terra	ce Springs	Driv	'e				
Intersection Orientation	n: East-West		Study	Period	(hrs	s): 0.25							
Vehicle Volumes	and Adjustn	nents											
Major Street		Eastbound	_				Westbou	ınd					
Movement	1	2	3			4	5			6			
	L	T	R			L	<u> </u>						
Volume (veh/h)	18	163	18			1							
Peak-Hour Factor, PHI		0.88	0.88	1		0.88	0.88		0	.88			
Hourly Flow Rate, HFF (veh/h)	20	185	20			1	245 3						
Percent Heavy Vehicle	s 1					1							
Median Type			Two V	Vay Let	ťΤι	ırn Lane							
RT Channelized			0				2022 No Build rrace Springs Drive 5 Westbound 5 6 T R 216 3 0.88 0.88 245 3 9 1 0 TR 0 Southbound 11 12 T R 0 5 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88						
Lanes	1	1	0			1	1	0					
Configuration	L		TR			L				TR			
Upstream Signal		0											
Minor Street		Northbound											
Movement	7	8	9			10							
	L	T	R			L							
Volume (veh/h)	63	1	15			73							
Peak-Hour Factor, PHI		0.88	0.88	!		0.88	0.88		0	.88			
Hourly Flow Rate, HFF (veh/h)	//	1	17			82	0						
Percent Heavy Vehicle	s 1	1	1			1	1			1			
Percent Grade (%)		0					0						
Flared Approach		N					N						
Storage		0					0						
RT Channelized			0							0			
Lanes	0	1	0			0	1			0			
Configuration		LTR					LTR						
Delay, Queue Length	and Level of	Service											
Approach	Eastbound	Westbound	l l	Northbo	ounc	t	S	outh	bound				
Movement	1	4	7	8		9	10		11	12			
Lane Configuration	L	L		LTR	?			L	TR				
v (veh/h)	20	1		+ + + +		37							
C (m) (veh/h)	1324	1372		598			 						
v/c	0.02	0.00		0.15				-	_				
95% queue length	0.05	0.00		0.70				_	\rightarrow				
Control Delay (s/veh)	7.8	7.6											
LOS		7.0 A		12.1 B					_				
Approach Delay	A	A		12.1	1								
(s/veh) Approach LOS				В									
, pp. 50011 200			В										

HCS+™ Version 5.6

	746	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CONTR	<u> </u>					
Camanal Informati		-WAY STOP							
General Information			Site I			ion			
Analyst	D Zimme	erman	Inters						
Agency/Co. Date Performed	Jacobs 7/21/201	5	Jurisd		0.5		2022 Bui	ld.	
Analysis Time Period	AM Peak		Analy	sis re	aı		2022 Bui	Ia	
Project Description E		-							
East/West Street: Fac		ctory Lane	North/	South	Stro	ot: Torra	ce Springs	Drivo	
Intersection Orientation			Study				e opinigs	DIIVE	
		4-	Jolddy	1 01100	<i>x</i> (1111 x	3). 0.20			
Vehicle Volumes a	ina Aajustii				Г		Moothou	n d	
Major Street Movement	1	Eastbound 2	3			4	Westbou 5	na	6
Movement	 	T	R			L	T	_	R
Volume (veh/h)	18	203	18			1	344		3
Peak-Hour Factor, PHF	_	0.88	0.88	}		0.88	0.88		0.88
Hourly Flow Rate, HFR (veh/h)		230	20			1	390		3
Percent Heavy Vehicle	s 1					1			
Median Type			Two V	Vay Le	eft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			1	1		0
Configuration	L		TR			L			TR
Upstream Signal		0					0		
Minor Street		Northbound	•				Southbou	ınd	
Movement	7	8	9			10	11		12
	L	T	R			L	Т		R
Volume (veh/h)	63	1	15			73			5
Peak-Hour Factor, PHF	0.88	0.88	0.88	}		0.88			0.88
Hourly Flow Rate, HFR (veh/h)	/1	1	17			82	0		5
Percent Heavy Vehicle	s 1	1	1			1	1		1
Percent Grade (%)		0					0		
Flared Approach		N					Ν		
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length,	and Level of	Service							
Approach	Eastbound	Westbound	1	orthb	ound	d	S	outhbo	und
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L	· ·	LTI		_		LTR	_
v (veh/h)	20	1		89				87	
C (m) (veh/h)	1171	1321		50			470		
v/c	0.02	0.00		0.1			0.19		_
				_			0.19		
95% queue length	0.05	0.00		0.6					
Control Delay (s/veh)	8.1	7.7		13.				14.4	-
LOS	Α	Α		В				В	
Approach Delay (s/veh)				13.				14.4	
Approach LOS				- В В				В	

HCS+[™] Version 5.6

General Information		-WAY STOP	CONTR Site I							
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Interso Jurisd Analys	ection iction		ion	2015			
Project Description E										
East/West Street: Fac							ce Springs	Drive		
Intersection Orientation	: East-West		Study	Period	l (hr	s): 0.25				
Vehicle Volumes a	and Adjustn	nents								
Major Street		Eastbound					Westbou	nd		
Movement	1	2	3			4	5		6	
	L	T	R			L	T		R	
Volume (veh/h) Peak-Hour Factor, PHF	74	254 0.88	0.88	,		9 0.88	291 0.88	24 0.88		
Hourly Flow Rate, HFR (veh/h)		288	75)		10	330	27		
Percent Heavy Vehicles	s 1					1				
Median Type			Two V	Vav Le	ft Tı	ırn Lane				
RT Channelized			0						0	
Lanes	1	1	0			1	1		0	
Configuration	L		TR			L			TR	
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	ınd		
Movement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
Volume (veh/h)	26	0	8			6	1		36	
Peak-Hour Factor, PHF		0.88	0.88	}		0.88	0.88		0.88	
Hourly Flow Rate, HFR (veh/h)	29	0	9			6	1		40	
Percent Heavy Vehicles	s 1	1	1			1	1		1	
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0						0	
Lanes	0	1	0			0	1		0	
Configuration		LTR					LTR			
Delay, Queue Length,										
Approach	Eastbound	Westbound		orthb				outhbou		
Movement	1	4	7	8		9	10	11	12	
Lane Configuration	L	L		LTF				LTR		
v (veh/h)	84	10		38						
C (m) (veh/h)	1207	1201		393	3		610			
v/c	0.07	0.01		0.1	0		0.08			
95% queue length	0.22	0.03		0.3	2		0.25			
Control Delay (s/veh)	8.2	8.0		15.	1			11.4		
LOS	Α	Α		С				В		
Approach Delay (s/veh)				15.			11.4			
Approach LOS				СВ						

HCS+™ Version 5.6

	TWC	-WAY STOP	CONTR	OL SI	JM	IMARY				
General Information		71171 0101		nform						
Analyst	D Zimme	erman	Inters	ection						
Agency/Co.	Jacobs		Jurisd	iction						
Date Performed	7/21/201	5	Analy	sis Yea	r		2022 No	Build		
Analysis Time Period	PM Peak	ζ.								
Project Description B		ctory Lane					ace Springs Drive			
East/West Street: Fac							ce Springs	Drive		
Intersection Orientation			Study							
Vehicle Volumes a	ınd Adjustn									
Major Street		Eastbound	1 -				Westbou	ınd		
Movement	1	2 	3			4	5 T		6	
\	L		R			L			R	
Volume (veh/h) Peak-Hour Factor, PHF	74 0.88	298 0.88	66 0.88	, +		9 0.88	342 0.88		24 0.88	
Hourly Flow Rate, HFR				'						
(veh/h)	84	338	75			10	388		27	
Percent Heavy Vehicles	3 1					1				
Median Type			Two V	Vay Left	tΤι	ırn Lane				
RT Channelized			0					0		
Lanes	1	1	0			1	1		0	
Configuration	L		TR			L			TR	
Upstream Signal		0					0			
Minor Street		Northbound					Southboo	ınd		
Movement	7	8	9			10	11		12	
	L	T	R			L	Т		R	
Volume (veh/h)	26	0	8			6	1		36	
Peak-Hour Factor, PHF		0.88	0.88	-		0.88	0.88		0.88	
Hourly Flow Rate, HFR (veh/h)	29	0	9			6	1		40	
Percent Heavy Vehicles	5 1	1	1			1	1		1	
Percent Grade (%)	-	0					0		•	
Flared Approach	+	N					N			
Storage		0					0			
RT Channelized			0						0	
Lanes	0	1	0			0	1		0	
Configuration		LTR	+			-	LTR			
Delay, Queue Length,	and Level of	_					2771			
Approach	Eastbound	Westbound		Northbo	unc	4	9	outhboun	4	
Movement	1	4	7	8	uil	9	10	11	12	
Lane Configuration		L		LTR	,	9	10	LTR	'2	
v (veh/h)	84	10		38				47	1	
· · ·	1149			-						
C (m) (veh/h)		1151		355				561		
v/c	0.07	0.01		0.11				0.08	-	
95% queue length	0.24	0.03		0.36				0.27	-	
Control Delay (s/veh)	8.4	8.2		16.4				12.0	-	
LOS	Α	Α		С				В		
Approach Delay (s/veh)				16.4				12.0		
Approach LOS				С				В		

HCS+™ Version 5.6

Volume (veh/h) 74 434 66 9 419 22 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 0.88 0.8 0		TWC	-WAY STOP	CONTR	OL SU	MMARY			
Agency/Co Date Performed 72 12015 Date Performed 72 12015 Date Performed 72 12015 Date Performed Pale Pale Peak Project Description Ball Homes Factory Lane EastWest Street: Factory Lane Study Period (hrs): 0.25	General Information	n		Site I	nforma	ation			
EastWest Street: Factory Lane North/South Street: Terrace Springs Drive	Agency/Co. Date Performed Analysis Time Period	Jacobs 7/21/201 PM Peak	5 (Jurisd	iction		2022 Bui	ild	
Intersection Orientation: East-West			tory Lane						
Vehicle Volumes and Adjustments							ce Springs	Drive	
Major Street Eastbound Westbound Movement 1 2 3 4 5 6 Volume (veh/h) 74 434 66 9 419 2- Peak-Hour Factor, PHF 0.88				Study	Perioa (r	nrs): 0.25			
Movement		ınd Adjustn							
Configuration Configuratio		1		1 2				nd	
Volume (veh/h)	iviovement								R
Peak-Houry Factor, PHF 0.88	Volumo (voh/h)						<u> </u>		
Hourly Flow Rate, HFR (veh/h) 84									0.88
Veh/h 04									
Percent Heavy Vehicles		84	493	75		10	476		27
RT Channelized	Percent Heavy Vehicles	s 1				1			
Configuration	Median Type			Тwo И	/ay Left	Turn Lane		·	
Configuration L	RT Channelized			0					0
Minor Street	Lanes	1	1	0		1	1		0
Minor Street	Configuration	L		TR		L			TR
Movement			0				0		
L	Minor Street		Northbound				Southbou	ınd	
Volume (veh/h) 26 0 8 6 1 38 Peak-Hour Factor, PHF 0.88	Movement	7	8	9		10	11		12
Peak-Hour Factor, PHF 0.88 0.98 0.99		L	T	R		L	Т		R
Hourly Flow Rate, HFR (yeh/h) 29	Volume (veh/h)	26	0	8		6 1			36
(veh/h) 29 0 9 0 1 40 Percent Heavy Vehicles 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td>0.88</td><td>0.88</td><td></td><td>0.88</td><td>0.88</td><td></td><td>0.88</td></td<>			0.88	0.88		0.88	0.88		0.88
Percent Grade (%) 0	(veh/h)	29	0	9		6	1		40
Storage	Percent Heavy Vehicles	5 1	1	1		1	1		1
Storage 0 0 RT Channelized 0 0 Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR Delay, Queue Length, and Level of Service Northbound Southbound Southbound Movement 1 4 7 8 9 10 11 LTR LTR LTR LTR LTR LTR V(veh/h) V(veh/h) 84 10 38 47 47 481 47 C(m) (veh/h) 1067 1009 283 481 481 481 481 481 481 481 481 481 481 481 481 482 483 484 48	Percent Grade (%)		0				0		
RT Channelized	Flared Approach		N				N		
Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR 0 1 0 Delay, Queue Length, and Level of Service Approach Eastbound Westbound Northbound Southbound Movement 1 4 7 8 9 10 11 Lane Configuration L L LTR LTR LTR V (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 V/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	Storage		0				0		
Configuration LTR LTR Delay, Queue Length, and Level of Service Approach Eastbound Westbound Northbound Southbound Movement 1 4 7 8 9 10 11 Lane Configuration L L LTR LTR LTR v (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	RT Channelized			0					0
Delay, Queue Length, and Level of Service Approach Eastbound Westbound Northbound Southbound Movement 1 4 7 8 9 10 11 Lane Configuration L L LTR LTR LTR V (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 V/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	Lanes	0	1	0		0	1		0
Approach Eastbound Westbound Northbound Southbound Movement 1 4 7 8 9 10 11 Lane Configuration L L LTR LTR LTR V (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	Configuration		LTR				LTR		
Movement 1 4 7 8 9 10 11 Lane Configuration L L L LTR v (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	Delay, Queue Length,	and Level of	Service						
Lane Configuration L L LTR LTR v (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B				N	Northbou	nd	S	outhboun	ıd
Lane Configuration L L LTR LTR v (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B		1	4	7	8	9	_		12
v (veh/h) 84 10 38 47 C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B		L					1		1
C (m) (veh/h) 1067 1009 283 481 v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	- +								1
v/c 0.08 0.01 0.13 0.10 95% queue length 0.26 0.03 0.46 0.32 Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B	· · · · · · · · · · · · · · · · · · ·								1
95% queue length									
Control Delay (s/veh) 8.7 8.6 19.7 13.3 LOS A A C B									+
LOS A A C B									+
									+
Approach Delay 19.7 13.3	Approach Delay								
(s/veh)									

HCS+™ Version 5.6

O		-WAY STOP							
General Information	on		Site I			ion			
Analyst	D Zimme	rman	Inters						
Agency/Co.	Jacobs	-	Jurisd				0000		
Date Performed	7/21/201	_	Analy	sis ye	ar		2022		
Analysis Time Period	AM Peak								
Project Description E East/West Street: Fac		tory Lane	North/	Couth	Ctro	et: Main	Entropoo		
Intersection Orientation						s): 0.25	Entrance		
			Joiliudy	renoc	<i>x</i> (1113	5). 0.20			
Vehicle Volumes	ina Aajustn				Ι		10/45		
Major Street Movement	1	Eastbound 2	3			4	Westbou 5	na	6
Movement	L	T 7	R			4	T		R
Volume (veh/h)	38	185					173		25
Peak-Hour Factor, PHF		0.88	1.00)		1.00	0.88		0.88
Hourly Flow Rate, HFR	_		0			0			28
(veh/h)	43	210	1 0			U	196		2δ
Percent Heavy Vehicle	s 1					0			
Median Type				Raise	d cu	rb			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	T	R			L	T		R
Volume (veh/h)						80			118
Peak-Hour Factor, PHF		1.00	1.00)		0.88	1.00		0.88
Hourly Flow Rate, HFR (veh/h)	0	0	0			90	0		134
Percent Heavy Vehicle	s 0	0	0			1	0		1
Percent Grade (%)		0					0		<u> </u>
Flared Approach		T N					N		
Storage		0					0		
RT Channelized		- 0	0				0		0
Lanes	0	0	0			0	0	_	0
Configuration	- 0	- 0	0				LR		- 0
	and Level of	Convice					LA		
Delay, Queue Length,	Eastbound	Westbound		Northb	OLUD?	4	-	outhbou	nd
Approach Mayamant									
Movement	1	4	7	8)	9	10	11	12
Lane Configuration	L							LR	-
v (veh/h)	43							224	-
C (m) (veh/h)	1351							712	
v/c	0.03							0.31	
95% queue length	0.10							1.35	
Control Delay (s/veh)	7.8							12.4	
LOS	Α							В	
Approach Delay (s/veh)				_				12.4	
Approach LOS								В	

		-WAY STOP	CONTR	OL S	UM	MARY			
General Information	on		Site I	nforn	nati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Inters Jurisd Analy		ar		2022		
Project Description E									
East/West Street: Fac		,	North/	South	Stre	et: Main	Entrance		
Intersection Orientation	: East-West		Study	Period	(hrs	s): 0.25			
Vehicle Volumes a	nd Adiustn	nents							
Major Street		Eastbound					Westbou	ınd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
Volume (veh/h)	127	321					391		84
Peak-Hour Factor, PHF		0.88	1.00)		1.00	0.88		0.88
Hourly Flow Rate, HFR (veh/h)	144	364	0			0	444		95
Percent Heavy Vehicles	s 1					0			
Median Type				Raise	d cu	rb			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	ınd	
Movement	7	8	9			10	11		12
	L	Т	R			L T			R
Volume (veh/h)						48			73
Peak-Hour Factor, PHF		1.00	1.00)		0.88	1.00		0.88
Hourly Flow Rate, HFR (veh/h)	0	0	0			54	0		82
Percent Heavy Vehicles	s 0	0	0			1	0		1
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,	and I evel of	Service							
Approach	Eastbound	Westbound	1	Northbo	ound	1	S	outhboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L							LR	
v (veh/h)	144							136	1
C (m) (veh/h)	1034			1				439	
v/c	0.14							0.31	
95% queue length	0.48							1.30	
Control Delay (s/veh)	9.0							16.8	
									
LOS Approach Delay	A			L				C 16.8	
(s/veh) Approach LOS								C	

HCS+™ Version 5.6

	TWC	-WAY STOP	CONTR	OL S	UM	MARY			
General Information	on		Site I	nfor	nati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Inters Jurisd Analy	liction			2022		
Project Description E	Ball Homes Fac	ctory Lane							
East/West Street: Fac		,	North/	South	Stre	et: Secor	ndary Entra	ance	
Intersection Orientation	: East-West					s): 0.25			
Vehicle Volumes a	nd Adjustn	nents							
Major Street	Aujustii	Eastbound					Westbou	ınd	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume (veh/h)	2	263					188		1
Peak-Hour Factor, PHF	0.88	0.88	1.00)		1.00	0.88		0.88
Hourly Flow Rate, HFR (veh/h)	2	298	0			0	213		1
Percent Heavy Vehicles	s 1					0			
Median Type				Undi	vided	d			
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration	LT								TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	und	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)						6			10
Peak-Hour Factor, PHF	1.00	1.00	1.00)		0.88	1.00		0.88
Hourly Flow Rate, HFR (veh/h)	0	0	0			6	0		11
Percent Heavy Vehicles	s 0	0	0			1	0		1
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length,	and I evel of	Service							
Approach	Eastbound	Westbound		Northb	OUDO	4	S	outhbou	nd
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (veh/h)	2							17	
C (m) (veh/h)	1362							685	
v/c	0.00							0.02	
95% queue length	0.00							0.08	
Control Delay (s/veh)	7.6							10.4	+
LOS									
Approach Delay	A							B 10.4	
(s/veh) Approach LOS								В	
A POLOGOLI ECO		l	l.						

HCS+™ Version 5.6

	TWC	-WAY STOP	CONTR	OL SU	JMMARY			
General Information	on		Site I	nform	ation			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Jurisd	ection liction sis Year		2022		
Project Description E	Ball Homes Fac	ctory Lane						
East/West Street: Fac			North/	South St	treet: Seco	ndary Entra	ance	
Intersection Orientation	: East-West		Study	Period (hrs): 0.25			
Vehicle Volumes a	and Adjustn	nents						
Major Street		Eastbound				Westbou	ınd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	9	360				471		6
Peak-Hour Factor, PHF		0.88	1.00)	1.00	0.88		0.88
Hourly Flow Rate, HFR (veh/h)	10	409	0		0	535		6
Percent Heavy Vehicles	s 1				0			
Median Type				Undivid	ded		,	
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	LT							TR
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	und	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					3			4
Peak-Hour Factor, PHF		1.00	1.00)	0.88	1.00		0.88
Hourly Flow Rate, HFR (veh/h)	0	0	0		3	0		4
Percent Heavy Vehicles	s 0	0	0		1	0		1
Percent Grade (%)		0				0		
Flared Approach		N				Ν		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration						LR		
Delay, Queue Length,	and Level of	Service						
Approach	Eastbound	Westbound		Northbou	und	S	outhboun	d
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT						LR	
v (veh/h)	10						7	
C (m) (veh/h)	1033						388	
	0.01						0.02	
v/c							0.06	
	0.03				1		0.00	1
95% queue length	0.03 8.5						14.4	
95% queue length Control Delay (s/veh)	8.5						14.4 R	
95% queue length							14.4 B 14.4	

Copyright © 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6 Generated: 7/21/2015 2:45 PM

		ALL-WAY	SIOP	ONTROL	ANALYS	15		
General Information				Site Inform	nation			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zim Jacob 7/21/2 AM P	2015		Intersection Jurisdiction Analysis Year		2015		
Project ID Ball Homes Factor	ry Lane							
East/West Street: Factory L	ane			North/South St	treet: Old Her	nry Road		
Volume Adjustments	s and Site (
Approach Movement		E	astbound	R	 	W	estbound T	R
Volume (veh/h)	1.	2	168	0	0		86	77
%Thrus Left Lane					<u> </u>			
Approach			orthbound			So	uthbound	
Movement	L		T	R	L		T	R
Volume (veh/h)	()	0	0	485	<u> </u>	0	53
%Thrus Left Lane								
	Eas	tbound	We	stbound	Norti	hbound	South	hbound
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT		TR				LR	
PHF	0.95		0.95				0.95	
Flow Rate (veh/h)	188		171				565	
% Heavy Vehicles	1		1				1	
No. Lanes		1		1		0		1
Geometry Group		1		1				1
Duration, T				0.2	25			
Saturation Headway	Adjustmer	nt Workshe			ı			
Prop. Left-Turns	0.1		0.0				0.9	
Prop. Right-Turns	0.0		0.5				0.1	
Prop. Heavy Vehicle	0.0		0.0				0.0	
hLT-adj	0.2	0.2	0.2	0.2			0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6			-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7			1.7	1.7
hadj, computed	0.0		-0.3				0.1	
Departure Headway	and Servic	e Time						
hd, initial value (s)	3.20		3.20				3.20	
x, initial	0.17		0.15				0.50	
hd, final value (s)	5.81		5.55				5.08	
k, final value	0.30		0.26				0.80	
Move-up time, m (s)		2.0		2.0		T		.0
Service Time, t _s (s)	3.8		3.6				3.1	
Capacity and Level o	of Service							
	Eas	tbound	We	stbound	Norti	hbound	South	hbound
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	438		421				699	
Delay (s/veh)	11.32		10.53				24.92	
LOS	B		B				C	
Approach: Delay (s/veh)	_	11 22		D.53				.92
LOS	+ '	11.32	 					
		В		B 10	40		(<u> </u>
Intersection Delay (s/veh)				19.	49			
meracuon LOS					<u>′ </u>			

HCS+™ Version 5.3

Generated: 7/21/2015 12:15 PM

		-WAY STOP							
General Information	n		Site I	nforn	nati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jaccobs 7/21/201 AM Peak	5	Intersolution Jurisd Analys		ar		2022 No	Build	
Project Description B		tory Lane	Jan. 11. 1	0 11					
East/West Street: Fact						et: Old H	enry Road		
Intersection Orientation			Study	Perioa	(nrs	s): 0.25			
Vehicle Volumes a	ınd Adjustn								
Major Street		Northbound					Southbou	und	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume (veh/h)	101	142	1.00	,		4.00	729		62
Peak-Hour Factor, PHF		0.95	1.00	,		1.00	0.95).95
Hourly Flow Rate, HFR (veh/h)	106	149	0			0	767		65
Percent Heavy Vehicles	3 1					0			
Median Type		·	Two V	Vay Le	ft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Eastbound					Westbou	ınd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)	14		197						
Peak-Hour Factor, PHF	0.95	1.00	0.95	5		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	14	0	207			0	0		0
Percent Heavy Vehicles	1	0	1			0	0		0
Percent Grade (%)		0					0	-	
Flared Approach		T N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	1	0	1			0	0		0
Configuration	L		R						
Delay, Queue Length,		Camrias							
1	Northbound	Southbound	١ ،	Moetho	NID.			Eastbound	
Approach Movement	Northbound 1	Southbound 4	7	Nestbo	JuilC	9	10	11	12
Lane Configuration	L			ا ا			L	<u> </u>	R
v (veh/h)	106						14		207
C (m) (veh/h)	805						318		387
v/c	0.13						0.04		0.53
95% queue length	0.45						0.14		3.04
Control Delay (s/veh)	10.1						16.8		24.5
LOS Approach Delay	В			<u> </u>			С	24.0	С
(s/veh) Approach LOS								24.0 C	
Appluacii LOS									

HCS+™ Version 5.6

Generated: 7/21/2015 12:23 PM

a 11.5 (:		-WAY STOP							
General Information	n		Site I	nforr	nat	ion			
Analyst	D Zimme	erman		ection					
Agency/Co.	Jaccobs	_	Jurisd						
Date Performed	7/21/201		Analy	sis Ye	ar		2022 Bui	ild	
Analysis Time Period	AM Peak								
	all Homes Fac	ctory Lane	N						
East/West Street: Fact		1-				et: Old H	enry Roaa	'	
Intersection Orientation			Study	Period	ı (nrs	s): 0.25			
Vehicle Volumes a	ınd Adjustn								
Major Street		Northbound	1 -				Southbou	und	
Movement	1	2	3			4	5		6
Valuma (vah/h)	127	142	R			L	T		R 62
Volume (veh/h) Peak-Hour Factor, PHF	_	0.95	1.00	,		1.00	729 0.95		0.95
Hourly Flow Rate, HFR				,					
(veh/h)	133	149	0			0	767		65
Percent Heavy Vehicles	1					0			
Median Type		•	Two V	Vay Le	ft Tu	ırn Lane		,	
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Eastbound		Westbound			ınd		
Movement	7	8	9			10	11		12
	L	T	R			L T			R
Volume (veh/h)	14		283						
Peak-Hour Factor, PHF	0.95	1.00	0.95	5		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	14	0	297	,		0	0		0
Percent Heavy Vehicles	5 1	0	1			0	0		0
Percent Grade (%)		0					0	!	
Flared Approach		N					Ν		
Storage		0					0		
RT Channelized			0						0
Lanes	1	0	1			0	0		0
Configuration	L	 	R						
Delay, Queue Length,		Service							
Approach	Northbound	Southbound	\	Nestb	OLIDO	1		astbound	1
Movement		4	7	8		9	10	11	12
	1 ,	4		├ °		9		''	+
Lane Configuration	L			-			L		R
v (veh/h)	133			-			14		297
C (m) (veh/h)	805						301		387
v/c	0.17						0.05		0.77
95% queue length	0.59						0.15		6.33
Control Delay (s/veh)	10.4						17.5		39.1
LOS	В						С		E
Approach Delay (s/veh)								38.1	
(3/ (3/)							F		

HCS+™ Version 5.6

Generated: 7/21/2015 12:25 PM

		\ _	3101 0	ONTROL	ANALIS	3		
General Information				Site Inform	nation			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zim Jacob 7/21/2 PM Pe	015		Intersection Jurisdiction Analysis Year		2015		
Project ID Ball Homes Factor	y Lane							
East/West Street: Factory L	ane			North/South St	reet: Old Hen	ry Road		
Volume Adjustments	and Site C	haracteris	tics					
Approach		E	astbound		ļ .	We	stbound	
Movement Volume (veh/h)	11	6	7 247	R 0	L		T 290	R 362
%Thrus Left Lane	- 11	0	241		- 0		290	302
Approach		L	orthbound		1	Sou	thbound	
Movement	L		T	R	L	300	T	R
Volume (veh/h)	0		0	0	193		0	39
%Thrus Left Lane								
	East	bound	Wes	stbound	North	bound	Sout	hbound
	L1	L2	L1	L2	L1	L2	L1	L2
Configuration	LT		TR				LR	"
PHF	0.96		0.96				0.96	
Flow Rate (veh/h)	377		679				241	
% Heavy Vehicles	1		1				1	
No. Lanes		1	'	1	()		1
Geometry Group		<u>.</u> 1		1				<u>.</u> 1
Duration, T				0.2	25			
Saturation Headway	Adjustmer	t Workshe	et					
Prop. Left-Turns	0.3		0.0				0.8	
Prop. Right-Turns	0.0		0.6				0.2	
Prop. Heavy Vehicle	0.0		0.0				0.0	
hLT-adj	0.2	0.2	0.2	0.2			0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6			-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7			1.7	1.7
nadj, computed	0.1	7.7	-0.3	1.7			0.1	1.7
Departure Headway		Time	-0.5				0.1	
hd, initial value (s)	3.20		3.20	T		<u> </u>	3.20	T
x, initial	0.34		0.60				0.21	
hd, final value (s)	5.83		5.08				6.63	_
x, final value	0.61		0.96				0.44	
Move-up time, m (s)		.0		2.0				.0
Service Time, t _e (s)	3.8	<u> </u>	3.1				4.6	<u> </u>
3		<u> </u>	J. 7	<u> </u>	<u> </u>		7.0	
Capacity and Level o	1							
	_	bound	_	stbound		bound	+	hbound
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	603		707				491	
Delay (s/veh)	17.56		46.20				14.82	
LOS	С		E				В	
Approach: Delay (s/veh)	_	7.56		5.20				.82
LOS	 	C	_	E				B
Intersection Delay (s/veh)				32.	ι Ω4			
Intersection LOS	 							

HCS+[™] Version 5.3

Generated: 7/21/2015 12:17 PM

		-WAY STOP	CONTR	OL S	UM	IMARY			
General Information	n		Site I	nfor	nati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jaccobs 7/21/201 PM Peak	5	Inters Jurisd Analy	iction			2022 No	Build	
Project Description B									
East/West Street: Fac		nory Lane	North/	South	Stre	et: Old H	enry Road		
Intersection Orientation		th	_			s): 0.25	omy riodd		
Vehicle Volumes a			, ,			,			
Major Street	Hu Aujustii	Northbound					Southbou	ınd	
Movement	1	2	3			4	5		6
	L	T	R			Ĺ	T		R
Volume (veh/h)	341	544					290		46
Peak-Hour Factor, PHF		0.96	1.00)		1.00	0.96		0.96
Hourly Flow Rate, HFR (veh/h)	355	566	0			0	302		47
Percent Heavy Vehicles	5 1					0			
Median Type			Two V	Vay Le	eft Tu	ırn Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street		Eastbound					Westbou	ind	
Movement	7	8	9			10	11		12
	L	T	R			L	Т		R
Volume (veh/h)	136		290						
Peak-Hour Factor, PHF	_	1.00	0.96	<u> </u>		1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	141	0	302			0	0		0
Percent Heavy Vehicles	5 1	0	1			0	0		0
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	1	0	1			0	0		0
Configuration	L		R						
Delay, Queue Length,	and Level of	Service							
Approach	Northbound	Southbound		Nestb	ounc	d	E	astbound	<u> </u>
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L						L		R
/ (veh/h)	355						141		302
C (m) (veh/h)	1215						157		718
//c	0.29						0.90		0.42
95% queue length	1.22						6.34		2.09
Control Delay (s/veh)	9.2						104.0		13.6
LOS	A						F		B
Approach Delay (s/veh)						I	,	42.4	1 0
Approach LOS								E	
ψρισαστι Εσσ								L	

		-WAY STOP							
General Information	on		Site I	nform	atio	on			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jaccobs 7/21/201 PM Peak	5	Jurisd	ection liction sis Year	г		2022 Bui	ild	
Project Description E		tory Lane							
East/West Street: Fac							enry Road		
Intersection Orientation	: North-Sout	h	Study	Period ((hrs): 0.25			
Vehicle Volumes a	ınd Adjustn								
Major Street		Northbound	1 -				Southbou	ınd	
Movement	1 1	2	3			4	5		6
\	L	T	R			L	T		R
Volume (veh/h) Peak-Hour Factor, PHF	431	544	1.00	. +		1.00	290		46
Peak-Hour Factor, PHF Hourly Flow Rate, HFR		0.96	1.00	' 		1.00	0.96		0.96
(veh/h)	448	566	0			0	302		47
Percent Heavy Vehicles	5 1					0			
Median Type		_	Two V	Vay Left	Tur	n Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	T							TR
Upstream Signal		0					0		
Minor Street	i	Eastbound					Westbou	nd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)	136		341						
Peak-Hour Factor, PHF	0.96	1.00	0.96	3	1	1.00	1.00		1.00
Hourly Flow Rate, HFR (veh/h)	141	0	355			0	0		0
Percent Heavy Vehicles	5 1	0	1			0	0		0
Percent Grade (%)		0					0		
Flared Approach		N					Ν		
Storage		0					0		
RT Channelized			0						0
Lanes	1	0	1			0	0		0
Configuration	L		R						
Delay, Queue Length,	and Level of	Service							
Approach	Northbound	Southbound	١	Vestbou	und		E	astbound	
Movement	1	4	7	8	Ī	9	10	11	12
Lane Configuration	L	-		<u> </u>	\dashv		L		R
v (veh/h)	448						141		355
C (m) (veh/h)	1215			<u> </u>	+		116		718
V/c	0.37				\dashv		1.22		
					\dashv				0.49
95% queue length	1.72				\dashv		9.00		2.77
Control Delay (s/veh)	9.7				\dashv		223.5		14.8
LOS	Α						F		В
Approach Delay (s/veh)								74.2	
Approach LOS								F	

	TWO	-WAY STOP	CONTR	OL S	UM	MARY				
General Information	on		Site I	nforr	nati	ion				
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Interse Jurisd Analys	iction	ar		2015			
	Ball Homes Fac									
East/West Street: Har							enry Road	<u> </u>		
Intersection Orientation	: North-Sout	h	Study	Period	l (hrs	s): 0.25				
Vehicle Volumes a	and Adjustn									
Major Street		Northbound					Southboo	und		
Movement	1	2	3			4	5			6
\	L	T 140	R			L	T			R
Volume (veh/h) Peak-Hour Factor, PHF	0.98	0.98	27 0.98	,		25 0.98	613 0.98			0 98
Hourly Flow Rate, HFR (veh/h)		151	27	'		25	625			9 <u>0 </u>
Percent Heavy Vehicle	s 0					1				
Median Type				Undi	vided					
RT Channelized			0			-				0
Lanes	0	1	1			0	1			0
Configuration	LT		R			LTR				
Upstream Signal		1					0			
Minor Street		Eastbound					Westbou	und		
Movement	7	8	9	10		11			12	
	L	Т	R		L		Т			R
Volume (veh/h)	0	0	3			117 0			2	20
Peak-Hour Factor, PHF	_	0.98	0.98	1		0.98	0.98		0.	98
Hourly Flow Rate, HFR (veh/h)	0	0	3			119	0			20
Percent Heavy Vehicle	s 0	0	0			1	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration		LTR					LTR			
Delay, Queue Length,										
Approach	Northbound	Southbound		Nestb				Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT	LTR		LTF	7			LTF	?]	
v (veh/h)	0	25		139				3		
C (m) (veh/h)	966	1405		315			488	3		
v/c	0.00	0.02		0.44				0.01	1	
95% queue length	0.00	0.05		2.1				0.02	$\overline{}$	
Control Delay (s/veh)	8.7	7.6		25				12.4	\rightarrow	
LOS	A	A		D				B	\dashv	
Approach Delay (s/veh)				25.				12.4		
Approach LOS				D			В			

HCS+™ Version 5.6

Generated: 7/21/2015 11:53 AM

Lane Configuration L L LTR LTR v (veh/h) 8 25 139 40 C (m) (veh/h) 759 1318 241 332 v/c 0.01 0.02 0.58 0.12 95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3										
Analyst			-WAY STOP							
Agency Co. Jacobs T/21/2015 Analysis Time Period T/21/2015 Analysis Time Period Ald Peak	General Information	on		Site I	nform	ation	1			
EastWest Street: Hamilton: Springs/Arnold Palmer North/South Street: Old Henry Road	Agency/Co. Date Performed	Jacobs 7/21/201	5	Jurisd	liction			2022		
Intersection Orientation: North-South Study Period (hrs): 0.25	Project Description E	Ball Homes Fac	ctory Lane	,						
Vehicle Volumes and Adjustments	East/West Street: Har	milton Springs/	Arnold Palmer	North/	South S	treet:	Old H	enry Road	l	
Major Street Northbound Southbound Movement 1 2 3 4 5 6 Volume (veh/h) 8 226 27 25 886 2 Peak-Hour Factor, PHF 0.98 0.98 0.98 0.98 0.98 0.98 Hourly Flow Rate, HFR (veh/h) 8 230 27 25 904 2 Percent Heavy Vehicles 0 - 1 Median Type Two Way Left Turn Lane RT Channelized 0 1 1 0 Lanes 1 1 0 1 1 0 Configuration L 7 7 1 - - 7 7 8 9 10 11 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1	Intersection Orientation	: North-Sout	h	Study	Period (hrs):	0.25			
Major Street	Vehicle Volumes a	and Adiustn	nents							
Movement					T			Southbo	und	
Volume (veh/h) 8 226 27 25 886 2 Peak-Hour Factor, PHF 0.98		1	2	3		4	1	5		6
Peak-Hour Factor, PHF 0.98		L	Т	R		L	-	Т		R
Hourly Flow Rate, HFR (verh/h) Percent Heavy Vehicles O	Volume (veh/h)	8	226	27		25	5	886		2
(veh/h) 8 230 27 23 904 2 Percent Heavy Vehicles 0 - - 1 - - RT Channelized 0 0 0 0 0 Lanes 1 1 0 1 1 0 Upstream Signal 1 1 0 1 1 0 Minor Street Eastbound Westbound Westbound Movement 7 8 9 10 11 12 Volume (veh/h) 2 0 38 117 0 20 Peak-Hour Factor, PHF 0.98 0.98 0.98 0.98 0.98 0.98 Hourly Flow Rate, HFR (veh/h) 2 0 38 119 0 20 Percent Heavy Vehicles 0 0 0 1 0 0 Percent Grade (%) 0 0 0 0 0 0 Placed Approach N			0.98	0.98	}	0.9	8	0.98		0.98
Median Type		8	230	27		25	ō	904		2
RT Channelized	Percent Heavy Vehicle	s 0				1				
Lanes	Median Type		•	Two V	Vay Left	Turn	Lane		•	
Configuration L TR L TR Upstream Signal 1 0 TR Minor Street Eastbound Westbound Movement 7 8 9 10 11 12 Volume (veh/h) 2 0 38 117 0 20 Peak-Hour Factor, PHF 0.98 0.98 0.98 0.98 0.98 0.98 Hourly Flow Rate, HFR (veh/h) 2 0 38 119 0 20 Percent Heavy Vehicles 0 0 0 1 0 0 Percent Grade (%) 0 0 0 0 0 0 Flared Approach N N N N N N Storage 0 1 0 0 0 0 RT Channelized 0 1 0 0 1 0 0 Lanes 0 1 0 0 1 0	RT Channelized			0						0
Upstream Signal	Lanes	1	1	0		1		1		0
Upstream Signal	Configuration	L		TR		L				TR
Minor Street			1					0		
Movement			Eastbound		T			Westbou	und	
Volume (veh/h) 2 0 38 117 0 20 Peak-Hour Factor, PHF 0.98 0.09 0	Movement	7		9		1	0			12
Peak-Hour Factor, PHF 0.98		L	Т	R		L		Т		R
Hourly Flow Rate, HFR (veh/h)	Volume (veh/h)	2	0	38		11	7	0		20
(veh/h) 2 0 38 119 0 20 Percent Heavy Vehicles 0 0 1 0 0 Percent Grade (%) 0 0 0 0 Flared Approach N N N N Storage 0 0 0 0 RT Channelized 0 1 0 0 1 0 Lanes 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0	Peak-Hour Factor, PHF	0.98	0.98	0.98	3	0.9	8	0.98		0.98
Percent Grade (%) 0 0 Flared Approach N N Storage 0 0 RT Channelized 0 0 Lanes 0 1 0 0 Configuration LTR LTR Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR V (veh/h) 8 25 139 40 C(m) (veh/h) 332 V/c 0.01 0.02 0.58 0.12 0.12 95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS AA AA E C Approach Delay (s/veh) 38.5 17.3 17.3		2	0	38		11	9	0		20
Storage	Percent Heavy Vehicle	s 0	0	0		1		0		0
Storage 0 0 0 RT Channelized 0 1 0 0 Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR Delay, Queue Length, and Level of Service Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR v (veh/h) 8 25 139 40 40 C (m) (veh/h) 759 1318 241 332 241 v/c 0.01 0.02 0.58 0.12 0.12 95% queue length 0.03 0.06 3.26 0.41 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3 <td>Percent Grade (%)</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td>	Percent Grade (%)		0					0		
RT Channelized 0 1 0 0 1 0 Configuration LTR LTR LTR 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 <	Flared Approach		N					Ν		
Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	Storage		0					0		
Configuration LTR LTR Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR v (veh/h) 8 25 139 40 40 C (m) (veh/h) 759 1318 241 332 40 v/c 0.01 0.02 0.58 0.12 0.12 95% queue length 0.03 0.06 3.26 0.41 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	RT Channelized			0						0
Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR V(veh/h) 25 139 40	Lanes	0	1	0		0		1		0
Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR V LTR V U V	Configuration		LTR					LTR		
Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR V LTR V U V	Delay, Queue Length,	and Level of	Service							
Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR V LTR V LTR V LTR V LTR V LTR V V V V LTR V V V V V LTR V <t< td=""><td></td><td></td><td></td><td>١</td><td>Nestbou</td><td>ınd</td><td></td><td>E</td><td>Eastbou</td><td>nd</td></t<>				١	Nestbou	ınd		E	Eastbou	nd
v (veh/h) 8 25 139 40 C (m) (veh/h) 759 1318 241 332 v/c 0.01 0.02 0.58 0.12 95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3							9			12
C (m) (veh/h) 759 1318 241 332 v/c 0.01 0.02 0.58 0.12 95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	Lane Configuration	L	L		LTR				LTR	
v/c 0.01 0.02 0.58 0.12 95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	v (veh/h)	8	25		139				40	
95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	C (m) (veh/h)	759	1318		241				332	
95% queue length 0.03 0.06 3.26 0.41 Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	v/c	0.01	0.02		0.58				0.12	
Control Delay (s/veh) 9.8 7.8 38.5 17.3 LOS A A E C Approach Delay (s/veh) 38.5 17.3	95% gueue lenath	0.03								
LOS A A E C Approach Delay (s/veh) 38.5 17.3	-								_	
Approach Delay 38.5 17.3										
	Approach Delay									
Approach LOS E C	Approach LOS				E				С	

HCS+™ Version 5.6

Generated: 7/21/2015 11:59 AM

		-WAY STOP								
General Informati	on		Site I	nforn	nat	ion				
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 AM Peak	5	Jurisd Analy		ar		2022 Bul	ild		
Project Description										
East/West Street: Ha	milton Springs/	Arnold Palmer	North/	South 5	Stre	et: Old H	enry Road	1		
Intersection Orientation						s): 0.25	<i>57.1.</i> 7 1.0 a.a.			
Vehicle Volumes					_	<u>′</u>				
Major Street	Hu Aujusti	Northbound		Т			Southbou	ınd		
Movement	1	2	3			4	5			6
	L	T	R			L	Т			R
Volume (veh/h)	8	252	27			25	972			2
Peak-Hour Factor, PHI		0.98	0.98	3		0.98	0.98		(0.98
Hourly Flow Rate, HFF (veh/h)	8	257	27			25	991			2
Percent Heavy Vehicle	s 0					1				
Median Type			Two V	Vay Lei	ft Τι	ırn Lane				
RT Channelized			0							0
Lanes	1	1	0			1	1			0
Configuration	L		TR			L				TR
Upstream Signal		1					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	T	R			L	T			R
Volume (veh/h)	2	0	38			117	0			20
Peak-Hour Factor, PHI		0.98	0.98	5		0.98	0.98	-	().98
Hourly Flow Rate, HFF (veh/h)		0	38			119	0			20
Percent Heavy Vehicle	s 0	0	0			1	0			0
Percent Grade (%)	_	0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration		LTR					LTR			
Delay, Queue Length			Ι .				T _			
Approach	Northbound	Southbound		Westbo				astbo		
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L	L		LTF				LTF		
v (veh/h)	8	25		139				40		
C (m) (veh/h)	704	1288		211				296		
v/c	0.01	0.02		0.66	ĵ			0.1	4	
95% queue length	0.03	0.06		4.01	1			0.4	6	
Control Delay (s/veh)	10.2	7.9		49.9)			19.	1	
LOS	В	Α		Ε				С		
Approach Delay (s/veh)				49.9	9			19.1	1	
Approach LOS				Ε				С		
		-								

HCS+™ Version 5.6

Generated: 7/21/2015 12:01 PM

		-WAY STOP				1117-11-11			
General Information	on		Site I	nforn	nati	ion			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Interse Jurisd Analys		ar		2015		
Project Description E									
East/West Street: Har			North/9	South 9	Stre	et: Old H	enry Road		
Intersection Orientation						s): 0.25	orny rioda		
Vehicle Volumes a			, ,		<u> </u>	,, ,,,			
Major Street	Hu Aujustii	Northbound		Т			Southbou	ınd	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume (veh/h)	3	631	82			35	284		1
Peak-Hour Factor, PHF	0.93	0.93	0.93			0.93	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	3	678	88			37	305		1
Percent Heavy Vehicles	s 0					1			
Median Type				Undiv	ridec	d			
RT Channelized			0						0
Lanes	0	1	1			0	1		0
Configuration	LT		R			LTR			
Upstream Signal		1					0		
Minor Street		Eastbound					Westbou	nd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)	0	0	4			61	0		27
Peak-Hour Factor, PHF	0.93	0.93	0.93			0.93	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	0	0	4			65	0		29
Percent Heavy Vehicles	s 0	0	0			1	0		0
Percent Grade (%)		0					0		
Flared Approach		N					Ν		
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length,	and Level of	Service							
Approach	Northbound	Southbound	١	Vestbo	und		Е	astboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT	LTR		LTR	?	_	_	LTR	1
v (veh/h)	3	37		94				4	1
C (m) (veh/h)	1266	776		223	_			739	+
					$\overline{}$				+
V/C	0.00	0.05		0.42				0.01	1
95% queue length	0.01	0.15		1.95				0.02	+
Control Delay (s/veh)	7.9	9.9		32.4	1			9.9	
LOS	Α	Α		D				Α	
Approach Delay (s/veh)				32.4	1			9.9	
Approach LOS				D				Α	

HCS+™ Version 5.6

Generated: 7/21/2015 12:06 PM

	TWC	-WAY STOP	CONTR	OL SU	MMARY			
General Information	on		Site I	nforma	ation			
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Interso Jurisd Analys			2022 No	Build	
Project Description E	Ball Homes Fac	ctory Lane						
East/West Street: Har			North/	South St	reet: Old I	Henry Road	1	
ntersection Orientation	: North-Sout	h	Study	Period (I	hrs): 0.25	-		
Vehicle Volumes a	and Adjustn	nents						
Major Street		Northbound				Southbou	und	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)	37	863	82		35	422		3
Peak-Hour Factor, PHF	0.93	0.93	0.93		0.93	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	39	927	88		37	453		3
Percent Heavy Vehicles	s 0				1			
Median Type			Two V	Vay Left	Turn Lane			
RT Channelized			0					0
Lanes	1	1	0		1	1		0
Configuration	L		TR		L			TR
Upstream Signal		1				0		
Minor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	T	R		L	T		R
Volume (veh/h)	1	0	21		61	0		27
Peak-Hour Factor, PHF	0.93	0.93	0.93	,	0.93	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	1	0	22		65	0		29
Percent Heavy Vehicles	s 0	0	0		1	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0			T		0
Lanes	0	1	0		0	1		0
Configuration		LTR	+ -			LTR		
Delay, Queue Length,	and Level of	_						
Approach	Northbound	Southbound	1	Vestbou	ınd		astbound	1
Movement	1	4	7	vesibou 8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (veh/h)	39	37		94			23	
C (m) (veh/h)	1115	535		182		1	524	
v/c	0.03	0.07		0.52			0.04	+
95% queue length	0.11	0.22		2.59			0.14	-
Control Delay (s/veh)	8.3	12.2		44.2			12.2	-
LOS	Α	В		E		1	В	
Approach Delay (s/veh)				44.2			12.2	
Approach LOS				E		В		

HCS+™ Version 5.3

Generated: 7/21/2015 12:09 PM

	TWC	-WAY STOP	CONTR	OL SU	JMMA	RY			
General Information	on		Site I	nform	ation				
Analyst Agency/Co. Date Performed Analysis Time Period	D Zimme Jacobs 7/21/201 PM Peak	5	Interso Jurisd Analys				2022 Bui	ild	
Project Description E									
East/West Street: Hai			North/	South S	treet:	Old H	enry Road		
Intersection Orientation			_	Period (
Vehicle Volumes a	and Adiustn	nents							
Major Street		Northbound		T			Southbou	und	
Movement	1	2	3		4		5		6
	L	T	R		L		Т		R
Volume (veh/h)	37	953	82		35		473		3
Peak-Hour Factor, PHF		0.93	0.93	3	0.93	3	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	39	1024	88		37		508		3
Percent Heavy Vehicle	s 0				1				
Median Type			Two V	Vay Left	Turn L	.ane			
RT Channelized			0						0
Lanes	1	1	0		1		1		0
Configuration	L		TR		L				TR
Upstream Signal		1					0		
Minor Street		Eastbound					Westbou	ınd	
Movement	7	8	9		10)	11		12
	L	T	R		L		Т		R
Volume (veh/h)	1	0	21		61		0		27
Peak-Hour Factor, PHF		0.93	0.93	3	0.93	3	0.93		0.93
Hourly Flow Rate, HFR (veh/h)	1	0	22		65		0		29
Percent Heavy Vehicle	s 0	0	0		1		0		0
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0		0		1		0
Configuration		LTR					LTR		
Delay, Queue Length,	and Level of	Service							
Approach	Northbound	Southbound	\	Vestbou	ınd		Е	astbour	nd
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L		LTR				LTR	
v (veh/h)	39	37		94				23	
C (m) (veh/h)	1065	462		148				467	1
v/c	0.04	0.08		0.64				0.05	
95% queue length	0.04	0.06		3.45				0.15	
Control Delay (s/veh)	8.5	13.5		64.2				13.1	
									+
LOS Approach Delay	A	B 		<i>F</i> 64.2				B 13.1	
(s/veh)									
Approach LOS				F				В	

HCS+™ Version 5.3

Generated: 7/21/2015 12:11 PM

		HCS 2	010 S	ignali	zed I	nters	ection	ı Kes	suits S	umm	ary				
General Inforr	nation								Intersec	tion Inf	orm atic	. n	l v	4.441	a u
	пацоп	Jacobs						\rightarrow			0.25	711	-	41	
Agency Analyst		D Zimmerman		Analys	sis Date	e Jul 21	2015		Duration Area Typ		Other		- 2 4		
Jurisdiction		D Ziminemian		Time F		AM P		$\overline{}$	PHF		0.99		- 5		
Intersection		Bush Farm Road		-	sis Year	-	car	\rightarrow	Analysis	Doriod	1> 7:	20	- 3		•
File Name		Old Henry at Bush	15 AM v	<u> </u>	sis ica	2013			Allalysis	renou	177.	30	- 5		
Project Descrip	otion	Ball Homes Factor		us									- 🦷	1144	1+ 1°
r roject Descrip	Juon	Dali Floriles Factory	Lane												
Demand Infor	mation				EB		$\overline{}$	WE	3		NB			SB	
Approach Move	ement			L	Т	R	T L	Т	R	1	Т	R	L	Т	F
Demand (v), ve				3	5	72	615	4	37	7	115	138	69	604	1
Signal Informa	ation				125	- 5	\exists	\top	$\neg \neg$	\neg			.		
Cycle, s	85.0	Reference Phase	2		540								Ψ		4
Offset, s	0	Reference Point	End	Green	:	40.0	0.0	0.0	0.0	0.0		1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.6	0.0	0.0		0.0		1	N		+
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0		0.0		5	6	7	_
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	L	NBT	SBL	-	SBT
Assigned Phas				4			8			2			6		
Case Number				6.0			6.0			5.0			6.0		
Phase Duration	n, s					46.6			46.6			38.4			38.4
Change Period	I, (Y+Rc)), S				6.6			6.6			5.6			5.6
Max Allow Hea	dway (A	<i>1AH</i>), s				4.8			4.8			5.0			5.0
Queue Clearar	nce Time	e (g₃), s				42.0			42.0			27.8			27.1
Green Extension	on Time	(g _e), s				0.0			0.0			4.9			5.0
Phase Call Pro	bability					1.00			1.00			1.00			1.00
Max Out Proba	ability					1.00			1.00			0.17			0.15
Movement Gro	oun Res	sults			EB			WB			NB			SB	
Approach Move	•	74115		L	T	R	L	Т	T R	L	T	R	L	T	TR
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow		veh/h		3	78		621	41	1.0	7	116	79	70	611	
		ow Rate (s), veh/h/ln		1387	1610		1329	1618		823	1863	1579	1283	1881	\vdash
Queue Service				0.0	2.3		37.7	1.2		0.7	3.5	2.7	3.2	25.1	
Cycle Queue C				40.0	2.3		40.0	1.2	+	25.8	3.5	2.7	6.7	25.1	\vdash
Green Ratio (g.		(30), 0		0.47	0.47		0.47	0.47		0.39	0.39	0.39	0.39	0.39	
Capacity (c), ve				85	758		675	762		159	719	609	527	725	
Volume-to-Cap		atio (X)		0.036			0.921	0.054	-	0.045	0.162	0.129	0.132	0.842	
Available Capa		· · ·		85	758		675	762		277	986	836	712	996	
	_ , , ,	h/ln (50th percentile))	0.1	0.8		15.1	0.4		0.1	1.4	0.9	0.9	11.0	1
		RQ) (50th percentile		0.01	0.04		0.76	0.01		0.02	0.04	0.02	0.23	0.28	
Uniform Delay		, , ,	1	42.5	12.5		24.6	12.2		35.5	17.1	16.9	19.3	23.7	
				0.2	0.1		18.2	0.0		0.2	0.1	0.1	0.2	5.7	
	cremental Delay (d2), s/veh itial Queue Delay (d3), s/veh				0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	1
	ontrol Delay (d), s/veh				12.6		42.7	12.3		35.7	17.2	17.0	19.5	29.5	+
	evel of Service (LOS)				B		D D	12.3 B		D D	B	B	B	C	
	pproach Delay, s/veh / LOS				7	В	40.8		D	17.8		В	28.4		C
	tersection Delay, s/veh / LOS						1.4			17.0			C 20.4		
mersection De			3	1.7											
	esults				EB			WB			NB			SB	
Multimodal Re											_				
Multimodal Re Pedestrian LOS		/LOS		2.5	- 1	В	2.3		В	2.3		В	2.3		В

HCS 2010™ Streets Version 6.65

Generated: 7/21/2015 10:36:35 AM

		HCS 2	010 S	ignali	zed	Interse	ection	Res	sults S	umm	ary				
General Inform	ation								Intersec	tion Inf	ormatio	on	- 6	A YAL	14 L
Agency		Jacobs							Duration	, h	0.25		-	***	
Analyst		D Zimmerman		Analys	sis Dat	e Jul 21	, 2015		Area Typ	е	Other				
Jurisdiction				Time F	eriod	AM Pe	eak		PHF		0.99		*		- ;-
Intersection		Bush Farm Road		Analys	sis Yea	r 2022 I	No Build	i i	Analysis	Period	1> 7:0	30	7		
File Name		Old Henry at Bush:	22 AM N	NB.xus										510	
Project Descript	ion	Ball Homes Factory	Lane										T .	ব † ক Y	7- 1
Demand Inform	nation				EB		Т	WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	T	R	L	T	R	L	T	R
Demand (v), vel	h/h			15	10	104	742	37	52	171	174	235	129	804	50
Signal Informat	tion					- 5	4	\top					.		
Cycle, s	96.6	Reference Phase	2		F.1	2 🛱 🧯							Ψ	-	4
Offset, s	0	Reference Point	End	Green	1 :1	40.0	0.0	0.0	0.0	0.0		1	2	3	<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.6	0.0	0.0	_	0.0					→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0		0.0		5	6	7	-
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI	L	SBT
Assigned Phase	,					4			8	1.2		2	1		6
	ase Number					6.0		_	6.0			5.0		_	6.0
	hase Duration, s				_	46.6	_	_	46.6		_	50.0		_	50.0
	nase Duration, s nange Period, (Y+R₅), s					6.6	_	_	6.6			5.6			5.6
				-	-	4.8	-	-	4.8	-	_	5.3	-	-	5.3
Max Allow Head		**		_	_		_	-		_	_		_	-	
Queue Clearand		12		_	-	42.0	_	-	42.0			42.3		-	17.7
Green Extension		(ge), S			_	0.0		_	0.0		_	2.1		-	11.7
Phase Call Prob					_	1.00		_	1.00		-	1.00		_	1.00
Max Out Probab	oility					1.00		_	1.00			1.00			0.31
Movement Gro	up Res	ults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Mover				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow R		veh/h		15	115		749	90	1	173	176	177	130	436	427
	_ ` '	ow Rate (s), veh/h/ln		1328	1616		1285	1702	,	651	1863	1579	1216	1881	1842
Queue Service				0.0	4.3		35.7	3.2		24.5	5.4	6.6	6.9	15.7	15.7
Cycle Queue Cl				40.0	4.3		40.0	3.2		40.3	5.4	6.6	12.4	15.7	15.7
Green Ratio (g/		5 (gc), 5		0.41	0.41		0.41	0.41		0.46	0.46	0.46	0.46	0.46	0.46
Capacity (c), vel				75	669		549	705		268	856	725	565	864	846
Volume-to-Capa		tio (V)		0.203	0.172		1.365			0.646	0.205	0.244	0.231	0.504	0.504
								-						-	
Available Capac				75	669		549	705		272	868	736	573	877	858
	,,	n/ln (50th percentile)		0.4	1.6		39.8	1.2		4.0	2.2	2.2	1.9	6.3	6.2
		RQ) (50th percentile)	0.05	0.08		2.01	0.03		0.50	0.05	0.06	0.47	0.16	0.16
Uniform Delay (48.3	17.8		32.9	17.5		32.5	15.6	15.9	19.3	18.4	18.4
Incremental Del				1.6	0.1		175.8	0.1		5.9	0.2	0.2	0.3	0.7	0.7
Initial Queue De				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d	d), s/vel	1		49.9	18.0		208.7	17.6		38.4	15.7	16.1	19.6	19.0	19.0
Level of Service	evel of Service (LOS)			D	В		F	В		D	В	В	В	В	В
Approach Delay	pproach Delay, s/veh / LOS			21.7	7	С	188.	2	F	23.3	3	С	19.1	1	В
Intersection Dela	ay, s/ve	h / LOS				77	7.2						E		
	luking dal Bassika														
	-ult-				ED			\A/D			NID			ÇD.	
Multimodal Res		/1.08		2.9	EB	С	2.4	WB	В	2.3	NB	В	2.3	SB	В

		HCS 2	010 S	ignali	ized l	nters	ection	ı Res	ults S	umm	ary				
General Inform	nation	1						-	Intersec		_	on	- 6	A Y WAT	Ja 14
Agency		Jacobs				1.		\rightarrow	Duration		0.25		2		
Analyst		D Zimmerman		Analys	sis Date	Jul 21		$\overline{}$	Area Typ	e	Other		A .		
Jurisdiction				Time F	Period	AM P	eak	- 1	PHF		0.99		÷		-
Intersection		Bush Farm Road		Analys	sis Yea	r 2022	Build		Analysis	Period	1> 7:	30	7		
File Name		Old Henry at Bush	22 AM E	3.xus										ጎተሰ	
Project Descrip	tion	Ball Homes Factory	Lane										T 1	1 1 1 1 1 Y	1- 1-
Demand Infor	mation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), ve	eh/h			15	10	104	742	37	52	171	200	235	129	890	50
Signal Informa	ation					2 6	<u>⊢</u>								_
Cycle, s	97.2	Reference Phase	2		500	z 🛱 🦥	-1					1	Ψ		→
Offset, s	0	Reference Point	End	Green	1 111	40.0	0.0	0.0	0.0	0.0		-		3	N K
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.6	0.0	0.0	0.0	0.0		4			→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0	0.0	0.0		5	6	7	
Timer Results				EBI		EBT	WB	L	WBT	NBI	L	NBT	SBI		SBT
Assigned Phas	e					4			8			2			6
	Case Number					6.0		\rightarrow	6.0			5.0			6.0
	Phase Duration, s					46.6		_	46.6			50.6			50.6
Change Period		. c				6.6		-	6.6		_	5.6			5.6
Max Allow Hea				_	_	4.8	_	_	4.8	_	_	5.4	_	_	5.4
				_				-		_	_		_	_	
Queue Clearan				_		42.0		-	42.0	_	_	47.0	_		19.8
Green Extension		(ge), S		_		0.0	_	-	0.0	_	_	0.0	<u> </u>	-	12.4
Phase Call Pro				_	_	1.00	_	-	1.00	_	-	1.00	_	-	1.00
Max Out Proba	ibility					1.00			1.00			1.00			0.41
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R		Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow		veh/h		15	115		749	90	1.0	173	202	177	130	479	470
		ow Rate (s), veh/h/ln		1328	1616		1285	1702		600	1863	1579	1187	1881	1846
Queue Service				0.0	4.4		35.6	3.2		27.2	6.3	6.6	7.2	17.8	17.8
Cycle Queue C				40.0	4.4		40.0	3.2		45.0	6.3	6.6	13.6	17.8	17.8
		c fille (ge), 3		0.41	0.41		0.41	0.41		0.46	0.46	0.46	0.46	0.46	0.46
Green Ratio (g. Capacity (c), ve				74	665		545	700		242	862		546	871	854
		tio (V)					_	_				731	_		
Volume-to-Cap				0.204	0.173		1.376	0.128	2	0.715	0.234	0.242	0.239	0.550	0.550
Available Capa				74	665		545	700		242	862	731	546	871	854
		n/ln (50th percentile)		0.4	1.6		40.3	1.2		4.6	2.5	2.2	1.9	7.3	7.1
		RQ) (50th percentile)	0.05	0.08		2.03	0.03		0.57	0.06	0.06	0.48	0.18	0.18
Uniform Delay				48.6	18.1		33.2	17.8		35.4	15.7	15.8	19.8	18.8	18.8
Incremental De				1.6	0.1		180.5	0.1		10.4	0.2	0.2	0.3	1.0	1.0
Initial Queue D	nitial Queue Delay (d₃), s/veh			0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (ontrol Delay (d), s/veh			50.2	18.3		213.7	17.9		45.9	15.9	16.0	20.1	19.8	19.8
Level of Servic	evel of Service (LOS)			D	В		F	В		D	В	В	С	В	В
	pproach Delay, s/veh / LOS			22.0)	С	192.	7	F	25.3	3	С	19.8	3	В
Approach Dela	tersection Delay, s/veh / LOS					70	6.9						E		
	lay, s/ve	:117 E03													
Intersection De		H17 E03			ED			MD			NID			CD.	
	sults			2.9	EB	С	2.4	WB	В	2.3	NB	В	2.3	SB	В

HCS 2010™ Streets Version 6.65

Generated: 7/21/2015 10:36:35 AM

		HCS 2	040 €	ianali	zod I	ntore	action	. Pos	sulte S	umm	an/				
	_	ncs z	010 3	ignan	zeu i	niers	ectioi	ı Kes	รนแร จ	umm	агу	_	_	_	_
General Inforn	nation								Intersec	tion Inf	ormatic	\n	l u	4741	ja lj
Agency	iation	Jacobs						\rightarrow	Duration		0.25	<i>7</i> 11	- 1	11	
Analyst		D Zimmerman		Δnalve	is Date	e Jul 21	2015	\rightarrow	Area Typ	<u>'</u>	Other		- 2 4		
Jurisdiction		D Zimineman		Time F		PM P		$\overline{}$	PHF	,	0.93				2
Intersection		Bush Farm Road				r 2015	сак	\rightarrow	Analysis	Pariod	1> 5:0	20	- 4		· · ·
File Name		Old Henry at Bush	15 DM v		ois ica	1 2013			Allalysis	i enou	1/ 0.0		- 15		/
Project Descrip	tion	Ball Homes Factory		tus									- 🦷	1100	t+ 11
r roject Descrip	LIOIT	Dail Floriles Factory	Lane												
Demand Infor	mation				EB		Т	WE	3		NB			SB	
Approach Move	ement			L	Т	T R	L	Т	R	1	Т	R	L	Т	R
Demand (v), ve				4	11	38	351	5	_	60	696	552	83	338	9
, , ,															
Signal Informa	ation				25	2 5	<u> </u>	\Box							
Cycle, s	83.9	Reference Phase	2		F:1								Ψ		-
Offset, s	0	Reference Point	End	Green	- 11	28.1	0.0	0.0	0.0	0.0		1	2	3	¥ 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.6	0.0	0.0	-	0.0		4			→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	L	NBT	SBI	-	SBT
Assigned Phas	е					4			8			2			6
Case Number						6.0			6.0			5.0			6.0
Phase Duration	hase Duration, s					34.7			34.7			49.2			49.2
Change Period	hange Period, (Y+R₀), s					6.6			6.6			5.6			5.6
Max Allow Hea	1ax Allow Headway (<i>MAH</i>), s					4.7			4.7			5.2			5.2
Queue Clearan	ce Time	e (g₅), s				4.9			26.0			29.1			38.8
Green Extension	n Time	(ge), S				2.7			2.1			10.3			4.9
Phase Call Pro	bability					1.00			1.00			1.00			1.00
Max Out Proba	bility					0.00			0.06			0.68			0.96
Movement Gro	un Des	eulte			EB			WB			NB			SB	
Approach Move		suits		L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow		voh/h		4	53	14	377	75	10	65	748	529	89	373	10
		ow Rate (s), veh/h/ln		1345	1651		1359	1612		1025	1863	1579	717	1872	
Queue Service				0.2	1.8		22.1	2.7		3.4	27.1	20.3	9.6	10.0	-
Cycle Queue C	- 10	• • •		2.9	1.8		24.0	2.7		13.5	27.1	20.3	36.8	10.0	
Green Ratio (g.		e Time (ge), 5		0.34	0.34	_	0.34	0.34		0.52	0.52	0.52	0.52	0.52	
Capacity (c), ve				494	554		512	541		495	967	820	226	972	
Volume-to-Cap		etio (X)		0.009	0.095		0.737	0.139	-	0.130	0.774	0.645	0.395	0.384	
Available Capa				683	786		704	768		512	998	846	238	1004	
		h/ln (50th percentile)		0.1	0.7		7.2	1.0		0.7	10.6	6.5	1.6	3.7	
		RQ) (50th percentile)		0.01	0.03		0.36	0.03		0.09	0.27	0.17	0.41	0.09	
Uniform Delay			1	20.4	19.1		27.4	19.4		16.2	16.2	14.6	31.0	12.1	
				0.0	0.1		3.0	0.1		0.2	4.0	1.9	1.6	0.4	
	ncremental Delay (d₂), s/veh nitial Queue Delay (d₃), s/veh			0.0	0.0		0.0	0.0		0.2	0.0	0.0	0.0	0.4	
Control Delay (d), s/veh				20.5	19.2		30.4	19.6		16.4	20.2	16.5	32.6	12.5	
- ,	Level of Service (LOS)			C C	B		C	19.0 B		B	C C	B	C	12.3 B	
Approach Dela				19.3		В	28.6		С	18.6		В	16.4		В
Intersection De				10.0			0.1			10.0			C		
	, 5, 70					2									
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		2.5		В	2.3		В	2.2		В	2.2		В
Bicycle LOS So	icycle LOS Score / LOS			0.6		Α	1.2		Α	2.7		В	1.3		Α

HC\$ 2010™ Streets Version 6.65

Generated: 7/21/2015 11:33:10 AM

		HCS 2	010 S	ignali	zed l	nterse	ection	Res	sult	ts S	umma	ary				
General Inform	nation								Inte	rsect	ion Info	ormatio	n	U	411	1× 14
Agency		Jacobs							Dura	ation,	h	0.25			4+4	
Analyst		D Zimmerman		Analys	is Date	Jul 21	, 2015		Area	а Тур	e	Other		4		
Jurisdiction				Time F	Period	PM Pe	eak		PHF	=		0.93		# - 		÷
Intersection		Bush Farm Road		Analys	is Year	2022 1	No Buil	d	Ana	ılvsis l	Period	1> 5:0	00	7		
File Name		Old Henry at Bush	22 PM I												5+4	
Project Descrip	tion	Ball Homes Factory		12										n n	4144	7 1
		,														
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ment			L	T	R	L	T		R	L	T	R	L	T	R
Demand (v), ve	h/h			74	40	225	632	12	2	125	97	832	624	106	460	19
Signal Informa	tion			1	1 11:	-	7	_			_					
		D-f Dh		-	1	12 🕏								кtэ		7
Cycle, s	97.2	Reference Phase	2	-	°∰	"∣S"							1	2	3	4
Offset, s	0	Reference Point	End	Green	45.0	40.0	0.0	0.0		0.0	0.0					<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.6	0.0	0.0	-	0.0	0.0		4	K		Z
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0)	0.0	0.0		5	6	7	
Timer Results				EBI	_	EBT	WB		WE	эт	NBL		NBT	SBL		SBT
Assigned Phase				EBI	-	4	VVD	-	8		INDL	-	2	SBL	-	6
	5			_	_	_	_	-	_	$\overline{}$			_	_	_	
	case Number			_	-	6.0	_	-	6.0	_		-	5.0		-	6.0
	hase Duration, s				-	46.6	_	-	46.			_	50.6	_	_	50.6
Change Period,				-	-	6.6		-	6.6	$\overline{}$		_	5.6		_	5.6
Max Allow Head				_	+	5.1	_	+	5.1	-		_	5.2			5.2
Queue Clearan		10 //		_	_	14.1		_	42.	_		_	47.0		_	47.0
Green Extensio		(ge), S			_	8.5		_	0.0	-			0.0			0.0
Phase Call Prol						1.00		_	1.0	_		-	1.00			1.00
Max Out Proba	bility					0.16			1.0	00			1.00			1.00
Movement Gro	un Res	ults			EB			WB				NB			SB	
Approach Move	_			L	T	R	L	T	_	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	_	18	5	2	12	1	6	16
Adjusted Flow F		vob/b		80	285	17	680	147	_	10	104	895	606	114	259	256
		, ven/n ow Rate (s), veh/h/ln		1260	1632		1101	1616	_	_	900	1863	1579	626	1881	1855
				4.2	12.1		27.9	5.7	_	-	7.9	45.0	32.6	0.0	8.3	8.4
Queue Service Cycle Queue C				10.0	12.1		40.0	5.7	_	-	16.3	45.0	32.6	45.0	8.3	8.4
Green Ratio (g/		e fille (gs), s		0.41	0.41		0.41	0.41	-		0.46	0.46	0.46	0.46	0.46	0.46
Capacity (c), ve				518	672		390	665			413	862	731	74	871	859
Volume-to-Capa		atio (V)		0.154					$\overline{}$			1.037	0.830		0.297	0.298
		_ ` `		518	672		1.743 390	_	\rightarrow	_	0.252	862	731	1.539 74	871	859
Available Capa				_			_	665	_		413		$\overline{}$		-	-
		h/In (50th percentile) RQ) (50th percentile		1.2 0.16	4.5 0.23		46.7 2.35	2.1 0.05	\rightarrow		1.6 0.20	27.3 0.69	12.4 0.32	7.9 1.99	3.3 0.08	0.08
)	_				18.5	$\overline{}$	-	21.3	26.1	_	48.6		_
Uniform Delay (0.2	20.4 0.5		37.3 344.7	0.2	_		0.5	40.7	22.8 8.3	298.7	16.3 0.3	16.3
	ncremental Delay (d₂), s/veh nitial Queue Delay (d₃), s/veh			_	0.0		_	_	-		_		-		0.0	0.0
	control Delay (d), s/veh			0.0			0.0	0.0	\rightarrow		0.0	0.0	0.0	0.0		-
, ,				21.9	20.9		382.0	18.7	+		21.8	66.8	31.0	347.3	16.5	16.5
Level of Service				C 21.1	С		F 217	B	F		C 50.4	F	С	F 76 F	В	B
Approach Delay Intersection Del				21.1		C 11	317.	3	F		50.4		D	76.5 F	,	E
mersection De	ay, S/VE	air LOS				170	6.5									
	ultimodal Paculte				EB			WB	1			NB			SB	
Multimodal Re	sults		edestrian LOS Score / LOS													
Multimodal Re Pedestrian LOS		/LOS		2.9	_	С	2.4	_	В		2.3		В	2.3		В

HCS 2010™ Streets Version 6.65

Generated: 7/21/2015 11:41:48 AM

		HCS 2	010 S	ianal	ized l	nters	ectior	ı Res	ults S	umm	arv				
				.gu.							u. y				
General Inform	nation							$\neg \neg$	Intersec	tion Inf	ormatio	on	1	4741	ja lij
Agency		Jacobs						$\neg \uparrow$	Duration	, h	0.25		السي	411	
Analyst		D Zimmerman		Analys	sis Date	e Jul 21	. 2015		Area Typ		Other		- A		
Jurisdiction				Time f		PM P	·	\rightarrow	PHF		0.93		·		<u>+</u>
Intersection		Bush Farm Road		_		r 2022		\rightarrow	Analysis	Period	1> 5:0	20			
File Name		Old Henry at Bush	22 PM F	<u> </u>	713 TCU	1 2022	Dulla		raidiyələ	i ciiou	11- 0.0	50	-		
Project Descrip	tion	Ball Homes Factory		J.XU3									- 6	4 1 4 7	te d
Project Descrip	MON	Dail Hornes Factory	Lane												
Demand Infor	mation				EB		Т	WE	3	Т	NB		Т	SB	
Approach Move	ement			L	Т	T R	L	Т	R	L	Т	R	L	T	R
Demand (v), ve				74	40	225	632	_	_	-	922	624	106	511	19
(0),									, , , ,				1		
Signal Informa	ation					_ 5	<u> </u>								
Cycle, s	97.2	Reference Phase	2		F:1		:						Ψ		4
Offset, s	0	Reference Point	End	Green		40.0	0.0	0.0	0.0	0.0		1	2	3	¥
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.6	0.0	0.0	0.0	0.0		/			→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	3.0	0.0	0.0	0.0	0.0		5	6	7	_
Timer Results				EBI	L	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е					4			8			2			6
Case Number						6.0			6.0			5.0			6.0
Phase Duration	hase Duration, s				\neg	46.6		\neg	46.6			50.6			50.6
Change Period). s				6.6			6.6			5.6			5.6
Max Allow Hea						5.1	_		5.1		$\overline{}$	5.2		$\overline{}$	5.2
Queue Clearan						14.1			42.0		_	47.0		_	47.0
Green Extension		10 //			_	8.5		_	0.0		_	0.0		_	0.0
Phase Call Pro		(ge), S			_	1.00	_	_	1.00		_	1.00	_	_	1.00
Max Out Proba				-	-	0.16	-	-	1.00	-	_	1.00	_	_	1.00
Max Out Floba	Dility				-	0.10			1.00			1.00			1.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow		veh/h		80	285		680	147		104	991	606	114	286	283
		ow Rate (s), veh/h/ln		1260	1632		1101	1616		855	1863	1579	571	1881	1857
Queue Service				4.2	12.1		27.9	5.7		8.6	45.0	32.6	0.0	9.4	9.4
Cycle Queue C				10.0	12.1		40.0	5.7		18.0	45.0	32.6	45.0	9.4	9.4
Green Ratio (g.		(3-/, 0		0.41	0.41		0.41	0.41		0.46	0.46	0.46	0.46	0.46	0.46
Capacity (c), ve				518	672		390	665		387	862	731	74	871	860
Volume-to-Cap		atio (X)		0.154	0.424		1.743	0.222		0.269	1.150	0.830	1.539	0.329	0.330
Available Capa				518	672		390	665		387	862	731	74	871	860
		, ven/n h/ln (50th percentile)		_	4.5		_	2.1		_	36.9	12.4	7.9		3.7
		n/in (50th percentile) RQ) (50th percentile		1.2	0.23		46.7 2.35	0.05		1.7 0.21	0.94	0.32	1.99	3.8	-
		,)	0.16	20.4		_	18.5		22.2	26.1		48.6	0.09 16.5	0.09 16.5
Uniform Delay				21.7 0.2			37.3			_		22.8	298.7		_
	ncremental Delay (d2), s/veh				0.5		344.7	0.2		0.5	80.7	8.3	_	0.3	0.3
	nitial Queue Delay (d3), s/veh				0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	ontrol Delay (d), s/veh				20.9		382.0	18.7		22.8	106.8	31.0	347.3	16.8	16.9
	evel of Service (LOS)			C	C		F	В	_	C	F	C	F	В	_ B
	pproach Delay, s/veh / LOS			21.		С	317.	3	F	74.7		E	71.9	,	E
Intersection De	ntersection Delay, s/veh / LOS					12	4.8						F		
Manufation 1 1 =	le				EB			\AID			NID			0.0	
	Multimodal Results					-		WB	-		NB	D		SB	
Pedestrian LOS				2.9	-	С	2.4	_	В	2.3	_	В	2.3	_	В
Bicycle LOS So	cycle LOS Score / LOS					Α	1.9		Α	3.3		С	1.1		Α

HCS 2010™ Streets Version 6.65

Generated: 7/21/2015 11:41:48 AM

Tab 10 Statutory/Case Law regarding contents of subdivision regulations and review of subdivisions

KRS § 100.281 – Contents of subdivision regulations

- Subdivision regulations shall be based on the comprehensive plan, in those counties which have adopted a comprehensive plan, and all subdivision regulations shall contain:
- (1) The procedure for the submission and approval of preliminary and final plat and the recordation of final plats. The commission may delegate to its secretary or any other officer or employee the power to approve plats in accordance with the commission's adopted requirements, but all plats, preliminary and final, shall be approved or disapproved within ninety (90) days;
- "note that an administrative agency's interpretation of its own regulations is entitled to substantial deference". Commonwealth of Kentucky, Cabinet for Health Services v. Family Home Health Care, Inc., 98 S.W.3d 524 (Ky. App. 2003) citing Camera Center, Inc. v. Revenue Cabinet, Ky., 34 S.W.3d 39 (2000). A reviewing court is not free to substitute its judgment as to the proper interpretation of the agency's regulations as long as that interpretation is compatible and consistent with the statute under which it was promulgated and is not otherwise defective as arbitrary or capricious.

Directory v. Advisory provisions of regulations (meaning specific standards):

• Subdivision regulations shall contain rules and regulations that constitute specific standards to be applied. <u>Snyder v. Owensboro</u>, 528, S.W.2d 663, 664 (Ky. 1975).

Directory v. Advisory provisions of regulations (meaning specific standards):

 As respects subdivision applications "there must be rules and regulations constituting specific standards to be applied in determining whether approval is to be granted." Wolf Pen Preservation Ass'n, Inc. v. Louisville & Jefferson County Planning Com'n, Canfield-Knopf Properties, Inc., 942 S.W.2d 310, 312 (Ky. App. 1997).

Directory v. Advisory provisions of regulations (meaning specific standards):

 The legislative scheme must be essentially complete on its face, leaving to regulatory authority administrative rather than policy decisions. Louisville and Jefferson County Planning Commission v. Schmidt, 83 S.W.3d. 449 (Ky. 2001) (citing Diemer v. Com. Transp. Cabinet, 786 S.W.2d 861, 865 (1990), citing Holsclaw v. Stephens, Ky., 507 S.W.2d 462, 471 (1974).

Tab 11

Written justification, in addition to Conservation Plan and exhibits, demonstrating compliance with LDC Section 7.11.4.B.9 requirement

a. Describe how the existing natural features of the site are being preserved and incorporated into the layout.

The existing natural features on the site are being preserved and incorporated into the subdivision layout. There is a 200 ft perennial stream buffer area between the townhomes and the single family lots. The exiting tree mass on the west side of the property is being preserved along with preservation along the property perimeter on the north and east sides, which is approximately 42.69 acres of open space. The open space to the rear of the proposed subdivision also abuts a wooded portion of the adjoining single family neighborhood, adding to the aesthetics of the area and thus protecting neighbor properties that might involve larger subdivision lots. Over 28.5 acres of tree canopy will be preserved and most intermittent and ephemeral streams channels on site will be maintained.

This application for a conservation subdivision is located on 122 acres off Factory Lane between La Grange Road and Old Henry Road, nestled between the Forest Springs and Woodmont Subdivisions. Townhomes have been clustered towards the front of the development along Factory Lane where over 2.5 acres separate the development from Factory Lane. These will allow for a mix of residential home types in the area which already includes apartments, patio homes and single family homes.

b. Explain how clustering of dwelling units will:

i. <u>Minimize disturbance of woodlands, wetlands, grasslands, mature trees and steep</u> slopes

Lots have been located to preserve existing stream corridors as much as possible. Stream corridors overlap many of the wooded areas, steep slopes and wetlands on site. This is demonstrated on the accompanying "Existing Resources & Site Analysis Plan" and as described above.

ii. Prevent downstream impacts due to runoff through storm water techniques including minimizing impermeable areas, using bio swales, rain gardens, permeable pavements, small-scale, infiltration and green roofs.

Conceptual storm-water strategies include a combination of bio-swales, a green dry basin and water quality units for the treatment of storm-water runoff. Final designs will be determined at the time of construction plan approval and will meet all MSD requirements.

Protect views of open land from existing adjacent roadways through practices such as orienting structures to align with topographic character of land, tucking structures behind tree lines or knolls, using vegetation as a backdrop to reduce prominence of the structures, varying setbacks, setting aside required conservation land as a visual amenity into and within the development site, or any combination of these practices.

The frontage of the property includes an open space lot with a supplemental setback of some 30' from the Factory Lane right-of-way. Backs of homes will not face Factory Lane, and the building setback will vary across this frontage.

Large open spaces flank the entrance and will allow for a landscaped signature entrance. This is demonstrated on the accompanying "Existing Resources & Site Analysis Plan" in combination with the submitted Conservation Subdivision Plan and as described above.

iv. <u>Protect archaeological site and existing historic buildings or incorporate them through adaptive reuse.</u>

No known archaeological features or historic structures exist on this site.

v. Avoid encroaching on sensitive areas such as rare plant communities, high quality habitats, or endangered species habitats identified by the Kentucky Department for Natural Resources.

The delineation summary report prepared by Redwing Environmental Services on November 20, 2014 indicates approximately 4 acres of suitable habitat for the federally endangered Indiana Bat. Over 28.5 acres of tree canopy is being preserved on site. No other endangered species or rare plants have been identified. This is demonstrated on the accompanying "Existing Resources & Site Analysis Plan" in combination with the submitted Conservation Subdivision Plan and as described above.

c. Explain how the design and location of buildable lots will ensure compatibility with existing adjacent development.

This is demonstrated in the PowerPoint presentation presented at the required neighborhood meeting which accompanied the application, as supplemented at this public hearing.

d. <u>Justification must be provided for any cases where proposed open space areas within the development will not abut existing open space areas on adjoining parcels.</u>

To the extent that open space exists on adjoining properties, open spaces shown on the submitted Conservation Subdivision Plan will connect.