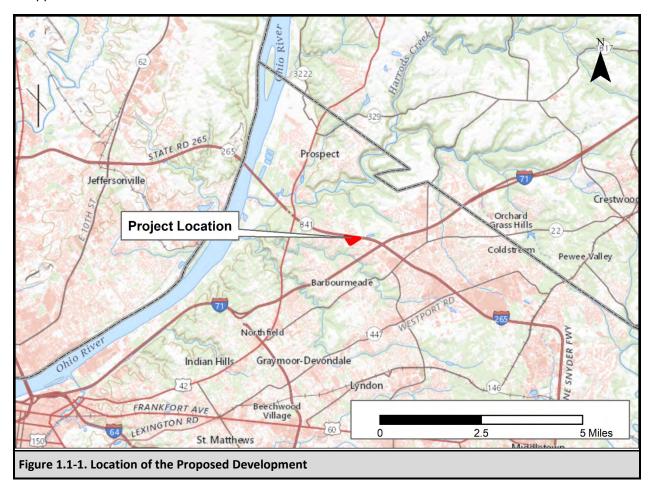
NOISE IMPACT ANALYSIS

Proposed Development at 5217 Springdale Road in Louisville, KY

JULY 16, 2021

HMB PROFESSIONAL ENGINEERS, INC. 3 HMB CIRCLE FRANKFORT, KY 40601


TABLE OF CONTENTS

СНА	APTER 1 – PROJECT INTRODUCTION	1-1
1.1	Project Description	1-1
1.2	Noise Impact Analysis	1-1
СНА	APTER 2 – NOISE ANALYSIS RESULTS	2-1
2.1	Identification of Noise Sensitive Areas	2-1
2.2	Determination of Existing Sound Levels	2-1
	2.2.1 TNM Model	
	2.2.2 Traffic Volumes	2-1
	2.2.3 Noise Measurements	
2.3	2.2.4 Model Validation Determination of Future Sound Levels	
2.3	Determination of Traffic Noise Impacts	
CHA	APTER 3 – SUMMARY	3-1
СНА	APTER 4 – REFERENCES	4-1
LIST	OF FIGURES	
Figur	re 1.1-1. Location of the Proposed Development	1-1
Figur	re 2.2–1. Field Noise Measurement Locations	2-3
Figur	re 2.3–1. Grid of Receivers	2-4
Figur	re 2.4–1. Results	2-6
LIST	OF TABLES	
	e 2.2–1. Noise Level Validation Summary	2.2
Iable	e 2.2–1. Noise Level validation Summary	2-2
APPI	PENDICES	
Appe	endix A – Proposed Layout	
Арре	endix B – Tables	
Appe	endix C – Field Data Sheets	
Арре	endix D – TNM Output	
Арре	endix E – Traffic Data	
Appe	endix F – Noise Meter Certifications	

CHAPTER 1 – PROJECT INTRODUCTION

1.1 PROJECT DESCRIPTION

The proposed project is a new residential development along Springdale Road just south of the Gene Snyder Freeway (I-265/KY-841) in Jefferson County, Kentucky (see Figure 1.1-1). The development would add nine residential structures and would include a total of 302 residential units. Approximately 17.97 acres of undeveloped land that is zoned as "Single Family Residential (R-4)" would be converted to a proposed zone of "Multi-Family Residential (R-7)". A layout plan of the proposed development is included in Appendix A.

1.2 NOISE IMPACT ANALYSIS

Chapter 5, Part 1 of the Land Development Code (LDC) set forth by the Louisville-Jefferson County Metro Government requires a noise analysis for any new development of residential structures or other noise sensitive use proposed at distances within 250-feet of the edge of pavement of an expressway's nearest travel lane. The noise analysis must be based on future traffic projections and determine if the predicted noise levels at the proposed site is less than 65 dBA. When the predicted noise level exceeds 65 dBA, the analysis shall determine if a barrier or other mitigative measures can be constructed to reduce the noise level to less than the 65 dBA.

This document analyzes the potential traffic noise impacts of a proposed development along Springdale Road and the Gene Snyder Freeway (I-265/KY-841). All evaluations were conducted in accordance with the Louisville Metro's LDC, the Federal Highway Administration's (FHWA) 23 CFR Part 772 – *Procedures for Abatement of Highway Traffic Noise and Construction Noise*, and Kentucky Transportation Cabinet's (KYTC) *Noise Analysis and Abatement Policy* effective July 1, 2020 (KYTC 2020). Noise modeling and barrier analysis (if necessary) were completed using the FHWA Traffic Noise Model (TNM), version 2.5, computer program.

The following tasks were performed:

- Identification of noise-sensitive areas: identify specific areas within the 250-foot noise study area with land uses that are sensitive to highway traffic noise.
- Determination of future sound levels: Prediction of future, design year, and worst-hour sound levels for the proposed development area.
- Determination of traffic noise impacts: Determine if the future sound levels reach or exceed 65 dB(A) within the 250-foot noise study area and at the location(s) of noise sensitive land uses (structures).
- Noise abatement evaluation (if necessary): Evaluation of noise abatement for areas determined to be traffic noise impacts to determine if the predicted noise level can be reduced to levels less than 65 dB(A).

Each of these analytical steps is discussed herein.

CHAPTER 2 – NOISE ANALYSIS RESULTS

2.1 IDENTIFICATION OF NOISE SENSITIVE AREAS

A single Noise Sensitive Area (NSA) was identified in the project corridor and contains all lands within the proposed 250-foot noise study area (per the LDC guidelines). Within this study area the proposed development will be mostly open space and parking lots. However, portions of five proposed residential buildings are also located within this area. Residential Buildings 2, 4, 5, 6, and 9 all have some portion of the proposed structure within 250-feet study area.

2.2 DETERMINATION OF EXISTING SOUND LEVELS

2.2.1 TNM MODEL

Roadway segments were modeled in TNM for each lane of the Gene Snyder Freeway (I-265/KY-841). This includes roadway features such as lane lines, shoulders, and the median barrier. Terrain lines were also added to the model to account for changes in the surrounding landscape, such as drainage ditches or rock cuts. In addition, there are two existing noise barriers along the Gene Snyder Freeway (I-265/KY-841) adjacent to the proposed site that were constructed due to a previous noise study. Their location, ground elevation and height were acquired from the final TNM models and were modeled accordingly. These two walls have a break at the northern part of the property to accommodate drainage from the expressway, their location can be viewed in Figure 2.3–1.

2.2.2 TRAFFIC VOLUMES

A *Traffic Impact Study* (TIS) for Springdale Road was completed on July 13, 2021 by HMB Professional Engineers. The report predicted a 1% annual growth rate for Springdale Road and projected traffic volumes for the proposed completion year of 2023. The TIS can be viewed in Appendix E.

Traffic volume and truck percentages on the Gene Snyder Freeway (I-265/KY-841) were determined by analyzing the traffic count data from the traffic report. A.M. and P.M. peaks and the corresponding truck percentages were determined from the traffic counts on the Gene Snyder Freeway (I-265/KY-841). A copy of these Excel spreadsheets is included in Appendix E.

2.2.3 Noise Measurements

Noise measurements were conducted June 17, 2021 at two representative locations in the proposed development area and within 500 feet of the Gene Snyder Freeway (I-265/KY-841). Short—term, 15-minute noise measurements at all locations were conducted during meteorologically appropriate periods (i.e., no rain, wind less than 10 miles per hour [mph]).

Ambient noise measurements were not applicable for this project since the study area is within 500-feet of the existing roadways. See Figure 2.4–1 for field noise measurement locations and Appendix C for the Field Data Sheets.

A Rion NL–20 sound meter and a Rion NC–73 sound level calibrator were used for all noise measurements. See Appendix F for noise meter calibration certificates.

2.2.4 MODEL VALIDATION

While TNM model uses the traffic volumes for predicting noise level, the field noise measurements are used to "validate" the models. The validation process involved obtaining noise measurements at a few

selected points near the existing roadway while making simultaneous vehicle classification counts and estimating travel speed. The observed traffic counts were then converted to hourly volumes. These volumes, along with the estimated travel speeds, were entered into a TNM model created for the project area. The posted speed limit of 65 miles per hour (mph) on the Gene Snyder Freeway (I-265/KY-841) was used in the model. Modeled noise levels were compared to the field measured noise levels, and if they were within 3 dB(A) of the measured levels, the model is considered validated. The location of field noise measurements can be seen in Figure 2.3–1.

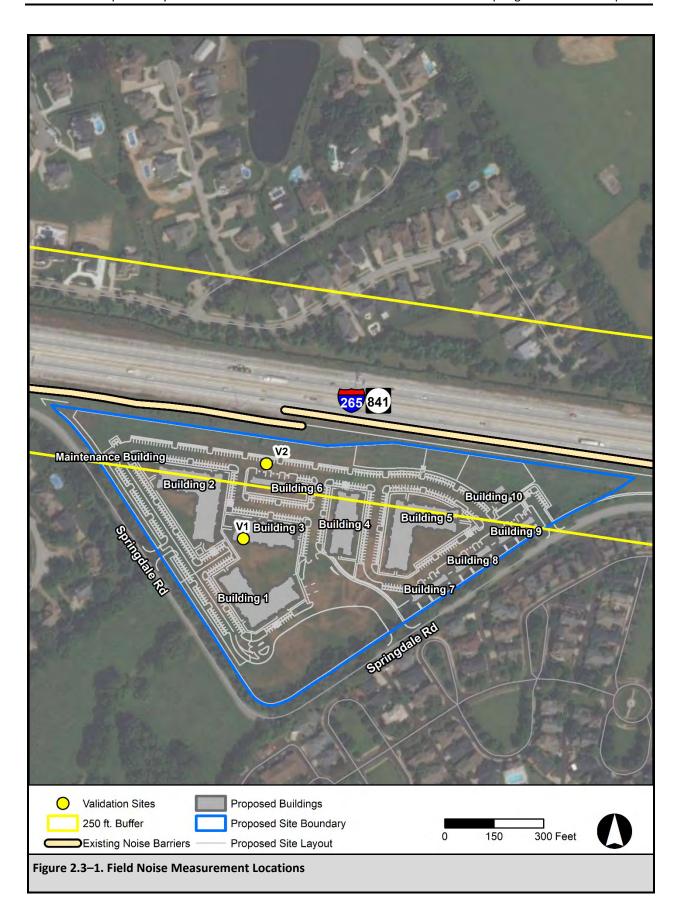
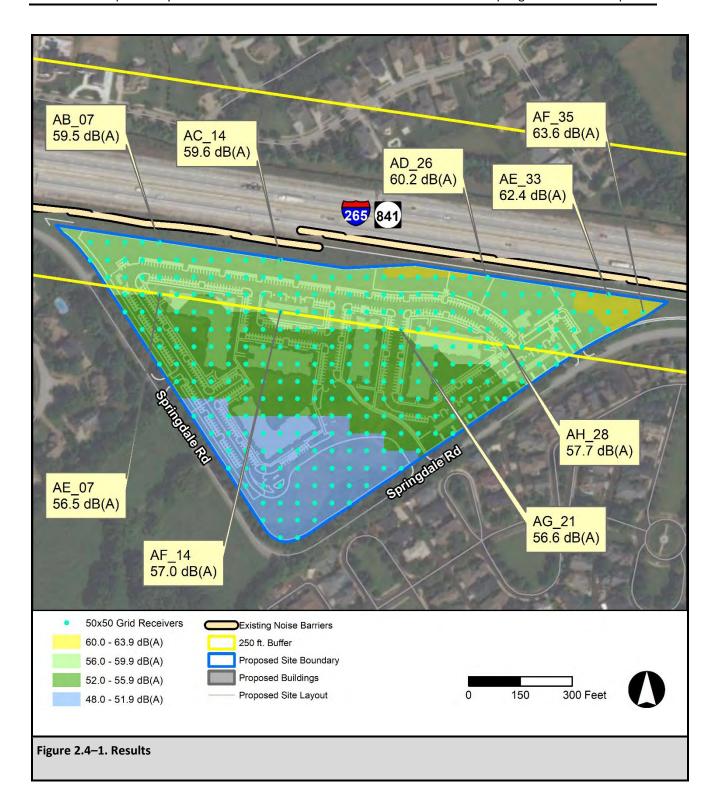

The predicted values for all validation receivers were found to be within 3 dB(A) of the field measured values. A summary of noise level validation results is provided in Table 2.2–1. With validated results, the TNM model was used to predict values for receivers in the immediate vicinity of the roadways based on existing traffic data for the facility.

Table 2.2–1. Noise Level Validation Summary

RECEIVER	DESCRIPTION	START TIME	MEASURED SOUND LEVEL dB(A)	MODELED SOUND LEVEL dB(A)	VALIDATION SUCCESSFUL?
V1	Field	4:00 p.m.	53.5	53.3	Yes
V2	Field	4:16 p.m.	58.3	60.8	Yes

2.3 DETERMINATION OF FUTURE SOUND LEVELS

With the noise measurements validated, the model was used to predict noise levels for all receivers along existing roadways. Using the validated TNM model, a 50-square foot grid of receivers were modeled to create a contour of the existing elevation conditions within the proposed project area (see Figure 2.3–2). Then traffic for build year 2023 was added to the applicable roadways and a noise threshold for 65 dB(A) was mapped.



2.4 DETERMINATION OF TRAFFIC NOISE IMPACTS

Potential noise impacts were determined by comparing the predicted sound levels to the 65 dB(A) criteria set forth by the LDC. The model showed **no** predicted impacts of 65.0 dB(A) to any of the receivers within the site boundary.

For the proposed site development, Buildings 2, 4, 5, 6, and 9 all have some portion of the proposed structure within the 250-foot noise study area. Receivers, AE_07, AF_14, AG_21, and AH_28, modeled in the vicinity of Buildings 2, 4, 5, 6, and 9, along the 250-foot threshold have predicted sound levels of 56.5 dB(A), 57.0 dB(A), 56.6 dB(A) and 57.7 dB(A), respectively. These receivers along with receivers along the site boundary closest to the nearest the Gene Snyder Freeway (I-265/KY-841) travel lane, and a noise level contour of the site are displayed in Figure 2.4—1.

A list of receivers, their distance to roadway, and their predicted sound results for the analysis can be seen in Table 1 of Appendix B, the TNM Output tables are provided in Appendix D. The electronic TNM files used for this analysis will be provided upon request.

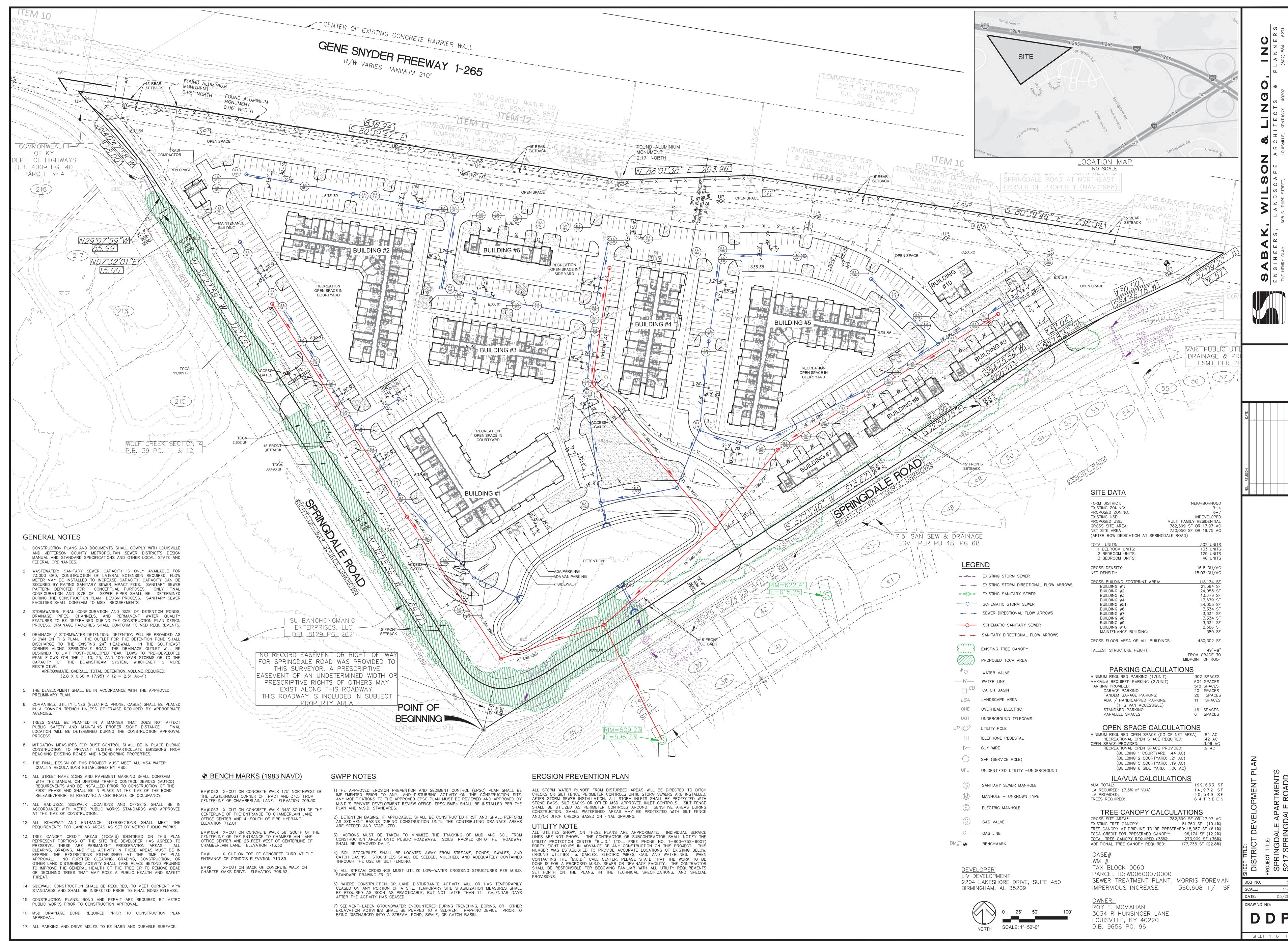
CHAPTER 3 – SUMMARY

In accordance with the Land Development Code set forth by Louisville Metro, the proposed residential development along Springdale Road was evaluated for traffic noise impacts within 250-feet from the Gene Snyder Freeway (I-265/KY-841). The evaluation utilized the predicted traffic volumes for the design year of 2023 for the Gene Snyder Freeway (I-265/KY-841). The noise model found that there are **no** predicted noise levels within the 250-foot noise study area that are at or above the 65 dB(A) threshold. The predicted noise levels ranged from 48.8 dB(A) to 63.6 dB(A). The structural noise barriers adjacent to the proposed property are attenuating noise from the highway and reducing noise levels at this property to below 65 dB(A) at all locations. No mitigative measures are suggested.

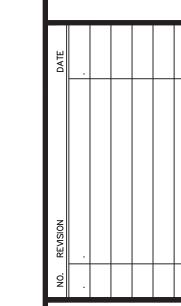
CHAPTER 4 – REFERENCES

Esri

World Imagery [basemap]. Scale Not Given. "World Imagery". July 13, 2021. http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f.


Federal Highway Administration

- The Audible Landscape: A Manual for Highway Noise and Land Use https://www.fhwa.dot.gov/environment/noise/noise_compatible_planning/federal_approac h/audible_landscape/audible_landscape.pdf.
- 2002 Entering Quiet Zone: Noise Compatibility Land Use Planning https://www.fhwa.dot.gov/Environment/noise/noise_compatible_planning/federal_approac h/land_use/quietzone.pdf.


Kentucky Transportation Cabinet

- 2020 Policy on Highway Traffic Noise Abatement
- 2012 Standard Specifications for Road and Bridge Construction

APPENDIX A – PROPOSED LAYOUT

0 4

05/28/ DRAWING NO:

APPENDIX B – TABLES

Table 1: 2023 Build Year Noise Levels

		2023 BUILD YEAR
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)
AB_03	138	58.5
AB_04	131	58.4
AB_05	124	58.8
AB_06	116	59.5
AB_07	109	59.5
AC_03	188	57.4
AC_04	180	57.5
AC_05	173	57.8
AC_06	166	58.2
AC_07	159	58.2
AC_08	151	58.1
AC_09	144	58.1
AC_10	136	58.3
AC_11	129	58.7
AC_12	122	59.1
AC_13	114	59.8
AC_14	107	59.6
AD_04	230	56.9
AD_05	223	57.2
AD_06	215	57.4
AD_07	208	57.5
AD_08	201	57.4
AD_09	193	57.4
AD_10	186	57.6
AD_11	178	57.9
AD_12	171	58.2
AD_13	164	58.5
AD_14	156	58.7
AD_15	149	58.6
AD_16	142	58.6
AD_17	134	58.8
AD_18	127	58.8
AD_19	120	59.5
AD_20	112	59.9
AD_21	105	60.1
AD_22	98	60.3
AD_23	90	60.5
AD_24	83	60.7
AD_25	76	

Table 1: 2023 Build Year Noise Levels

	2023 BUILD YEAR						
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)					
AD_26	68	60.2					
AE_05	272	56.6					
AE_06	265	56.6					
AE_07	257	56.5					
AE_08	250	56.5					
AE_09	243	56.6					
AE_10	235	56.7					
AE_11	228	56.9					
AE_12	221	57.6					
AE_13	213	57.8					
AE_14	206	58.0					
AE_15	198	58.0					
AE_16	191	57.8					
AE_17	184	57.6					
AE_18	176	57.6					
AE_19	169	57.9					
AE_20	162	58.3					
AE_21	154	58.6					
AE_22	147	58.8					
AE_23	140	59.2					
AE_24	132	59.4					
AE_25	125	59.5					
AE_26	118	59.1					
AE_27	110	58.8					
AE_28	103	58.9					
AE_29	96	59.2					
AE_30	88	59.6					
AE_31	81	60.8					
AE_32	74	62.0					
AE_33	67	62.4					
AF_05	322	55.9					
AF_06	314	55.6					
 AF_07	307	55.4					
_ _ AF_08	300	56.0					
 AF_09	292	55.5					
AF_10	285	55.8					
 AF_11	277	56.0					
AF_12	270	56.4					
 AF_13	263	56.7					

Table 1: 2023 Build Year Noise Levels

	2023 BUILD YEAR						
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)					
AF_14	255	57.0					
AF_15	248	57.2					
AF_16	241	57.2					
AF_17	233	56.9					
AF_18	226	56.9					
AF_19	218	57.1					
AF_20	211	57.2					
AF_21	204	57.5					
AF_22	197	57.7					
AF_23	189	58.0					
AF_24	182	58.4					
AF_25	175	58.6					
AF_26	167	58.4					
AF_27	160	58.3					
AF_28	153	58.4					
AF_29	145	58.6					
AF_30	138	59.1					
AF_31	131	59.6					
AF_32	123	60.6					
AF_33	116	61.2					
AF_34	109	62.1					
AF_35	101	63.6					
AG_06	364	54.6					
AG_07	356	54.4					
AG_08	349	54.5					
AG_09	342	54.6					
AG_10	334	54.8					
AG_11	327	55.0					
AG_12	319	55.6					
AG_13	312	55.8					
AG_14	305	56.0					
AG_15	297	56.1					
AG_16	290	56.0					
AG_17	283	56.1					
AG_18	275	56.1					
AG_19	268	56.2					
AG_20	261	56.4					
AG_21	253	56.6					
AG_22	246	56.8					

Table 1: 2023 Build Year Noise Levels

	2023 BUILD YEAR						
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)					
AG_23	239	57.1					
AG_24	231	57.5					
AG_25	224	57.8					
AG_26	217	57.9					
AG_27	209	58.0					
AG_28	202	58.1					
AG_29	195	58.5					
AG_30	187	59.1					
AG_31	180	59.4					
AG_32	173	59.6					
AG_33	165	60.7					
AH_07	406	53.6					
AH_08	398	53.7					
AH_09	391	53.9					
AH_10	384	54.0					
AH_11	376	54.1					
AH_12	369	55.0					
AH_13	362	55.0					
AH_14	354	55.1					
AH_15	347	55.1					
AH_16	339	55.0					
AH_17	332	55.0					
AH_18	325	55.1					
AH_19	317	55.2					
AH_20	310	55.4					
AH_21	303	55.7					
AH_22	295	56.0					
AH_23	288	56.5					
AH_24	281	56.8					
AH_25	273	57.1					
AH_26	266	57.4					
AH_27	259	57.6					
AH_28	252	57.7					
AH_29	244	58.2					
AH_30	237	58.4					
AH_31	230	59.1					
AI_07	455	52.9					
AI_08	448	52.9					
AI_09	440	53.0					

Table 1: 2023 Build Year Noise Levels

		2023 BUILD YEAR
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)
AI_10	433	53.1
AI_11	426	53.4
AI_12	418	53.8
AI_13	411	54.1
AI_14	404	54.1
AI_15	396	54.0
AI_16	389	54.0
AI_17	382	54.0
AI_18	374	54.1
AI_19	367	54.2
AI_20	360	54.5
AI_21	352	54.8
AI_22	345	55.3
AI_23	338	55.9
AI_24	330	56.1
AI_25	323	56.3
AI_26	316	56.6
AI_27	308	56.8
 AI_28	301	57.1
AI_29	294	57.5
AI_30	286	58.0
AJ_08	497	52.3
 AJ 09	490	52.3
AJ_10	483	52.4
 AJ_11	475	52.7
AJ 12	468	53.1
AJ_13	460	53.2
AJ_14	453	53.1
 AJ_15	446	53.1
AJ_16	438	53.1
AJ_17	431	53.2
AJ_18	424	53.4
AJ_19	416	53.5
AJ_20	409	53.7
AJ_21	402	54.1
AJ_22	394	54.8
AJ_23	387	55.2
AJ_24	380	55.4
AJ_25	372	55.5

Table 1: 2023 Build Year Noise Levels

		2023 BUILD YEAR
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)
AJ_26	365	55.7
AJ_27	358	56.1
AJ_28	350	56.6
AK_09	539	51.7
AK_10	532	51.9
AK_11	525	52.2
AK_12	517	52.4
AK_13	510	52.3
AK_14	503	52.2
AK_15	495	52.2
AK_16	488	52.3
AK_17	480	52.4
AK_18	473	52.6
AK_19	466	53.0
AK_20	458	53.5
AK_21	451	53.8
AK_22	444	54.1
AK_23	436	54.3
AK_24	429	54.5
AK_25	422	54.8
AK_26	415	55.1
AK_27	407	55.4
AL_09	589	51.3
AL_10	581	51.4
AL_11	574	51.6
AL_12	567	51.8
AL_13	559	51.7
AL_14	552	51.6
AL_15	545	51.6
AL_16	537	51.6
 AL_17	530	51.9
 AL_18	523	52.2
 AL_19	515	52.5
 AL_20	508	52.9
 AL_21	501	53.1
 AL_22	493	53.5
 AL_23	486	53.5
 AL_24	479	53.9
 AL_25	471	54.2

Table 1: 2023 Build Year Noise Levels

		2023 BUILD YEAR
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)
AM_10	631	50.8
AM_11	624	51.2
AM_12	616	51.2
AM_13	609	51.1
AM_14	601	51.2
AM_15	594	51.3
AM_16	587	51.0
AM_17	579	51.3
AM_18	572	51.9
AM_19	565	52.0
AM_20	557	52.3
AM_21	550	52.5
AM_22	543	52.8
AM_23	535	53.1
AM_24	528	53.3
AN_11	673	50.7
AN_12	666	50.8
AN_13	658	50.7
AN_14	651	50.7
AN_15	644	50.7
AN_16	636	50.8
AN_17	629	50.4
AN_18	621	50.9
AN_19	614	51.5
AN_20	607	51.8
AN_21	600	51.9
AN_22	592	52.4
AO_11	722	50.2
AO_12	715	50.3
AO_13	708	50.3
AO_14	700	50.3
AO_15	693	50.3
AO_16	686	50.3
AO_17	678	50.7
AO_18	671	50.6
AO_19	664	50.7
AO_20	656	51.3
AO_21	649	51.4
AP_12	765	49.8

Table 1: 2023 Build Year Noise Levels

	2023 BUILD YEAR						
RECEPTOR	DIST. TO ROAD (FT)	SOUND LEVELS dB(A)					
AP_13	757	49.9					
AP_14	750	50.0					
AP_15	742	50.0					
AP_16	735	50.0					
AP_17	728	50.1					
AP_18	720	50.8					
AP_19	713	50.6					
AQ_13	807	49.5					
AQ_14	799	49.6					
AQ_15	792	49.7					
AQ_16	785	49.9					
AQ_17	777	49.6					
AQ_18	770	49.6					
AR_13	856	49.1					
AR_14	849	49.1					
AR_15	841	49.1					
AR_16	834	50.1					
AS_14	898	48.8					
AS_15	891	49.0					

APPENDIX C – FIELD DATA SHEETS

NOISE FIELD MEASUREMENT DATA SHEET

STE:		1	VOISE FILLD				
1 1408 8 108 108 2 1730 106 106 106 106 106 106 106 106 106 106 107 10	SITE: JOB NUMBE DATE:	VI/V2 1389.00 6/17/2	<u> </u>	SPEED LIMIT:TEMPERATUREDURATION:	15-1	WIND SPEED:	NSMPI ASMPI
1 1408 8 108 109 1							-2
SPENDANK CO	4		1-2	65			>
SPEINL PAIX CO	1			. V2 ~ 25	0'		
SPEINL PAIX CO				·VI NY	001	/	
O/4 EGMENT							
0/4/ EGMENT AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS BUSES MOTORCYCLES DIRECTIO 1 1408 8 108 2 1280 (6 144 2 1680 20 106							
1 1408 8 108 2 1280 16 144 3 1 1680 20 106	0/41		Spen	NO DALK ED			
2 1280 16 144 31 1680 20 106		AUTOMOBILES	MEDIUM TRUCKS	HEAVY TRUCKS	BUSES	MOTORCYCLES	DIRECTION
2 1280 16 199 21 1680 20 106	EGMENT		8				
#2 1060 20 106 #2 1060 20 152	1	1408		144			
# L 1060 20 15 L	1 2	1280					
* LOCATONS MARKED VIA GPS	1 2	1280	20	106			

APPENDIX D – TNM OUTPUT

RESULTS: SOUND LEVELS						1	1389.00		<u> </u>			
HMB Professional Engineers							14 July 20	121				
Mark Gavula							TNM 2.5	12 1				
iviai k Gavuia							-	d with TNN	125			
RESULTS: SOUND LEVELS							Calculate		1 2.3			
PROJECT/CONTRACT:		1389.00	D									
RUN:		Spring	dale Noise	Analysis - Gr	id							
BARRIER DESIGN:			HEIGHTS					Average p	pavement type	shall be use	d unless	
									ghway agency)
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
AB_03	4	1	0.0	65.6	66	65.6	10		58.5	7.1		8 -0
AB_04	5	1	0.0	65.7	7 66	65.7	10		58.4	7.3		8 -0
AB_05	6	1	0.0	66.3	66	66.3	10	Snd Lvl	58.8	7.5		8 -0
AB_06	7	1	0.0	67.1	66	67.1	10	Snd Lvl	59.5	7.6		8 -0
AB_07	8	1	0.0	67.4	1 66	67.4	10	Snd Lvl	59.5	7.9		8 -0
AC_03	9	1	0.0	63.6	66	63.6	10		57.4			8 -1
AC_04	10	1	0.0			63.8	10		57.5	6.3		8 -1
AC_05	11	1	0.0						57.8			8 -1
AC_06	12		0.0						58.2			8 -1
AC_07	13		0.0						58.2			8 -0
AC_08	14		0.0						58.1			8 -1
AC_09	15		0.0						58.1			8 -1
AC_10	16		0.0						58.3			8 -1
AC_11	17		0.0						58.7			8 -0
AC_12	18		0.0						59.1			8 -0
AC_13	19		0.0						59.8			8 1
AC_14	20								59.6			8 2
AD_04	21								56.9			8 -2
AD_05	22								57.2			8 -2
AD_06	23								57.4			8 -1
AD_07	24		0.0						57.5			8 -1
AD_08	25								57.4			8 -1
AD_09	26	1	0.0	63.7	7 66	63.7	10		57.4			8 -1

27

0.0

64.1

66

AD_10

-1.5

6.5

10

57.6

64.1

RESULTS: SOUND LEVELS						1389	9.00					
AD_11	28	1	0.0	64.7	66	64.7	10		57.9	6.8	8	-1.2
AD_12	29	1	0.0	65.2	66	65.2	10		58.2	7.0	8	-1.0
AD_13	30	1	0.0	65.8	66	65.8	10		58.5	7.3	8	-0.7
AD_14	31	1	0.0	66.3	66	66.3	10	Snd Lvl	58.7	7.6	8	-0.4
AD_15	32	1	0.0	67.0	66	67.0	10	Snd Lvl	58.6	8.4	8	0.4
AD_16	33	1	0.0	67.7	66	67.7	10	Snd Lvl	58.6	9.1	8	1.1
AD_17	34	1	0.0	68.5	66	68.5	10	Snd Lvl	58.8	9.7	8	1.7
AD_18	35	1	0.0	69.1	66	69.1	10	Snd Lvl	58.8	10.3	8	2.3
AD_19	36	1	0.0	69.7	66	69.7	10	Snd Lvl	59.5	10.2	8	2.2
AD_20	37	1	0.0	70.3	66	70.3	10	Snd Lvl	59.9	10.4	8	2.4
AD_21	38	1	0.0	70.9	66	70.9	10		60.1	10.8	8	2.8
AD_22	39	1	0.0	71.4	66	71.4	10	Snd Lvl	60.3	11.1	8	3.1
AD_23	40	1	0.0	72.0	66	72.0	10	Snd Lvl	60.5	11.5	8	3.5
AD_24	41	1	0.0	72.6	66	72.6	10	Snd Lvl	60.7	11.9	8	3.9
AD_25	42	1	0.0	73.2	66	73.2	10	Snd Lvl	60.7	12.5	8	4.5
AD_26	43	1	0.0	73.2	66	73.2	10	Snd Lvl	60.2	13.0	8	5.0
AE_05	44	1	0.0	62.2	66	62.2	10		56.6	5.6	8	-2.4
AE_06	45	1	0.0	62.3	66	62.3	10		56.6	5.7	8	-2.3
AE_07	46	1	0.0	62.2	66	62.2	10		56.5	5.7	8	-2.3
AE_08	47	1	0.0	62.1	66	62.1	10		56.5	5.6	8	-2.4
AE_09	48	1	0.0	62.3	66	62.3	10		56.6	5.7	8	-2.3
AE_10	49	1	0.0	62.6	66	62.6	10		56.7	5.9	8	-2.1
AE_11	50	1	0.0	63.1	66	63.1	10		56.9	6.2	8	-1.8
AE_12	51	1	0.0	63.6	66	63.6	10		57.6	6.0	8	-2.0
AE_13	52	1	0.0	64.3	66	64.3	10		57.8	6.5	8	-1.5
AE_14	53	1	0.0	64.8	66	64.8	10		58.0	6.8	8	-1.2
AE_15	54	1	0.0	65.2	66	65.2	10		58.0	7.2	8	-0.8
AE_16	55	1	0.0	65.6	66	65.6	10		57.8	7.8	8	-0.2
AE_17	56	1	0.0	65.9	66	65.9	10		57.6	8.3	8	0.3
AE_18	57	1	0.0	66.4	66	66.4	10		57.6	8.8	8	0.8
AE_19	58	1	0.0	66.9	66	66.9	10		57.9	9.0	8	1.0
AE_20	59	1	0.0	67.5	66	67.5	10		58.3	9.2	8	1.2
AE_21	60	1	0.0	68.0	66	68.0	10		58.6	9.4	8	1.4
AE_22	61	1	0.0	68.4	66	68.4	10		58.8	9.6	8	1.6
AE_23	62	1	0.0	68.9	66	68.9	10		59.2	9.7	8	1.7
AE_24	63	1	0.0	69.6	66	69.6		Snd Lvl	59.4	10.2	8	2.2
AE_25	64	1	0.0	70.1	66	70.1	10		59.5	10.6	8	2.6
AE_26	65	1	0.0	69.3	66	69.3	10		59.1	10.2	8	2.2
AE_27	66	1	0.0	68.7	66	68.7	10		58.8	9.9	8	1.9
AE_28	67	1	0.0	68.5	66	68.5	10		58.9	9.6	8	1.6
AE_29	68	1	0.0	68.9	66	68.9	10	Snd Lvl	59.2	9.7	8	1.7

RESULTS: SOUND LEVELS		1389.00											
AE_30	69	1	0.0	69.6	66	69.6	10	Snd Lvl	59.6	10.0	8	2.0	
AE_31	70	1	0.0	71.9	66	71.9	10	Snd Lvl	60.8	11.1	8	3.1	
AE_32	71	1	0.0	73.1	66	73.1	10	Snd Lvl	62.0	11.1	8	3.1	
AE_33	72	1	0.0	73.5	66	73.5	10	Snd Lvl	62.4	11.1	8	3.1	
AF_05	73	1	0.0	61.1	66	61.1	10		55.9	5.2	8	-2.8	
AF_06	74	1	0.0	60.8	66	60.8	10		55.6	5.2	8	-2.8	
AF_07	75	1	0.0	60.5	66	60.5	10		55.4	5.1	8	-2.9	
AF_08	76	1	0.0	60.8	66	60.8	10		56.0	4.8	8	-3.2	
AF_09	77	1	0.0	60.8	66	60.8	10		55.5	5.3	8	-2.7	
AF_10	78	1	0.0	61.1	66	61.1	10		55.8	5.3	8	-2.7	
AF_11	79	1	0.0	61.5	66	61.5	10		56.0	5.5	8		
AF_12	80	1	0.0	62.2	66	62.2			56.4	5.8	8	-2.2	
AF_13	81	1	0.0	62.8	66	62.8	10		56.7	6.1	8	-1.9	
AF_14	82	1	0.0	63.3	66	63.3	10		57.0	6.3	8	-1.7	
AF_15	83	1	0.0	63.6	66	63.6			57.2	6.4	8	-1.6	
AF_16	84	1	0.0	64.0	66	64.0			57.2	6.8	8	-1.2	
AF_17	85	1	0.0	64.3	66	64.3			56.9	7.4	8	-0.6	
AF_18	86	1	0.0	64.6	66	64.6			56.9	7.7	8		
AF_19	87	1	0.0	65.0	66	65.0	10		57.1	7.9	8	-0.1	
AF_20	88	1	0.0	65.4	66	65.4	10		57.2	8.2	8	0.2	
AF_21	89	1	0.0	65.8	66	65.8			57.5	8.3	8	0.3	
AF_22	90	1	0.0	66.2	66	66.2		Snd Lvl	57.7	8.5	8	0.5	
AF_23	91	1	0.0	66.6	66	66.6		Snd Lvl	58.0	8.6			
AF_24	92	1	0.0	67.2	66	67.2	10	Snd Lvl	58.4	8.8			
AF_25	93	1	0.0	67.7	66	67.7	10	Snd Lvl	58.6	9.1	8		
AF_26	94	1	0.0	67.6	66	67.6		Snd Lvl	58.4	9.2	8	1.2	
AF_27	95	1	0.0	67.3	66	67.3		Snd Lvl	58.3	9.0	8	1.0	
AF_28	96	1	0.0	67.2	66	67.2		Snd Lvl	58.4	8.8	8	0.8	
AF_29	97	1	0.0	67.6	66	67.6		Snd Lvl	58.6	9.0	8	1.0	
AF_30	98	1	0.0	68.1	66	68.1	10	Snd Lvl	59.1	9.0	8		
AF_31	99	1	0.0	68.0	66	68.0	10	Snd Lvl	59.6	8.4	8		
AF_32	100	1	0.0	69.1	66	69.1	10	Snd Lvl	60.6	8.5			
AF_33	101	1	0.0	68.7	66	68.7	10	Snd Lvl	61.2	7.5	8	-0.5	
AF_34	102	1	0.0	69.1	66	69.1	10	Snd Lvl	62.1	7.0	8	-1.0	
AF_35	103	1	0.0	69.0	66	69.0		Snd Lvl	63.6	5.4	8	-2.6	
AG_06	104	1	0.0	59.4	66				54.6	4.8			
AG_07	105	1	0.0	59.4	66	59.4			54.4	5.0			
AG_08	106	1	0.0	59.4	66	59.4			54.5	4.9			
AG_09	107	1	0.0	59.7	66	59.7			54.6	5.1	8		
AG_10	108	1	0.0	59.8	66				54.8	5.0			
AG_11	109	1	0.0	60.1	66	60.1	10		55.0	5.1	8	-2.9	

RESULTS: SOUND LEVELS			1389.00											
AG_12	110	1	0.0	60.8	66	60.8	10		55.6	5.2	8	-2.8		
AG_13	111	1	0.0	61.5	66	61.5	10		55.8	5.7	8	-2.3		
AG_14	112	1	0.0	61.9	66	61.9	10		56.0	5.9	8	-2.1		
AG_15	113	1	0.0	62.2	66	62.2	10		56.1	6.1	8	-1.9		
AG_16	114	1	0.0	62.5	66	62.5	10		56.0	6.5	8	-1.5		
AG_17	115	1	0.0	62.8	66	62.8	10		56.1	6.7	8	-1.3		
AG_18	116	1	0.0	63.1	66	63.1	10		56.1	7.0	8	-1.0		
AG_19	117	1	0.0	63.4	66	63.4	10		56.2	7.2	8	-0.8		
AG_20	118	1	0.0	63.7	66	63.7	10		56.4	7.3	8	-0.7		
AG_21	119	1	0.0	64.1	66	64.1	10		56.6	7.5	8	-0.5		
AG_22	120	1	0.0	64.4	66	64.4	10		56.8	7.6	8	-0.4		
AG_23	121	1	0.0	64.7	66	64.7	10		57.1	7.6	8	-0.4		
AG_24	122	1	0.0	65.3	66	65.3	10		57.5	7.8	8	-0.2		
AG_25	123	1	0.0	65.8	66	65.8	10		57.8	8.0	8	0.0		
AG_26	124	1	0.0	66.1	66	66.1	10		57.9	8.2	8	0.2		
AG_27	125	1	0.0	66.0	66	66.0	10	Snd Lvl	58.0	8.0	8	0.0		
AG_28	126	1	0.0	66.0	66	66.0	10		58.1	7.9	8	-0.1		
AG_29	127	1	0.0	66.5	66	66.5	10		58.5	8.0	8	0.0		
AG_30	128	1	0.0	66.9	66	66.9	10		59.1	7.8	8	-0.2		
AG_31	129	1	0.0	66.8	66	66.8	10		59.4	7.4	8	-0.6		
AG_32	130	1	0.0	66.3	66	66.3	10		59.6	6.7	8	-1.3		
AG_33	131	1	0.0	66.5	66	66.5	10	Snd Lvl	60.7	5.8	8	-2.2		
AH_07	132	1	0.0	58.4	66	58.4	10		53.6	4.8	8	-3.2		
AH_08	133	1	0.0	58.4	66	58.4	10		53.7	4.7	8	-3.3		
AH_09	134	1	0.0	58.6	66	58.6	10		53.9	4.7	8	-3.3		
AH_10	135	1	0.0	58.7	66	58.7	10		54.0	4.7	8	-3.3		
AH_11	136	1	0.0	59.0	66	59.0	10		54.1	4.9	8	-3.1		
AH_12	137	1	0.0	59.7	66	59.7	10		55.0	4.7	8	-3.3		
AH_13	138	1	0.0	60.4	66	60.4	10		55.0	5.4	8	-2.6		
AH_14	139	1		60.7	66	60.7	10		55.1	5.6	8	-2.4		
AH_15	140	1		60.9	66	60.9	10		55.1	5.8	8	-2.2		
AH_16	141	1	0.0	61.1	66	61.1	10		55.0	6.1	8	-1.9		
AH_17	142	1	0.0	61.3	66	61.3			55.0	6.3	8	-1.7		
AH_18	143	1	0.0	61.6	66	61.6			55.1	6.5	8	-1.5		
AH_19	144	1		61.8	66	61.8			55.2	6.6	8	-1.4		
AH_20	145	1		62.2	66	62.2			55.4	6.8	8	-1.2		
AH_21	146	1		62.6	66	62.6			55.7	6.9	8	-1.1		
AH_22	147	1		62.9	66	62.9			56.0	6.9	8	-1.1		
AH_23	148	1	0.0	63.4	66	63.4			56.5	6.9	8	-1.1		
AH_24	149	1		63.8	66	63.8			56.8	7.0	8	-1.0		
AH_25	150	1	0.0	64.1	66	64.1	10		57.1	7.0	8	-1.0		

RESULTS: SOUND LEVELS						1389	9.00				
AH_26	151	1	0.0	64.5	66	64.5	10	 57.4	7.1	8	-0.9
AH_27	152	1	0.0	64.7	66	64.7	10	 57.6	7.1	8	-0.9
AH_28	153	1	0.0	64.9	66	64.9	10	 57.7	7.2	8	-0.8
AH_29	154	1	0.0	65.1	66	65.1	10	 58.2	6.9	8	-1.1
AH_30	155	1	0.0	65.1	66	65.1	10	 58.4	6.7	8	-1.3
AH_31	156	1	0.0	65.0	66	65.0	10	 59.1	5.9	8	-2.1
AI_07	157	1	0.0	57.5	66	57.5	10	 52.9	4.6	8	-3.4
AI_08	158	1	0.0	57.6	66	57.6	10	 52.9	4.7	8	-3.3
AI_09	159	1	0.0	57.7	66	57.7	10	 53.0	4.7	8	-3.3
AI_10	160	1	0.0	57.7	66	57.7	10	 53.1	4.6	8	-3.4
AI_11	161	1	0.0	58.0	66	58.0	10	 53.4	4.6	8	-3.4
AI_12	162	1	0.0	58.9	66	58.9	10	 53.8	5.1	8	-2.9
AI_13	163	1	0.0	59.4	66	59.4	10	 54.1	5.3	8	-2.7
AI_14	164	1	0.0	59.5	66	59.5	10	 54.1	5.4	8	-2.6
AI_15	165	1	0.0	59.6	66	59.6	10	 54.0	5.6	8	-2.4
AI_16	166	1	0.0	59.9	66	59.9	10	 54.0	5.9	8	-2.1
AI_17	167	1	0.0	59.9	66	59.9	10	 54.0	5.9	8	-2.1
AI_18	168	1	0.0	60.1	66	60.1	10	 54.1	6.0	8	-2.0
AI_19	169	1	0.0	60.3	66	60.3	10	 54.2	6.1	8	-1.9
AI_20	170	1	0.0	60.8	66	60.8	10	 54.5	6.3	8	-1.7
AI_21	171	1	0.0	61.2	66	61.2	10	 54.8	6.4	8	-1.6
AI_22	172	1	0.0	61.8	66	61.8	10	 55.3	6.5	8	-1.5
AI_23	173	1	0.0	62.1	66	62.1	10	 55.9	6.2	8	-1.8
AI_24	174	1	0.0	62.4	66	62.4	10	 56.1	6.3	8	-1.7
AI_25	175	1	0.0	62.6	66	62.6	10	 56.3	6.3	8	-1.7
AI_26	176	1	0.0	62.9	66	62.9	10	 56.6	6.3	8	-1.7
AI_27	177	1	0.0	63.1	66	63.1	10	 56.8	6.3	8	-1.7
AI_28	178	1	0.0	63.4	66	63.4	10	 57.1	6.3	8	-1.7
AI_29	179	1	0.0	63.5	66	63.5	10	 57.5	6.0	8	-2.0
AI_30	180	1	0.0	63.7	66	63.7	10	 58.0	5.7	8	-2.3
AJ_08	181	1	0.0	56.8	66	56.8	10	 52.3	4.5	8	-3.5
AJ_09	182	1	0.0	56.8	66	56.8	10	 52.3	4.5	8	-3.5
AJ_10	183	1	0.0	56.8	66	56.8	10	 52.4	4.4	8	-3.6
AJ_11	184	1	0.0	57.2	66	57.2	10	 52.7	4.5	8	-3.5
AJ_12	185	1	0.0	58.0	66	58.0	10	 53.1	4.9	8	-3.1
AJ_13	186	1	0.0	58.3	66	58.3	10	 53.2	5.1	8	-2.9
AJ_14	187	1	0.0	58.3	66	58.3	10	 53.1	5.2	8	-2.8
AJ_15	188	1	0.0	58.3	66	58.3	10	 53.1	5.2	8	-2.8
AJ_16	189	1	0.0	58.4	66	58.4	10	 53.1	5.3	8	-2.7
AJ_17	190	1	0.0	58.6	66	58.6	10	 53.2	5.4	8	-2.6
AJ_18	191	1	0.0	58.9	66	58.9	10	 53.4	5.5	8	-2.5

RESULTS: SOUND LEVELS						1389	9.00				
AJ_19	192	1	0.0	59.2	66	59.2	10	 53.5	5.7	8	-2.3
AJ_20	193	1	0.0	59.6	66	59.6	10	 53.7	5.9	8	-2.1
AJ_21	194	1	0.0	60.1	66	60.1	10	 54.1	6.0	8	-2.0
AJ_22	195	1	0.0	60.7	66	60.7	10	 54.8	5.9	8	-2.1
AJ_23	196	1	0.0	61.0	66	61.0	10	 55.2	5.8	8	-2.2
AJ_24	197	1	0.0	61.2	66	61.2	10	 55.4	5.8	8	-2.2
AJ_25	198	1	0.0	61.2	66	61.2	10	 55.5	5.7	8	-2.3
AJ_26	199	1	0.0	61.4	66	61.4	10	 55.7	5.7	8	-2.3
AJ_27	200	1	0.0	61.6	66	61.6	10	 56.1	5.5	8	-2.5
AJ_28	201	1	0.0	62.0	66	62.0	10	 56.6	5.4	8	-2.6
AK_09	202	1	0.0	56.1	66	56.1	10	 51.7	4.4	8	-3.6
AK_10	203	1	0.0	56.1	66	56.1	10	 51.9	4.2	8	-3.8
AK_11	204	1	0.0	56.7	66	56.7	10	 52.2	4.5	8	-3.5
AK_12	205	1	0.0	57.2	66	57.2	10	 52.4	4.8	8	-3.2
AK_13	206	1	0.0	57.2	66	57.2	10	 52.3	4.9	8	-3.1
AK_14	207	1	0.0	57.1	66	57.1	10	 52.2	4.9	8	-3.1
AK_15	208	1	0.0	56.9	66	56.9	10	 52.2	4.7	8	-3.3
AK_16	209	1	0.0	57.2	66	57.2	10	 52.3	4.9	8	-3.1
AK_17	210	1	0.0	57.5	66	57.5	10	 52.4	5.1	8	-2.9
AK_18	211	1	0.0	57.9	66	57.9	10	 52.6	5.3	8	-2.7
AK_19	212	1	0.0	58.2	66	58.2	10	 53.0	5.2	8	-2.8
AK_20	213	1	0.0	58.7	66	58.7	10	 53.5	5.2	8	-2.8
AK_21	214	1	0.0	59.3	66	59.3	10	 53.8	5.5	8	-2.5
AK_22	215	1	0.0	59.6	66	59.6	10	 54.1	5.5	8	-2.5
AK_23	216	1	0.0	59.8	66	59.8	10	 54.3	5.5	8	-2.5
AK_24	217	1	0.0	59.9	66	59.9	10	 54.5	5.4	8	-2.6
AK_25	218	1	0.0	59.9	66	59.9	10	 54.8	5.1	8	-2.9
AK_26	219	1	0.0	60.2	66	60.2	10	 55.1	5.1	8	-2.9
AK_27	220	1	0.0	60.5	66	60.5	10	 55.4	5.1	8	-2.9
AL_09	221	1	0.0	55.3	66	55.3	10	 51.3	4.0	8	-4.0
AL_10	222	1	0.0	55.5	66	55.5	10	 51.4	4.1	8	-3.9
AL_11	223	1	0.0	56.2	66	56.2	10	 51.6	4.6	8	-3.4
AL_12	224	1	0.0	56.4	66	56.4	10	 51.8	4.6	8	-3.4
AL_13	225	1	0.0	56.4	66	56.4	10	 51.7	4.7	8	-3.3
AL_14	226	1	0.0	56.3	66	56.3	10	 51.6	4.7	8	-3.3
AL_15	227	1	0.0	56.2	66	56.2	10	 51.6	4.6	8	-3.4
AL_16	228	1	0.0	56.5	66	56.5	10	 51.6	4.9	8	-3.1
AL_17	229	1	0.0	56.8	66	56.8	10	 51.9	4.9	8	-3.1
AL_18	230	1	0.0	57.1	66	57.1	10	 52.2	4.9	8	-3.1
AL_19	231	1	0.0	57.4	66	57.4	10	 52.5	4.9	8	-3.1
AL_20	232	1	0.0	57.9	66	57.9	10	 52.9	5.0	8	-3.0

RESULTS: SOUND LEVELS							1389.00				
AL_21	233	1	0.0	58.3	66	58.3	10	 53.1	5.2	8	-2.8
AL_22	234	1	0.0	58.5	66	58.5	10	 53.5	5.0	8	-3.0
AL_23	235	1	0.0	58.5	66	58.5	10	 53.5	5.0	8	-3.0
AL_24	236	1	0.0	58.7	66	58.7	10	 53.9	4.8	8	-3.2
AL_25	237	1	0.0	58.9	66	58.9	10	 54.2	4.7	8	-3.3
AM_10	238	1	0.0	55.1	66	55.1	10	 50.8	4.3	8	-3.7
AM_11	239	1	0.0	55.5	66	55.5	10	 51.2	4.3	8	-3.7
AM_12	240	1	0.0	55.7	66	55.7	10	 51.2	4.5	8	-3.5
AM_13	241	1	0.0	55.7	66	55.7	10	 51.1	4.6	8	-3.4
AM_14	242	1	0.0	55.6	66	55.6	10	 51.2	4.4	8	-3.6
AM_15	243	1	0.0	55.7	66	55.7	10	 51.3	4.4	8	-3.6
AM_16	244	1	0.0	55.6	66	55.6	10	 51.0	4.6	8	-3.4
AM_17	245	1	0.0	55.7	66	55.7	10	 51.3	4.4	8	-3.6
AM_18	246	1	0.0	56.2	66	56.2	10	 51.9	4.3	8	-3.7
AM_19	247	1	0.0	56.4	66	56.4	10	 52.0	4.4	8	-3.6
AM_20	248	1	0.0	56.9	66	56.9		 52.3	4.6	8	-3.4
AM_21	249	1	0.0	57.2	66	57.2	10	 52.5	4.7	8	-3.3
AM_22	250	1	0.0	57.3	66	57.3	10	 52.8	4.5	8	-3.5
AM_23	251	1	0.0	57.6	66	57.6	10	 53.1	4.5	8	-3.5
AM_24	252	1	0.0	57.8	66	57.8	10	 53.3	4.5	8	-3.5
AN_11	253	1	0.0	54.8	66	54.8	10	 50.7	4.1	8	-3.9
AN_12	254	1	0.0	55.0	66	55.0		 50.8	4.2		-3.8
AN_13	255	1	0.0	55.0	66		10	 50.7	4.3	8	-3.7
AN_14	256	1	0.0	54.9	66		10	 50.7	4.2	8	-3.8
AN_15	257	1	0.0	55.1	66	55.1	10	 50.7	4.4	8	-3.6
AN_16	258	1	0.0	55.2	66	55.2	10	 50.8	4.4	8	-3.6
AN_17	259	1	0.0	54.9	66	54.9	10	 50.4	4.5	8	-3.5
AN_18	260	1	0.0	55.0	66	55.0	10	 50.9	4.1	8	-3.9
AN_19	261	1	0.0	55.4	66	55.4		 51.5	3.9		-4.1
AN_20	262	1	0.0	56.0	66	56.0		 51.8	4.2		-3.8
AN_21	263	1	0.0	56.3	66	56.3		 51.9	4.4		-3.6
AN_22	264	1	0.0	56.6	66	56.6		 52.4	4.2	8	-3.8
AO_11	265	1	0.0	54.2	66	54.2		 50.2	4.0	8	-4.0
AO_12	266	1	0.0	54.4	66	54.4		 50.3	4.1	8	-3.9
AO_13	267	1	0.0	54.4	66			 50.3	4.1	8	-3.9
AO_14	268	1	0.0	54.4	66			 50.3	4.1	8	-3.9
AO_15	269	1	0.0	54.6	66			 50.3	4.3		-3.7
AO_16	270	1	0.0	54.4	66			 50.3	4.1		-3.9
AO_17	271	1	0.0	54.3	66			 50.7	3.6		-4.4
AO_18	272	1	0.0	54.2	66			 50.6	3.6		-4.4
AO_19	273	1	0.0	54.3	66	54.3	10	 50.7	3.6	8	-4.4

RESULTS: SOUND LEVELS						•	1389.00				
AO_20	274	1	0.0	54.7	66	54.7	10	 51.3	3.4	8	-4.6
AO_21	275	1	0.0	55.2	66	55.2	10	 51.4	3.8	8	-4.2
AP_12	276	1	0.0	53.8	66	53.8	10	 49.8	4.0	8	-4.0
AP_13	277	1	0.0	53.9	66	53.9	10	 49.9	4.0	8	-4.0
AP_14	278	1	0.0	53.9	66	53.9	10	 50.0	3.9	8	-4.1
AP_15	279	1	0.0	54.1	66	54.1	10	 50.0	4.1	8	-3.9
AP_16	280	1	0.0	54.0	66	54.0	10	 50.0	4.0	8	-4.0
AP_17	281	1	0.0	53.8	66	53.8	10	 50.1	3.7	8	-4.3
AP_18	282	1	0.0	53.7	66	53.7	10	 50.8	2.9	8	-5.1
AP_19	283	1	0.0	54.0	66	54.0	10	 50.6	3.4	8	-4.6
AQ_13	284	1	0.0	53.4	66	53.4	10	 49.5	3.9	8	-4.1
AQ_14	285	1	0.0	53.5	66	53.5	10	 49.6	3.9	8	-4.1
AQ_15	286	1	0.0	53.6	66	53.6	10	 49.7	3.9	8	-4.1
AQ_16	287	1	0.0	53.4	66	53.4	10	 49.9	3.5	8	-4.5
AQ_17	288	1	0.0	53.4	66	53.4	10	 49.6	3.8	8	-4.2
AQ_18	289	1	0.0	53.1	66	53.1	10	 49.6	3.5	8	-4.5
AR_13	290	1	0.0	52.9	66	52.9	10	 49.1	3.8	8	-4.2
AR_14	291	1	0.0	53.0	66	53.0	10	 49.1	3.9	8	-4.1
AR_15	292	1	0.0	53.0	66	53.0	10	 49.1	3.9	8	-4.1
AR_16	293	1	0.0	53.0	66	53.0	10	 50.1	2.9	8	-5.1
AS_14	294	1	0.0	52.5	66	52.5	10	 48.8	3.7	8	-4.3
AS_15	295	1	0.0	52.3	66	52.3	10	 49.0	3.3	8	-4.7
Dwelling Units		# DUs	Noise Red	luction							
			Min	Avg	Max						
			dB	dB	dB						
All Selected		292	2.9	6.1	13.0						
All Impacted		58	5.4	9.1	13.0						
All that meet NR Goal		48	8.0	9.6	13.0						

RESULTS: SOUND LEVELS			,	1		1	1389.00			·			
HMB Professional Engineers							14 July 20	21					
Mark Gavula							TNM 2.5						
							Calculated	with TNM	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		1389.00)										
RUN:		Springe	dale Noise	Analysis V1									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	shall be use	d unles	s	
								a State hig	ghway agenc	y substantiate	s the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
V1	1	1	0.0	58.	5 66	58.5	10		53.3	5.2		8	-2.8
V2	2	2 1	0.0	0.0	0 66	0.0	10	inactive	0.0	0.0		8	0.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		2	0.0	2.0	6 5.2								
All Impacted		0											
All that meet NR Goal		0	0.0	0.0	0.0								

RESULTS: SOUND LEVELS			_			1	1389.00						
HMB Professional Engineers							14 July 20	21					
Mark Gavula							TNM 2.5						
							Calculated	with TNN	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		1389.00)										
RUN:		Springe	dale Noise	Analysis V2									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	shall be use	d unles	s	
								a State hi	ghway agenc	y substantiate	s the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
V1	1	1	0.0	0.0) 66	0.0	10	inactive	0.0	0.0)	8	0.0
V2	2	2 1	0.0	68.	1 66	68.1	10	Snd Lvl	60.8	7.3		8	-0.7
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		2	0.0	3.0	6 7.3	3							
All Impacted		1	7.3	7.3	3 7.3	В							
All that meet NR Goal		0	0.0	0.0	0.0)							

APPENDIX E – TRAFFIC DATA

Springdale Apartments Multi-Family Housing Traffic Impact Study

Submitted to:

Kentucky Transportation Cabinet, District 3

Jefferson County, County Engineer

City of Louisville, City Engineer

Prepared by: HMB Professional Engineers 3 HMB Circle Frankfort, KY 40601

July 13, 2021

Executive Summary

This report presents the Traffic Impact Study for the proposed Springdale Apartments Multi-Family Housing in Louisville, Jefferson County, Kentucky. The new development will be located just south of Gene Snyder Freeway along the northern side of Springdale Road.

Study Area

Traffic data was collected at the following study intersection:

1) Springdale Road at Asbury Park Boulevard - Unsignalized

Traffic data was collected on a typical weekday (Wednesday, June 23, 2021) for the peak hours of 7:00 - 9:00 AM and 4:00 - 6:00 PM to determine the AM and PM peak period volumes. The AM peak period was determined to be from 7:45 - 8:45 AM and the PM peak period was from 5:00 - 6:00 PM.

Trip Generation and Traffic Assignment

Trip generation was conducted using the *ITE Trip Generation Manual (10th Edition, Institute of Transportation Engineers)* and information from the applicant. A conceptual site layout was provided by the applicant. Information from the site layout was used to determine the number of units to be used for the trip generation analysis. The generated new site trips are detailed in **Table 4-1**. In total, the development is projected to generate 109 AM peak hour trips and 133 PM peak hour trips.

Table ES-1 - Trip Generation Summary

ITE	ITE Land Use		Daily	AM Peak			PM Peak		
Code	Description		Trips	Total	Entering	Exiting	Total	Entering	Exiting
221	Multifamily Housing (Mid-Rise)	302 Dwelling Units	1,643	109	28	81	133	81	52

Capacity Analysis Results

Traffic operations analysis was performed at all the study intersections under the following analysis scenarios:

- Open Year (2023) No Build and Build Conditions
- Design Year (2033) No Build and Build Conditions

Synchro 11 was used to conduct intersection capacity analysis for each intersection and time period based on the *KYTC Traffic Impact Study Requirements (2012 Policy)*, and the software outputs were evaluated to determine if any roadway improvements (additional or lengthened turn lanes, installation of traffic signals, etc.) are warranted in order to maintain an acceptable level of service. Additional traffic operations analysis was conducted to analyze performance with the added roadway improvements. Open and Design Year LOS and delay results are summarized in **Table ES-2**.

Conclusions

With and without the new development, LOS for all intersections and scenarios was B or better. The addition of the facility and associated traffic will add additional trips to the network, but not substantially to result in the recommendation for any improvements. No turn lanes were found to be warranted for any scenario.

Table ES-2. 2023 (Open Year) and 2033 (Design Year) Intersection Level of Service and Delay Summary

Intersections and		2023 N	No Build		2023 Build				
Movements /	AIV	l Peak	PM	Peak	AM	Peak	PM	Peak	
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	
1-Asbury Park Blvd /	Springo	lale Rd	•	•		-	•	•	
Westbound Left	Α	7.5	Α	7.6	Α	7.6	Α	7.7	
Northbound	Α	9.5	Α	9.6	В	10.0	В	10.0	
2-Springdale Rd / En	trance 1	-							
Eastbound Left	-	-	-	-	Α	7.5	Α	7.9	
Southbound	-	-	-	-	В	10.3	В	11.9	
3-Springdale Rd / En	trance 2								
Eastbound Left	-	-	-	-	Α	7.4	Α	7.8	
Southbound	-	-	-	-	Α	9.3	Α	10.3	
Intersections and		2033 N	No Build			2033	Build		
Intersections and Movements /	AIV	2033 N I Peak		Peak	AM	2033 Peak		Peak	
Intersections and Movements / Approaches	AN LOS			Peak Delay (sec/veh)	AM LOS			Peak Delay (sec/veh)	
Movements /	LOS	Peak Delay (sec/veh)	PM	Delay		Peak Delay	PM	Delay	
Movements / Approaches	LOS	Peak Delay (sec/veh)	PM	Delay		Peak Delay	PM	Delay	
Movements / Approaches 1-Asbury Park Blvd /	LOS	Delay (sec/veh)	PM LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)	
Movements / Approaches 1-Asbury Park Blvd / Westbound Left	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)	
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh)	LOS	Peak Delay (sec/veh)	PM LOS	Delay (sec/veh)	
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En	LOS Springo A A	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2	LOS A B	Delay (sec/veh) 7.8 10.1	
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En Eastbound Left	Springe A A trance 1	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2 7.5	LOS A B	7.8 10.1	
Movements / Approaches 1-Asbury Park Blvd / Westbound Left Northbound 2-Springdale Rd / En Eastbound Left Southbound	Springe A A trance 1	Delay (sec/veh) lale Rd 7.5 9.7	LOS	Delay (sec/veh) 7.7 9.8	LOS A B	Peak Delay (sec/veh) 7.7 10.2 7.5	LOS A B	7.8 10.1	

Table of Contents

Section 1	Project Background	1
	1.1 Site Description	1
	1.2 Study Area	1
Section 2	Existing (2021) Condition Analysis	3
	2.1 Existing Roadway Conditions	3
	2.1.1 Springdale Road	
	2.1.2 Asbury Park Boulevard	
	2.2 Existing Turning Movement Data	
	2.3 Level of Service Criteria	
	2.4 Existing Conditions Analysis	
Section 3	2023 and 2033 No Build Scenario Analysis	7
	3.1 Traffic Volume Projections	7
	3.2 Level of Service Analysis	7
Section 4	Trip Generation and Traffic Assignment	10
	4.1 Trip Generation	10
	4.2 Trip Distribution and Assignment	
Section 5	2023 and 2033 Build Condition Analysis	13
	5.1 Level of Service Analysis	13
	5.2 Turn Lane Warrants	13
Section 6	Conclusions	17
Jection 0	CUITCIUJIUIIJ	

List of Figures

Figure 1-1 Study Area	2
Figure 2-1. 2021 Turn Movement Volumes	4
Figure 3-1. 2023 No Build AM and PM Turning Movement Volumes	8
Figure 3-2. 2033 No Build AM and PM Turning Movement Volumes	9
Figure 4-1. Trip Distribution Percentages	
Figure 4-2. AM and PM Peak Site Generated Trips	12
Figure 5-1. 2023 Build AM and PM Turning Movement Volumes	14
Figure 5-2. 2033 Build AM and PM Turning Movement Volumes	
ist of Tables	
Table 2-1 Level of Service Criteria for Signalized and Unsignalized Intersections	
Table 2-2. Intersection Level of Service and Delay Summary – 2021 Existing Conditions	
Table 3-1. Intersection Level of Service and Delay Summary – 2023 No Build Conditions	
Table 3-2. Intersection Level of Service and Delay Summary – 2033 No Build Conditions	
Table 4-1. Site Generated Trips	10

Table 5-1. Intersection Level of Service and Delay Summary – 2023 Build Conditions16
Table 5-2. Intersection Level of Service and Delay Summary – 2033 Build Conditions16

Appendices

Appendix A: Conceptual Site Plan

Appendix B: Intersection Turning Movement Counts

Appendix C: Synchro HCM 6th Outputs - 2021 Existing, 2023 No Build, and 2033 No Build

Appendix D: Synchro HCM 6th Outputs - 2023 Build and 2033 Build

Appendix E: Turn Lane Warrants

Section 1 Project Background

The consultant team was contracted by Sabak, Wilson & Lingo, Inc. to prepare a Traffic Impact Study for the proposed Springdale Apartments Multi-Family Housing in Louisville, Jefferson County, Kentucky. The purpose of this report is to document the study area, site conditions, analysis, and findings. Kentucky Transportation Cabinet (KYTC) Traffic Impact Study Requirements (2012 Policy) was followed.

1.1 Site Description

The new development will be located along Springdale Road between Gene Snyder Freeway and I-71, near Asbury Park Boulevard. The conceptual site plan is shown in **Appendix A**. There are two main proposed site entrances for the development located along the northern side of Springdale Road. A third access location is located on the eastern edge of the development, but it is disconnected from the other parking lots and was not evaluated given the low utilization of this parking lot.

1.2 Study Area

The study area is illustrated in **Figure 1-1**. Traffic data was collected at the following study intersection:

1. Springdale Road at Asbury Park Boulevard - Unsignalized

Figure 1-1 Study Area

Section 2 Existing (2021) Condition Analysis

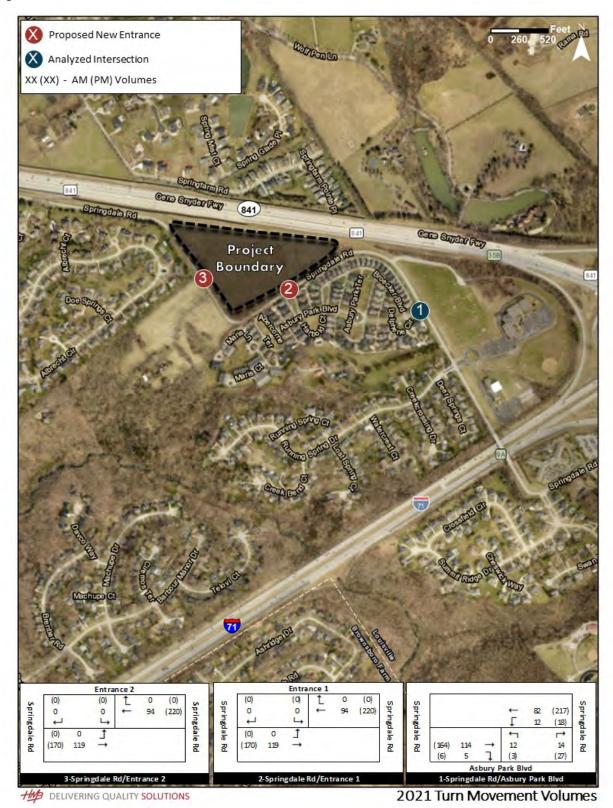
This section describes the existing roadways in the vicinity of the proposed development.

2.1 Existing Roadway Conditions

The consultant team collected intersection geometry as required for capacity analysis including approach lane configurations, departure lane configurations, number and length of turn lanes, presence of channelizing devices, and type of traffic control.

2.1.1 Springdale Road

- Springdale Road is a two-lane urban major collector running east-west in the study area with a posted speed limit of 35 miles per hour (mph). The road ends at the intersections with Brownsboro Road in the east and Wolf Pen Branch Road in the west near Green Spring Drive.
- The last AADT collected by KYTC for Springdale Road between Brownsboro Road and Wolf Pen Branch Road was 4,000 vehicles per day (vpd) in 2016.
- There are 10-foot lanes, no median, no turn lanes, and one-foot paved shoulders within the study area.


2.1.2 Asbury Park Boulevard

 Asbury Park Boulevard is a neighborhood roadway for a small subdivision with no additional outlets.

2.2 Existing Turning Movement Data

Traffic data was collected on a typical weekday (Wednesday, June 23, 2021) for the peak hours of 7:00 - 9:00 AM and 4:00 - 6:00 PM to determine the AM and PM peak period volumes. The AM peak period was determined to be from 7:45 - 8:45 AM and the PM peak period was from 5:00 - 6:00 PM. The peak hour data collected is presented in **Appendix B**.

Figure 2-1. 2021 Turn Movement Volumes

2.3 Level of Service Criteria

Level of Service (LOS) is a term used to represent different traffic conditions and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists or passengers". Level of Service varies from Level A, representing free flow, to Level F, where traffic breakdown conditions are evident. Level B represents good progression with minimal congestion. At Level C, the number of vehicles stopping is significant, although many still pass through the intersection without stopping. Level D represents more congestion, but the overall operations are generally considered acceptable by most agencies. At Level E, freedom to maneuver within the traffic stream is more difficult with driver frustration being higher.

For signalized intersections, service levels pertain to each approach as well as an overall intersection. The unsignalized intersection analysis method in the *Highway Capacity Manual 6th Edition* assigns LOS values for each movement that yields the right-of-way, but not to the overall intersection. This movement is generally a secondary movement from a minor street. At an unsignalized intersection, the primary traffic on the main roadway is virtually uninterrupted. Therefore, the overall level of service is usually much better than what is represented by the results of the minor street movements. With the current method of reporting levels of service for unsignalized intersections, it is not uncommon for some of the minor street movements to be operating at LOS F during the peak hours. The delay thresholds for Level of Service are higher for signalized intersections since drivers know that their turn is coming and are willing to wait longer. They also don't have the decision making involved in looking for a gap to proceed through the intersection.

Level of Service and delay for each intersection using methods outlined in the *Highway Capacity Manual* were calculated using Synchro 11. **Table 2-1** displays the current Level of Service criteria for signalized and unsignalized intersections.

Table 2-1 Level of Service Criteria for Signalized and Unsignalized Intersections

Local of Comics	Berndeller	Control Delay Per Vehicle (sec/veh)			
Level of Service	Description	Signalized Intersections	Unsignalized Intersections		
А	Little or no delay	<10	<10		
В	Short traffic delay	>10 and <20	>10 and <15		
С	Average traffic delay	>20 and <35	>15 and <25		
D	Long traffic delay	>35 and <55	>25 and <35		
E	Very long traffic delay	>55 and <80	>35 and <50		
F	Unacceptable delay	>80	>50		

Source: Highway Capacity Manual, 6th Edition, Transportation Research Board

2.4 Existing Conditions Analysis

Table 2-2 displays the 2021 Existing LOS and delay for the existing study intersection. The full Existing and No Build Synchro outputs can be found in **Appendix C**. Since the intersection of Springdale Road and Asbury Park Boulevard is aligned at a skewed angle from the cardinal direction of Springdale Road, it should be noted that Asbury Park Boulevard was chosen to be the north-south road in the analysis so that Springdale Road could have a coordinated direction amongst intersections.

The intersection of Springdale Road and Asbury Park Boulevard currently operates at LOS A for all movements and approaches for both AM and PM peaks.

Table 2-2. Intersection Level of Service and Delay Summary – 2021 Existing Conditions

Intersections and	2021 Existing						
Intersections and Movements /	AM	Peak	PM Peak				
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)			
1-Asbury Park Blvd /	Springdal	e Rd					
Westbound Left	Α	7.5	Α	7.6			
Northbound	Α	9.5	Α	9.6			

Section 3

2023 and 2033 No Build Scenario Analysis

3.1 Traffic Volume Projections

The expected future analysis open year for the proposed Springdale Apartments Multi-Family Housing is 2023. Based on historical KYTC count data near the study area, an annual growth factor of one percent (1%) was applied to existing traffic volumes to account for the expected ambient traffic growth between the base year (2021), open year (2023) and design year (2033).

Figure 3-1 displays the 2023 No Build turning movement volumes and **Figure 3-2** displays the 2033 No Build conditions.

3.2 Level of Service Analysis

Intersection level of service analysis was performed for a typical weekday peak hour using Synchro 11. **Tables 3-1** and **3-2** display the 2023 and 2033 LOS and delay for the study intersection. The full No Build HCS output can be found in **Appendix C** which includes 95th percentile queueing in addition to the LOS and delays presented in the following tables. LOS did not change between any No Build scenarios which were all LOS A.

Table 3-1. Intersection Level of Service and Delay Summary - 2023 No Build Conditions

	2023 No Build						
Intersections and	AM	Peak	PM Peak				
Movements / Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)			
1-Asbury Park Blvo	d / Spring	dale Rd					
Westbound Left	Α	7.5	Α	7.6			
Northbound	Α	9.5	Α	9.6			

Table 3-2. Intersection Level of Service and Delay Summary - 2033 No Build Conditions

	2033 No Build						
Intersections and	AM	Peak	PM Peak				
Movements / Approaches	LOS Delay (sec/veh)		LOS	Delay (sec/veh)			
1-Asbury Park Blvd	/ Springe	dale Rd					
Westbound Left	Α	7.5	Α	7.7			
Northbound	Α	9.7	Α	9.8			

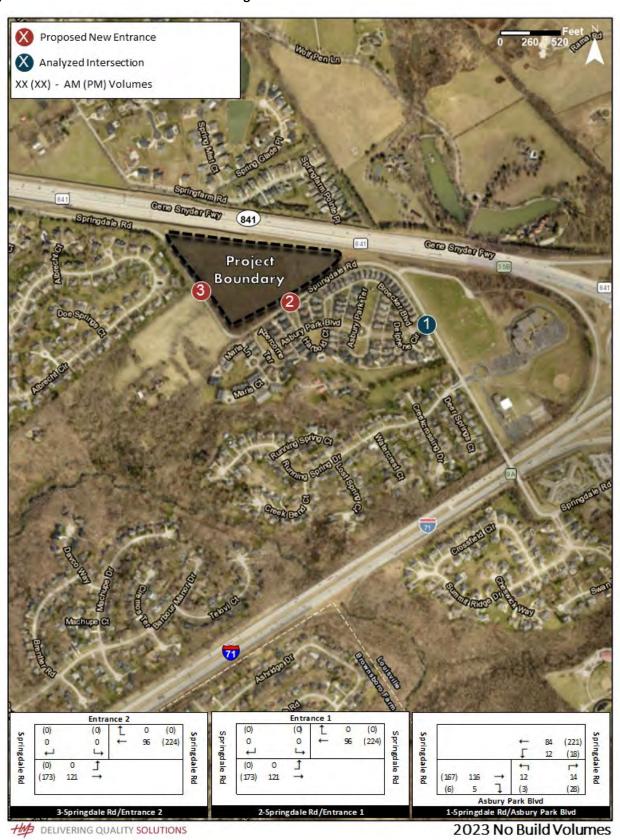


Figure 3-1. 2023 No Build AM and PM Turning Movement Volumes

Figure 3-2. 2033 No Build AM and PM Turning Movement Volumes

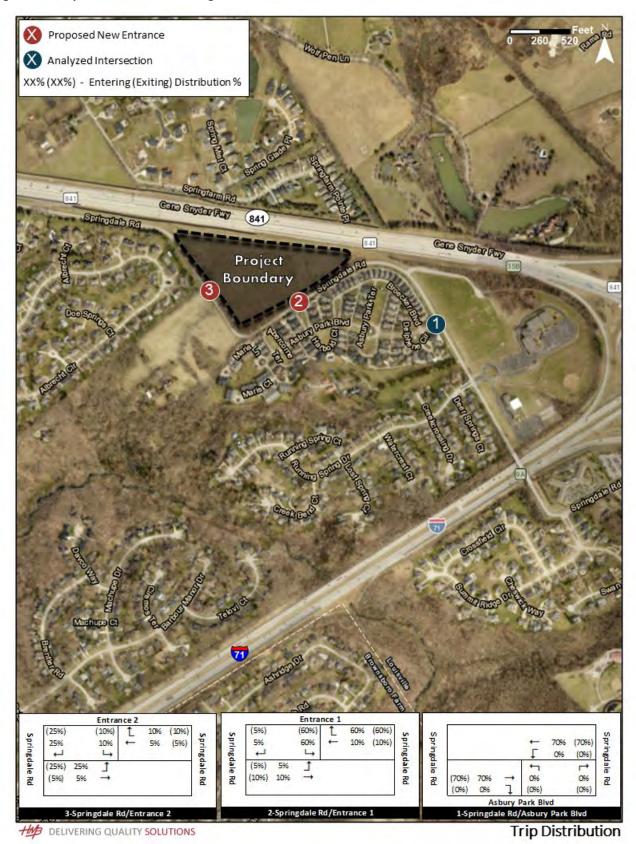
Section 4

Trip Generation and Traffic Assignment

There are two main proposed access points for the Springdale Apartments Multi-Family Housing along Springdale Road. A third access location is located on the eastern edge of the development, but it is disconnected from the other parking lots and was not evaluated given the low utilization of this parking lot. Trip generation and distribution were developed based on information from the applicant and conceptual site plan presented in **Appendix A** and as described below.

4.1 Trip Generation

Trip generation was conducted using the *ITE Trip Generation Manual (10th Edition, Institute of Transportation Engineers)* and information from the applicant. A conceptual site layout was provided by the applicant. Information from the site layout was used to determine the number of units to be used for the trip generation analysis. The generated new site trips are detailed in **Table 4-1**. In total, the development is projected to generate 109 AM peak hour trips and 133 PM peak hour trips.


Table 4-1. Site Generated Trips

ITE Land Use		Size	Daily	AM Peak			PM Peak		
Code	Description		Trips	Total	Entering	Exiting	Total	Entering	Exiting
221	Multifamily Housing (Mid-Rise)	302 Dwelling Units	1,643	109	28	81	133	81	52

4.2 Trip Distribution and Assignment

Figure 4-1 depicts the peak hour trip distribution percentages. The existing trip distribution derived from the Asbury Park Boulevard subdivision was used as a starting point for the estimated trip distribution for the development and then refined based on analyzing the network. **Figure 4-2** presents the number of expected new trips derived from the estimated trip generation and distribution.

Figure 4-1. Trip Distribution Percentages

Proposed New Entrance X Analyzed Intersection XX (XX) - AM (PM) Volumes COD SWIDT FOR Springdale Rd COLD STUDIO FOR Project Boundary (13) 20 (8) Springdale Rd Springdale Rd Springdale Rd Springdale Rd (0) 1 (4) (5) 1 (20) (0) Asbury Park Blvd 1-Springdale Rd/Asbury Park Blvd 2-Springdale Rd/Entrance 1 3-Springdale Rd/Entrance 2

Figure 4-2. AM and PM Peak Site Generated Trips

HIS DELIVERING QUALITY SOLUTIONS

Trip Generation

Section 5 2023 and 2033 Build Condition Analysis

The 2023 Build Condition analysis included the 2023 No Build traffic as described in Section 3 as well as site generated trips from the proposed Springdale Apartments Multi-Family Housing as described in Section 4.

5.1 Level of Service Analysis

As shown in **Table 5-1** and **Table 5-2**, LOS is B or better for all scenarios and intersections. The Asbury Park Boulevard northbound approach changes from LOS A in the No Build to LOS B in the Build scenario with a maximum increase in delay of 0.5 seconds.

5.2 Turn Lane Warrants

KYTC turn lane warrants were evaluated at the proposed entrances and Asbury Park Boulevard. No turn lanes were warranted for any scenario analyzed. The turn lane warrant results are presented in **Appendix E**. While each scenario was analyzed, the appendix only includes the worst-case scenarios.

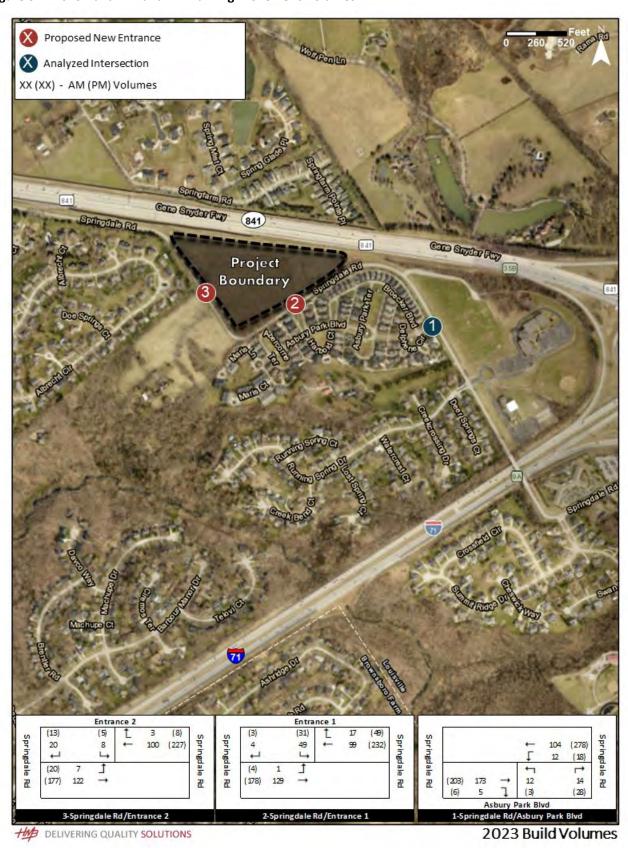


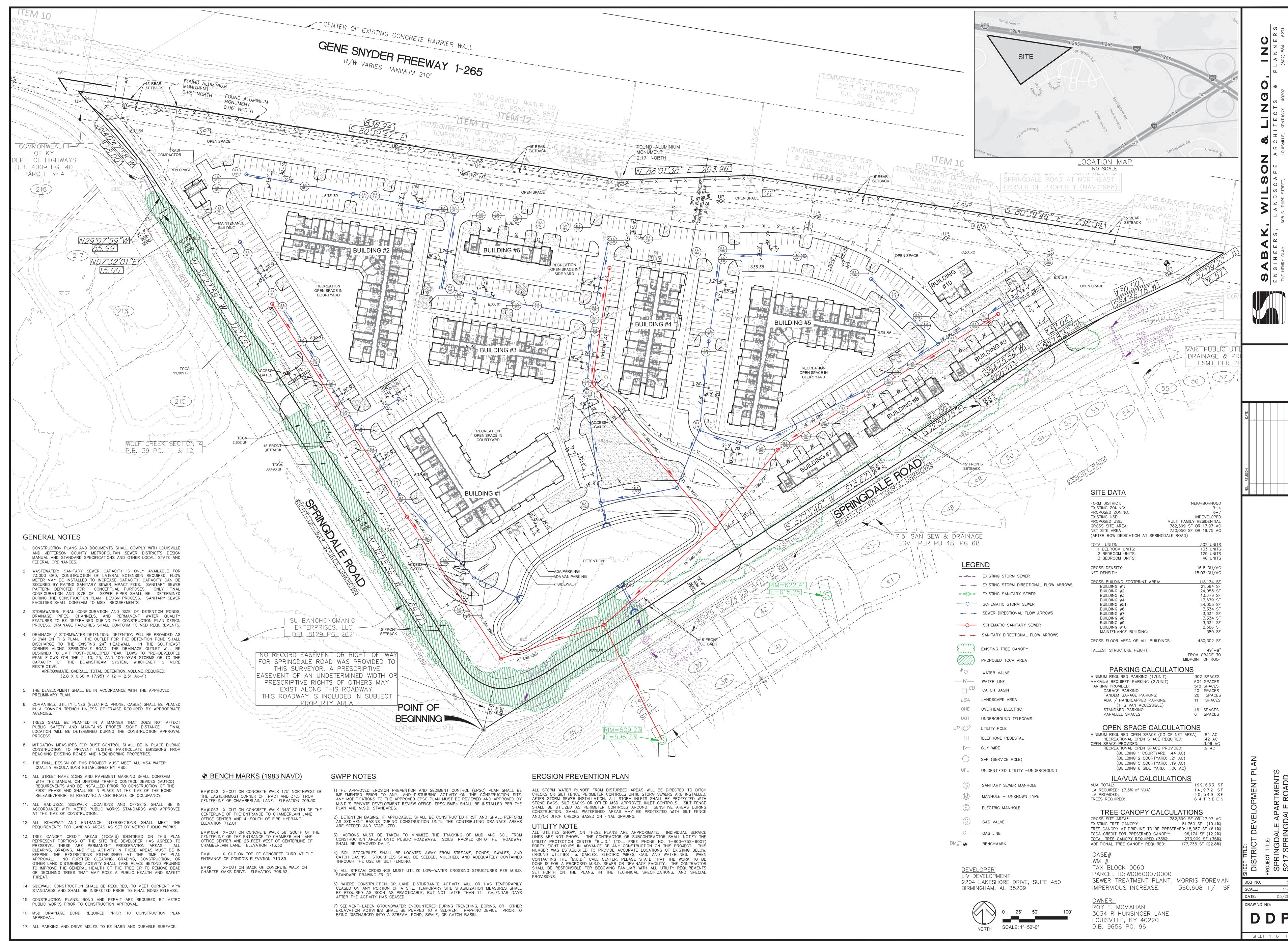
Figure 5-1. 2023 Build AM and PM Turning Movement Volumes

Figure 5-2. 2033 Build AM and PM Turning Movement Volumes

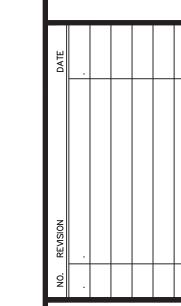
Table 5-1. Intersection Level of Service and Delay Summary – 2023 Build Conditions

Intersections and	2023 Build						
Movements /	AM	Peak	PM	Peak			
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)			
1-Asbury Park Blvd /	Springdal	e Rd					
Westbound Left	Α	7.6	Α	7.7			
Northbound	В	10.0	В	10.0			
2-Springdale Rd / Ent	rance 1						
Eastbound Left	Α	7.5	Α	7.9			
Southbound	В	10.3	В	11.9			
3-Springdale Rd / Ent	rance 2			-			
Eastbound Left	Α	7.4	Α	7.8			
Southbound	Α	9.3	Α	10.3			

Table 5-2. Intersection Level of Service and Delay Summary – 2033 Build Conditions


Intersections and		2033	Build	
Movements /	AM	Peak	PM	Peak
Approaches	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)
1-Asbury Park Blvd /	Springdal	e Rd		
Westbound Left	Α	7.7	Α	7.8
Northbound	В	10.2	В	10.1
2-Springdale Rd / Ent	rance 1		•	
Eastbound Left	Α	7.5	Α	7.9
Southbound	В	10.4	В	12.4
3-Springdale Rd / Ent	rance 2			
Eastbound Left	Α	7.5	Α	7.9
Southbound	Α	9.4	В	10.6

Section 6 Conclusions


With and without the new development, LOS for all intersections and scenarios was B or better. The addition of the facility and associated traffic will add additional trips to the network, but not substantially to result in the recommendation for any improvements. No turn lanes were found to be warranted for any scenario.

The analysis and conclusions from this traffic study are for the development plan and site use as currently provided by the developer. If substantial alterations to either the development plan or site use change, additional study may be required.

Appendix A: Conceptual Site Plan

0 4

05/28/ DRAWING NO:

Appendix B:

Intersection Turning Movement Counts

www.ccsdata.com www.ccsdata.com

Office Number: (859) 7851502 "2021- Data Collection Re-Loaded"

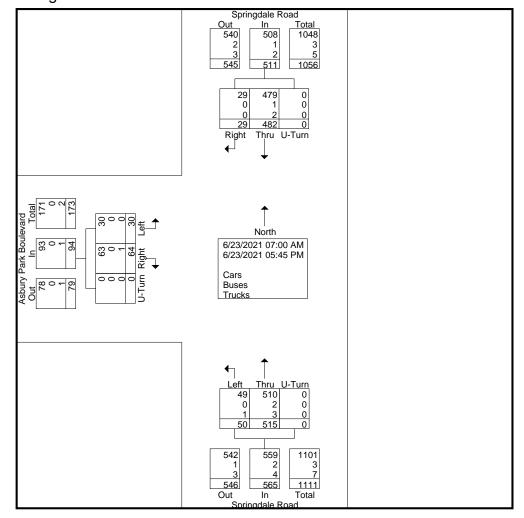
File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

80 Degrees - SiterOyode : Site 1 - Wednesday

Start Date : 6/23/2021

Page No : 1

					ups Printe	ed- Cars	s - Buses	s - Trucks					
		Springe	dale Roa	d			dale Roa	d	As	bury Pa	rk Boule	vard	
		Fron	n North			From	South			Fron	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
07:00 AM	18	1	0	19	1	6	0	7	5	1	0	6	32
07:15 AM	20	0	0	20	0	17	0	17	2	1	0	3	40
07:30 AM	19	2	0	21	2	13	0	15	2	5	0	7	43
07:45 AM	31	0	0	31	1	23	0	24	3	4	0	7	62
Total	88	3	0	91	4	59	0	63	12	11	0	23	177
08:00 AM	28	1	0	29	5	19	0	24	3	2	0	5	58
08:15 AM	28	3	0	31	2	24	0	26	2	5	0	7	64
08:30 AM	27	1	0	28	4	16	0	20	4	3	0	7	55
08:45 AM	35	3	0	38	3	12	0	15	0	4	0	4	57
Total	118	8	0	126	14	71	0	85	9	14	0	23	234
04:00 PM	19	3	0	22	2	42	0	44	3	1	0	4	70
04:15 PM	31	2	0	33	8	38	0	46	1	4	0	5	84
04:30 PM	33	5	0	38	3	51	0	54	1	1	0	2	94
04:45 PM	29	2	0	31	1	37	0	38	1	6	0	7	76
Total	112	12	0	124	14	168	0	182	6	12	0	18	324
05:00 PM	30	3	0	33	7	53	0	60	1	8	0	9	102
05:15 PM	39	0	0	39	5	56	0	61	0	7	0	7	107
05:30 PM	50	1	0	51	3	50	0	53	0	3	0	3	107
05:45 PM	45	2	0	47	3	58	0	61	2	9	0	11	119
Total	164	6	0	170	18	217	0	235	3	27	0	30	435
Grand Total	482	29	0	511	50	515	0	565	30	64	0	94	1170
Apprch %	94.3	5.7	0		8.8	91.2	0		31.9	68.1	0		
Total %	41.2	2.5	0	43.7	4.3	44	0	48.3	2.6	5.5	0	8	
Cars	479	29	0	508	49	510	0	559	30	63	0	93	1160
% Cars	99.4	100	0	99.4	98	99	0	98.9	100	98.4	0	98.9	99.1
Buses	1	0	0	1	0	2	0	2	0	0	0	0	3
% Buses	0.2	0	0	0.2	0	0.4	0	0.4	0	0	0	0	0.3
Trucks	2	0	0	2	1	3	0	4	0	1	0	1	7
% Trucks	0.4	0	0	0.4	2	0.6	0	0.7	0	1.6	0	1.1	0.6


www.ccsdata.com < http://www.ccsdata.com >

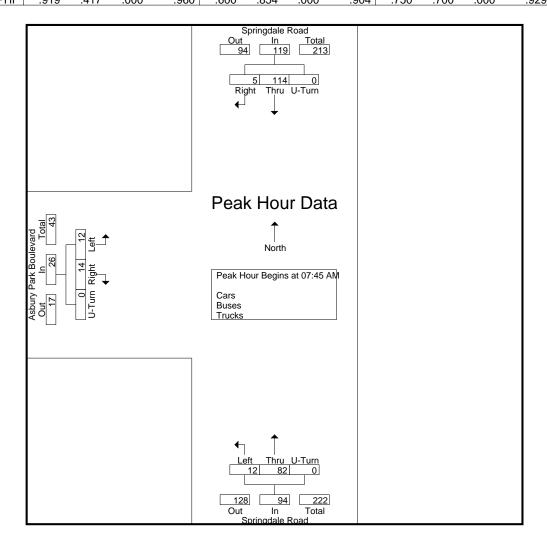
Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

www.ccsdata.com www.ccsdata.com


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

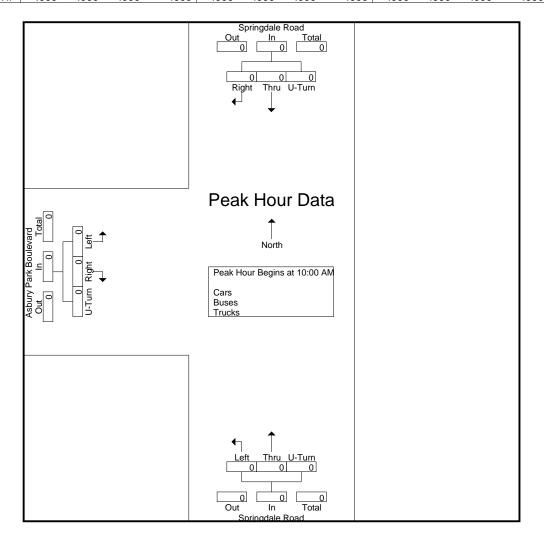
File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

		Springo	dale Roa	d		Springe	dale Roa	d	As	sbury Pa	rk Boule	vard	
		Fron	n North			Fron	South			Fror	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	07:00 A	M to 09:	45 AM - Pe	eak 1 of 1								
Peak Hour for En	tire Inter	section I	Begins a	t 07:45 AM									
07:45 AM	31	0	0	31	1	23	0	24	3	4	0	7	62
08:00 AM	28	1	0	29	5	19	0	24	3	2	0	5	58
08:15 AM	28	3	0	31	2	24	0	26	2	5	0	7	64
08:30 AM	27	1	0	28	4	16	0	20	4	3	0	7	55_
Total Volume	114	5	0	119	12	82	0	94	12	14	0	26	239
% App. Total	95.8	4.2	0		12.8	87.2	0		46.2	53.8	0		
PHF	919	417	000	960	600	854	000	904	750	700	000	929	934

www.ccsdata.com < http://www.ccsdata.com >


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

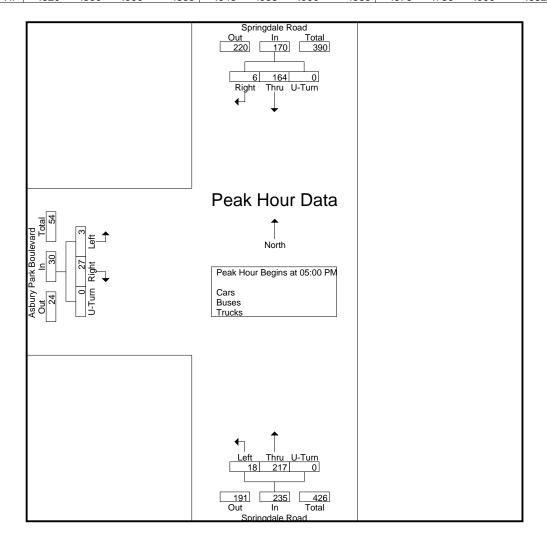
File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code: Site 1 - Wednesday

Start Date : 6/23/2021

			lale Roa	d			dale Roa	d	As	,	rk Boule	vard]
		From	North			Fron	n South			Fron	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	10:00 A	M to 01:	45 PM - Pe	eak 1 of 1					_			
Peak Hour for En	tire Inter	section E	Begins a	t 10:00 AM									
10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0		0	0	0		0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

www.ccsdata.com www.ccsdata.com


Office Number: (859) 7851502 "2021 - Data Collection Re-Loaded"

File Name: Springdale_Road_at_Asbury_Park_Boulevard_850043_06-23-2021

Site Code : Site 1 - Wednesday

Start Date : 6/23/2021

		Springd	ale Roa	d		Springe	dale Roa	d	As	bury Pa	rk Boule	vard]
		From	North			Fron	n South			Fror	n West		
Start Time	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis From	02:00 P	M to 05:	45 PM - Pe	ak 1 of 1								
Peak Hour for En	tire Inter	section E	Begins a	t 05:00 PM									
05:00 PM	30	3	0	33	7	53	0	60	1	8	0	9	102
05:15 PM	39	0	0	39	5	56	0	61	0	7	0	7	107
05:30 PM	50	1	0	51	3	50	0	53	0	3	0	3	107
05:45 PM	45	2	0	47	3	58	0	61	2	9	0	11	119
Total Volume	164	6	0	170	18	217	0	235	3	27	0	30	435
% App. Total	96.5	3.5	0		7.7	92.3	0		10	90	0		
PHF	.820	.500	.000	.833	.643	.935	.000	.963	.375	.750	.000	.682	.914

Appendix C:

Synchro HCM 6th Outputs – 2021 Existing, 2023 No Build, and 2033 No Build

Intersection						
Int Delay, s/veh	1.4					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	114	5	12	82	12	14
Future Vol, veh/h	114	5	12	82	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	123	5	13	88	13	15
			4 1 0			
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	128	0	240	126
Stage 1	-	-	-	-	126	-
Stage 2	-	-	-	-	114	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1458	-	748	924
Stage 1	-	-	-	-	900	-
Stage 2	-	-	_	_	911	-
Platoon blocked, %	_	_		_		
Mov Cap-1 Maneuver	_	_	1458	_	741	924
Mov Cap-1 Maneuver	_		-	_	741	727
Stage 1			-	_	900	
Stage 2	-	_			903	_
Slaye 2	-	-	-	-	703	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		9.5	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		829	-		1458	-
HCM Lane V/C Ratio		0.034	-	-	0.009	-
HCM Control Delay (s)		9.5	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			ની	, A	
Traffic Vol, veh/h	164	6	18	217	3	27
Future Vol, veh/h	164	6	18	217	3	27
Conflicting Peds, #/hr	0	0	0	0	0	0
<u> </u>	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	_
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	_	0	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	180	7	20	238	3	30
IVIVIIIL I IOW	100	1	20	230	J	30
Major/Minor Major/Minor Major/Minor Major/Minor Major/Minor Major/Minor Major/Minor Major/Minor Major/Minor Maj	ajor1	N	Major2	1	Minor1	
Conflicting Flow All	0	0	187	0	462	184
Stage 1	-	-	-	-	184	-
Stage 2	-	-	-	-	278	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	_
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	-	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	_	_	1387	-	558	858
Stage 1	_	_	-	_	848	-
Stage 2	_				769	
Platoon blocked, %	-	_		_	107	_
	_	-	1387		549	858
Mov Cap 2 Manager	-	-		-		
Mov Cap-2 Maneuver	-	-	-	-	549	-
Stage 1	-	-	-	-	848	-
Stage 2	-	-	-	-	756	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.6	
HCM LOS	U		0.0		7.0 A	
HOW LOS					А	
Minor Lane/Major Mvmt	<u> </u>	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		812	-	-	1387	-
HCM Lane V/C Ratio		0.041	-		0.014	-
HCM Control Delay (s)		9.6	-	-		0
HCM Lane LOS		Α.	_	_	Α.	A
HCM 95th %tile Q(veh)		0.1	_	-	0	-
HOW FOUT MILE Q(VEII)		U. I	_		U	_

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ની	, M	
Traffic Vol, veh/h	116	5	12	84	12	14
Future Vol, veh/h	116	5	12	84	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage, #	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	93	2	2	2	2
		5	13		13	15
Mvmt Flow	125	5	13	90	13	15
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	130	0	244	128
Stage 1	-		-	-	128	-
Stage 2	_		_	_	116	_
Critical Hdwy	_	_	4.12	-	6.42	6.22
Critical Hdwy Stg 1		-	4.12	-	5.42	0.22
	-	-				
Critical Hdwy Stg 2	-	-	2 210	-	5.42	2 210
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1455	-	744	922
Stage 1	-	-	-	-	898	-
Stage 2	-	-	-	-	909	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1455	-	737	922
Mov Cap-2 Maneuver	-	-	-	-	737	-
Stage 1	-	-	-	-	898	-
Stage 2	-	-	-	-	901	-
Annraach	ED		MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		9.5	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
	ľ		LDI	LDK		WDT
Capacity (veh/h)		826	-	-	1455	-
HCM Lane V/C Ratio		0.034	-	-	0.009	-
HCM Control Delay (s)		9.5	-	-	7.5	0
HCM Lane LOS		Α	-	-	A	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Դ			ની	- W	
Traffic Vol, veh/h	167	6	18	221	3	28
Future Vol, veh/h	167	6	18	221	3	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	184	7	20	243	3	31
WWW. Tiow	101	,	20	210	J	01
	ajor1	N	Major2	1	Vinor1	
Conflicting Flow All	0	0	191	0	471	188
Stage 1	-	-	-	-	188	-
Stage 2	-	-	-	-	283	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1383	-	551	854
Stage 1	_	_	-	-	844	-
Stage 2	_	_	_	_	765	-
Platoon blocked, %	_	_		_	700	
Mov Cap-1 Maneuver	-		1383	_	542	854
Mov Cap-1 Maneuver	_	_	1303	-	542	- 034
	-	-	-	-	844	-
Stage 1		-	-			
Stage 2	-	-	-	-	752	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.6	
HCM LOS			5.5		A	
					, ,	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		809	-	-	1383	-
HCM Lane V/C Ratio		0.042	-	-	0.014	-
HCM Control Delay (s)		9.6	-	-	7.6	0
HCM Lane LOS		Α	-	-	Α	А
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1.5					
		===	14/5	14/5=		NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	Y	
Traffic Vol, veh/h	128	6	14	92	14	16
Future Vol, veh/h	128	6	14	92	14	16
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	138	6	15	99	15	17
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	144	0	270	141
Stage 1	-	-	-	-	141	-
Stage 2	-	-	-	-	129	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1438	-	719	907
Stage 1	-	-	-	-	886	-
Stage 2	-	-	-	-	897	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	1438	_	711	907
Mov Cap-1 Maneuver			1430	_	711	707
Stage 1	-	-	-	-	886	-
	-	-	-	-	887	-
Stage 2	-	-	-	-	007	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		9.7	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		804	-	-	1438	-
HCM Lane V/C Ratio		0.04	-	-	0.01	-
HCM Control Delay (s)		9.7	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
		ED5	MAI	MOT	ND	NIDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			-4	W	
Traffic Vol, veh/h	185	7	20	245	3	30
Future Vol, veh/h	185	7	20	245	3	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	203	8	22	269	3	33
WWW. Tiow	200	U		207	9	00
	ajor1	<u> </u>	Major2		Minor1	
Conflicting Flow All	0	0	211	0	520	207
Stage 1	-	-	-	-	207	-
Stage 2	-	-	-	-	313	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	_	_	5.42	-
Critical Hdwy Stg 2	_	-	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_		3.318
Pot Cap-1 Maneuver	_	_	1360	_	516	833
Stage 1	-		1300	-	828	- 033
Stage 2		-	-		741	-
	-	-	-	-	741	
Platoon blocked, %	-	-	12/0	-	ΓΩ/	022
Mov Cap-1 Maneuver	-	-	1360	-	506	833
Mov Cap-2 Maneuver	-	-	-	-	506	-
Stage 1	-	-	-	-	828	-
Stage 2	-	-	-	-	727	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.8	
HCM LOS	U		0.0		9.0 A	
FICIVI LUS					A	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		787			1360	
HCM Lane V/C Ratio		0.046	_		0.016	_
HCM Control Delay (s)		9.8	_	_	7.7	0
HCM Lane LOS		Α.	_	_	Α.	A
HCM 95th %tile Q(veh)		0.1	_	_	0	-
HOW YOU WILL Q(VEN)		U. I	-	-	U	-

Appendix D:

Synchro HCM 6th Outputs – 2023 Build and 2033

Build

Intersection						
Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	- MA	
Traffic Vol, veh/h	173	5	12	104	12	14
Future Vol, veh/h	173	5	12	104	12	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	_	0	-
Veh in Median Storage,	# 0	-	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	186	5	13	112	13	15
IVIVIIIL I IOW	100	J	13	112	13	10
Major/Minor M	lajor1	N	Major2	ا	Vinor1	
Conflicting Flow All	0	0	191	0	327	189
Stage 1	-	-	-	-	189	-
Stage 2	-	-	-	-	138	-
Critical Hdwy	-	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_	-	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3 318
Pot Cap-1 Maneuver	_	_	1383	_	667	853
Stage 1	_	_	1303	_	843	- 000
	-	-	-		889	-
Stage 2	-	-	-	-	889	-
Platoon blocked, %	-	-	1202	-	///	050
Mov Cap-1 Maneuver	-	-	1383	-	660	853
Mov Cap-2 Maneuver	-	-	-	-	660	-
Stage 1	-	-	-	-	843	-
Stage 2	-	-	-	-	880	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.8		10	
HCM LOS	U		0.6		В	
HCIVI LUS					Б	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		752			1383	_
HCM Lane V/C Ratio		0.037	-	_	0.009	-
HCM Control Delay (s)		10	-	_	7.6	0
HCM Lane LOS		В	-	-	7.0 A	A
HCM 95th %tile Q(veh)		0.1		-	0	
HOW YOU WILL Q(VEII)		U. I	-	_	U	-

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		N/	
Traffic Vol, veh/h	1	129	99	17	49	4
Future Vol, veh/h	1	129	99	17	49	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	140	108	18	53	4
	Major1		/lajor2		Minor2	
Conflicting Flow All	126	0	-	0	259	117
Stage 1	-	-	-	-	117	-
Stage 2	-	-	-	-	142	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1460	-	-	-	730	935
Stage 1	-	-	-	-	908	-
Stage 2	-	-	-	-	885	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1460	-	_	-	729	935
Mov Cap-2 Maneuver	-	_	_	-	729	-
Stage 1	_	_	_	_	907	-
Stage 2	_	_	_	_	885	_
Juge 2					000	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.3	
HCM LOS					В	
Minor Lanc/Major Mum	nt .	EDI	EDT	W/DT	WPD	CDI n1
Minor Lane/Major Mvm	IU	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1460	-	-	-	741
HCM Lane V/C Ratio		0.001	-	-		0.078
HCM Control Delay (s)		7.5	0	-	-	10.3
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh))	0	-	-	-	0.3

Interconting						
Intersection	1.2					
Int Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		144	
Traffic Vol, veh/h	7	122	100	3	8	20
Future Vol, veh/h	7	122	100	3	8	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	133	109	3	9	22
		.00			•	
	Major1		/lajor2		Vinor2	
Conflicting Flow All	112	0	-	0	260	111
Stage 1	-	-	-	-	111	-
Stage 2	-	-	-	-	149	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1478	-	-	-	729	942
Stage 1	-	-	_	-	914	-
Stage 2	-	-	-	-	879	-
Platoon blocked, %		_	-	_		
Mov Cap-1 Maneuver	1478	-	_	_	725	942
Mov Cap-2 Maneuver	-	_	_	_	725	-
Stage 1	_	_	_	_	909	-
Stage 1						
Stane 2			_	_	y /u	_
Stage 2	-	-	-	-	879	-
Stage 2		-	-	-	8/9	-
Stage 2 Approach			WB	-	879 SB	-
Approach	EB					
	-		WB		SB	-
Approach HCM Control Delay, s	EB		WB		SB 9.3	
Approach HCM Control Delay, s HCM LOS	EB 0.4		WB 0		SB 9.3 A	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	EB 0.4	EBL	WB	WBT	SB 9.3	SBLn1
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	EB 0.4	EBL 1478	WB 0		SB 9.3 A WBR	SBLn1 868
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 0.4	EBL 1478 0.005	WB 0 EBT		SB 9.3 A WBR	SBLn1 868 0.035
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	EB 0.4	EBL 1478	WB 0 EBT - 0	WBT_	SB 9.3 A WBR	SBLn1 868 0.035 9.3
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 0.4	EBL 1478 0.005	WB 0 EBT	WBT -	SB 9.3 A WBR	SBLn1 868 0.035

Intersection						
Int Delay, s/veh	0.9					
		E55	14/5	14/5-		NES
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	203	6	18	278	3	28
Future Vol, veh/h	203	6	18	278	3	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	223	7	20	305	3	31
	220	•	20	000		01
	ajor1	N	Major2	ľ	Vinor1	
Conflicting Flow All	0	0	230	0	572	227
Stage 1	-	-	-	-	227	-
Stage 2	-	-	-	-	345	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_		-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1338	-	482	812
Stage 1	_	_	-	_	811	-
Stage 2	_	_	_	_	717	_
Platoon blocked, %	_			_	717	
Mov Cap-1 Maneuver	-	-	1338	_	473	812
	-	-				
Mov Cap-2 Maneuver	-	-	-	-	473	-
Stage 1	-	-	-	-	811	-
Stage 2	-	-	-	-	704	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		10	
HCM LOS	U		0.0		В	
HOW LOS					U	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		759	-	-	1338	-
HCM Lane V/C Ratio		0.045	-		0.015	-
HCM Control Delay (s)		10	-	-		0
HCM Lane LOS		В	_	_	A	A
HCM 95th %tile Q(veh)		0.1	_	-	0	-
HOW FOUT MILE Q(VEII)		U. I	_		U	-

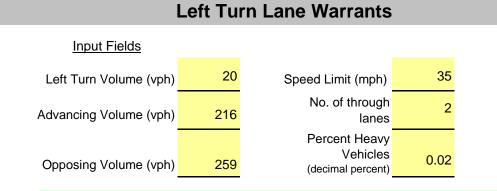
Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		सी	₽		14	
Traffic Vol, veh/h	4	178	232	49	31	3
Future Vol, veh/h	4	178	232	49	31	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	_	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	. # -	0	0	_	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	4	193	252	53	34	3
IVIVIIIL FIOW	4	193	202	55	34	3
Major/Minor	Major1	N	Najor2	ı	Minor2	
Conflicting Flow All	305	0	-	0	480	279
Stage 1	-	-	-	-	279	-
Stage 2	-	_	_	_	201	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	-
Critical Hdwy Stg 2	_			_	5.42	_
Follow-up Hdwy	2.218	_	_	_	3.518	
Pot Cap-1 Maneuver	1256	-	-	_	545	760
•	1230	-	-	-	768	700
Stage 1		-	-			
Stage 2	-	-	-	-	833	-
Platoon blocked, %		-	-	-	=	=
Mov Cap-1 Maneuver	1256	-	-	-	543	760
Mov Cap-2 Maneuver	-	-	-	-	543	-
Stage 1	-	-	-	-	765	-
Stage 2	-	-	-	-	833	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		11.9	
HCM LOS	0.2		U		B	
FICIVI LOS					D	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1256	_			557
HCM Lane V/C Ratio		0.003	_	-	_	0.066
HCM Control Delay (s))	7.9	0	-	-	11.9
HCM Lane LOS		Α	A	_	_	В
HCM 95th %tile Q(veh)	0	-	_	_	0.2
HOW JOHN JOHN Q(VEH	7	U				0.2

Movement E						
Movement E	0.8					
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની	₽		N/	
•	20	177	227	8	5	13
Future Vol, veh/h	20	177	227	8	5	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control Fr	ree	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	-	0	0	-	0	-
Grade, %	-	0	0	-	0	-
	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
	22	192	247	9	5	14
WWW. Tiow		172	217	,	U	•
Major/Minor Majo			/lajor2		Minor2	
Conflicting Flow All 2	256	0	-	0	488	252
Stage 1	-	-	-	-	252	-
Stage 2	-	-	-	-	236	-
	1.12		-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	218	-	-	-	3.518	3.318
	309	_	-	_	539	787
Stage 1	-	_	_	_	790	-
Stage 2	-	_	-	-	803	-
Platoon blocked, %		_	_	_	000	
	309	_			529	787
	309	_	_	-	529	707
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	-			
Mov Cap-2 Maneuver	-	-	-	-	775	-
Stage 1						
	-	-	-	-	803	-
Stage 1	-	-	-	-	803	-
Stage 1 Stage 2	EB	-	WB	-	803 SB	-
Stage 1 Stage 2 Approach		-		-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s	EB 0.8	-	WB 0		SB 10.3	
Stage 1 Stage 2 Approach					SB	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS		-	0		SB 10.3 B	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt		EBL		WBT	SB 10.3	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)		1309	0	WBT	SB 10.3 B	693
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio			0	WBT	SB 10.3 B	693 0.028
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)		1309	0 EBT	-	SB 10.3 B	693
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		1309 0.017	0 EBT -	-	SB 10.3 B WBR :	693 0.028

Intersection						
Int Delay, s/veh	1.2					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			ની	14	
Traffic Vol, veh/h	185	6	14	112	14	16
Future Vol, veh/h	185	6	14	112	14	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	199	6	15	120	15	17
	.,,		.0	0		.,
	ajor1		Major2		Vinor1	
Conflicting Flow All	0	0	205	0	352	202
Stage 1	-	-	-	-	202	-
Stage 2	-	-	-	-	150	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1366	-	646	839
Stage 1	-	-	-	-	832	-
Stage 2	-	-	-	-	878	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	1366	_	638	839
Mov Cap-2 Maneuver	_	_	-	_	638	-
Stage 1	_		-	_	832	_
Stage 2					867	-
Staye 2	-	-	-	-	007	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		10.2	
HCM LOS					В	
Minor Lang/Major Mares		UDI1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	<u> </u>	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		731	-	-	1366	-
HCM Lane V/C Ratio		0.044	-	-	0.011	-
HCM Control Delay (s)		10.2	-	-	7.7	0
HCM Lane LOS HCM 95th %tile Q(veh)		В	-	-	Α	Α
		0.1	_		0	-

Interception						
Intersection Int Delay, s/veh	1.8					
			14/5=	14/55	021	270
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ĵ.		Y	
Traffic Vol, veh/h	1	142	109	17	49	4
Future Vol, veh/h	1	142	109	17	49	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	154	118	18	53	4
Major/Minor	Majort		//oicr2		Minora	
	Major1		Major2		Minor2	107
Conflicting Flow All	136	0	-	0	283	127
Stage 1	-	-	-	-	127	-
Stage 2	-	-	-	-	156	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1448	-	-	-	707	923
Stage 1	-	-	-	-	899	-
Stage 2	-	-	-	-	872	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1448	-	-	-	706	923
Mov Cap-2 Maneuver	-	-	-	-	706	_
Stage 1	-	-	-	-	898	-
Stage 2	-	-	_	_	872	_
					3,2	
			1.5.55			
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.4	
HCM LOS					В	
Minor Lane/Major Mvn	o t	EBL	EBT	WBT	WBR :	CDI n1
	III		LDI	VVDI		
Capacity (veh/h)		1448	-	-	-	719
HCM Lane V/C Ratio		0.001	-	-	-	0.08
HCM Control Delay (s))	7.5	0	-	-	10.4
HCM Lane LOS	,	Α	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.3

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		144	
Traffic Vol, veh/h	7	135	110	3	8	20
Future Vol, veh/h	7	135	110	3	8	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	147	120	3	9	22
	Major1		Major2		Minor2	
Conflicting Flow All	123	0	-	0	285	122
Stage 1	-	-	-	-	122	-
Stage 2	-	-	-	-	163	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1464	-	-	-	705	929
Stage 1	-	-	-	-	903	-
Stage 2	-	-	-	-	866	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1464	-	-	-	701	929
Mov Cap-2 Maneuver	-	_	_	-	701	-
Stage 1	_	_	_	_	898	-
Stage 2	_	_	_	_	866	_
Juge 2					500	
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		9.4	
HCM LOS					Α	
Minor Lanc/Major Mun	nt	EBL	EBT	\M/DT	WDD	CDI n1
Minor Lane/Major Mvn	π		EBI	WBT	WBR :	
Capacity (veh/h)		1464	-	-	-	850
HCM Lane V/C Ratio		0.005	-	-		0.036
HCM Control Delay (s)		7.5	0	-	-	9.4
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0.1


Intersection						
Int Delay, s/veh	0.8					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	N/	
Traffic Vol, veh/h	221	7	20	302	3	30
Future Vol, veh/h	221	7	20	302	3	30
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	243	8	22	332	3	33
IVIVIIIL FIOW	243	0	ZZ	332	3	აა
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	251	0	623	247
Stage 1	-	_	_	_	247	_
Stage 2	_	_	_	_	376	_
Critical Hdwy	_	_	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	7.12	_	5.42	- 0.22
Critical Hdwy Stg 2		-	-	_	5.42	_
	-	_	2.218		3.518	
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	1314	-	450	792
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	694	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1314	-	441	792
Mov Cap-2 Maneuver	-	-	-	-	441	-
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	679	-
Approach	ED.		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		10.1	
HCM LOS					В	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
	<u> </u>			LDK		VVDT
Capacity (veh/h)		739	-	-	1314	-
HCM Cantral Dalay (a)		0.049	-		0.017	-
HCM Control Delay (s)		10.1	-	-	7.8	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.9					
					0.07	005
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 4	ĵ.		- W	
Traffic Vol, veh/h	4	197	256	49	31	3
Future Vol, veh/h	4	197	256	49	31	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	214	278	53	34	3
	•		2,0		0.	
	Major1		Major2		Minor2	
Conflicting Flow All	331	0	-	0	527	305
Stage 1	-	-	-	-	305	-
Stage 2	-	-	-	-	222	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1228	_	-	-	512	735
Stage 1	-	_	_	-	748	-
Stage 2	_	_	_	_	815	_
Platoon blocked, %		_	_	_	310	
Mov Cap-1 Maneuver	1228	_	_	_	510	735
Mov Cap-1 Maneuver	1220	_	_	-	510	735
Stage 1	-	-	-	-	745	-
	-		-	-		
Stage 2	-	-	-	-	815	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		12.4	
HCM LOS	0.2				В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1228	-	-	-	524
HCM Lane V/C Ratio		0.004	-	-	-	0.071
HCM Control Delay (s))	7.9	0	-	-	12.4
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh		0	-	-	-	0.2

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	₽		14	
Traffic Vol, veh/h	20	196	251	8	5	13
Future Vol, veh/h	20	196	251	8	5	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	_	0	-
Veh in Median Storage	e.# -	0	0	-	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	22	213	273	9	5	14
IVIVIIIL FIOW	ZZ	213	213	9	3	14
Major/Minor	Major1	Λ	/lajor2	1	Vinor2	
Conflicting Flow All	282	0		0	535	278
Stage 1		_	-	_	278	
Stage 2	_	_	_	_	257	_
Critical Hdwy	4.12	_	_	-	6.42	6.22
Critical Hdwy Stg 1	7.12	_	_	_	5.42	- 0.22
Critical Hdwy Stg 2	-		-	_	5.42	-
Follow-up Hdwy	2.218		-		3.518	
		-	-	-		
Pot Cap-1 Maneuver	1280	-	-	-	506	761
Stage 1	-	-	-	-	769	-
Stage 2	-	-	-	-	786	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1280	-	-	-	496	761
Mov Cap-2 Maneuver	-	-	-	-	496	-
Stage 1	-	-	-	-	754	-
Stage 2	-	-	-	-	786	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		10.6	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBI n1
Capacity (veh/h)		1280	LDI	****	W Ditt	663
HCM Lane V/C Ratio		0.017	-	-		0.03
	١		-	-	-	
HCM Control Delay (s))	7.9	0	-	-	10.6
HCM Lane LOS HCM 95th %tile Q(veh		A 0.1	Α	-	-	В
		() 1	-	_		0.1

Appendix E:

Turn Lane Warrants

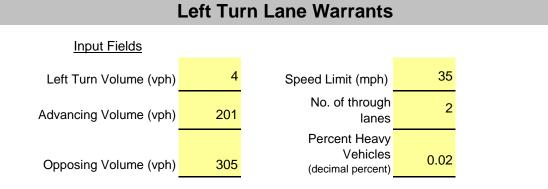
Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

3 - Springdale Rd / Entrance 2 EBL 2033 PM Build

Right Turn Lane Warrants

Right Turn Volume (vph) 8

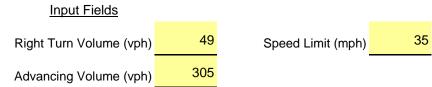
Advancing Volume (vph) 259


Input Fields

Speed Limit (mph) 35

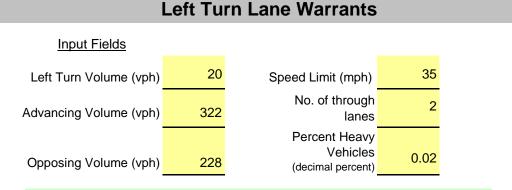
Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

3 - Springdale Rd / Entrance 2 WBR 2033 PM Build



Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

2 - Springdale Rd / Entrance 1 EBL 2033 PM Build


Right Turn Lane Warrants

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

2 - Springdale Rd / Entrance 1 WBR 2033 PM Build

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

1- Springdale Rd / Asbury Park Blvd WBL 2033 PM Build

Right Turn Lane Warrants Input Fields Right Turn Volume (vph) 7 Speed Limit (mph) 35 Advancing Volume (vph)

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.

1- Springdale Rd / Asbury Park Blvd EBR 2033 PM Build

Study Name I265 EB MP35.5 Start Date 06/23/2021 Start Time 12:00 AM

Site Code Site 3 - Wednesday

Channel	Direction				
Direction	Eastbound				
	CARS	TRUCKS/BUSES	TOTAL	TRUCK/BUS %	HOURLY
12:00 AM	33	11	44	25.0%	
12:15 AM	32	12	44	27.3%	
12:30 AM	21	11	32	34.4%	
12:45 AM	18	15	33	45.5%	153
1:00 AM	14	12	26	46.2%	135
1:15 AM	5	8	13	61.5%	104
1:30 AM	17	18	35	51.4%	107
1:45 AM	15	12	27	44.4%	101
2:00 AM	4	10	14	71.4%	89
2:15 AM	6	10	16	62.5%	92
2:30 AM	13	12	25	48.0%	82
2:45 AM	27	4	31	12.9%	86
3:00 AM	14	12	26	46.2%	98
3:15 AM	15	13	28	46.4%	110
3:30 AM	9	4	13	30.8%	98
3:45 AM	16	13	29	44.8%	96
4:00 AM	18	7	25	28.0%	95
4:15 AM	28	16	44	36.4%	111
4:30 AM	39	17	56	30.4%	154

4:45 AM	75	15	90	16.7%	215
5:00 AM	84	17	101	16.8%	291
5:15 AM	148	15	163	9.2%	410
5:30 AM	173	14	187	7.5%	541
5:45 AM	160	19	179	10.6%	630
6:00 AM	120	21	141	14.9%	670
6:15 AM	193	24	217	11.1%	724
6:30 AM	239	45	284	15.8%	821
6:45 AM	241	23	264	8.7%	906
7:00 AM	294	34	328	10.4%	1093
7:15 AM	426	25	451	5.5%	1327
7:30 AM	450	25	475	5.3%	1518
7:45 AM	459	44	503	8.7%	1757
8:00 AM	354	45	399	11.3%	1828
8:15 AM	404	40	444	9.0%	1821
8:30 AM	444	37	481	7.7%	1827
8:45 AM	423	43	466	9.2%	1790
9:00 AM	284	38	322	11.8%	1713
9:15 AM	315	61	376	16.2%	1645
9:30 AM	312	59	371	15.9%	1535
9:45 AM	333	50	383	13.1%	1452
10:00 AM	289	47	336	14.0%	1466
10:15 AM	298	44	342	12.9%	1432
10:30 AM	279	39	318	12.3%	1379
10:45 AM	297	49	346	14.2%	1342
11:00 AM	299	50	349	14.3%	1355
11:15 AM	312	34	346	9.8%	1359
11:30 AM	313	52	365	14.2%	1406
11:45 AM	296	41	337	12.2%	1397
12:00 PM	270	33	303	10.9%	1351
	000	20	240	11 20/	1324
12:15 PM	283	36	319	11.3%	1324

12:45 PM	308	45	353	12.7%	1320
1:00 PM	307	44	351	12.5%	1368
1:15 PM	324	47	371	12.7%	1420
1:30 PM	291	43	334	12.9%	1409
1:45 PM	318	41	359	11.4%	1415
2:00 PM	305	41	346	11.8%	1410
2:15 PM	306	56	362	15.5%	1401
2:30 PM	343	43	386	11.1%	1453
2:45 PM	332	46	378	12.2%	1472
3:00 PM	318	46	364	12.6%	1490
3:15 PM	306	51	357	14.3%	1485
3:30 PM	367	50	417	12.0%	1516
3:45 PM	398	42	440	9.5%	1578
4:00 PM	384	37	421	8.8%	1635
4:15 PM	367	34	401	8.5%	1679
4:30 PM	488	35	523	6.7%	1785
4:45 PM	491	29	520	5.6%	1865
5:00 PM	450	37	487	7.6%	1931
5:15 PM	538	39	577	6.8%	2107
5:30 PM	512	39	551	7.1%	2135
5:45 PM	442	48	490	9.8%	2105
6:00 PM	359	32	391	8.2%	2009
6:15 PM	387	30	417	7.2%	1849
6:30 PM	286	30	316	9.5%	1614
6:45 PM	284	25	309	8.1%	1433
7:00 PM	254	25	279	9.0%	1321
7:15 PM	239	26	265	9.8%	1169
7:30 PM	214	22	236	9.3%	1089
7:45 PM	171	22	193	11.4%	973
8:00 PM	173	16	189	8.5%	883
8:15 PM	192	29	221	13.1%	839
8:30 PM	152	21	173	12.1%	776

8:45 PM	133	19	152	12.5%	735
			132		733
9:00 PM	157	18	175	10.3%	721
9:15 PM	167	13	180	7.2%	680
9:30 PM	146	16	162	9.9%	669
9:45 PM	134	19	153	12.4%	670
10:00 PM	108	20	128	15.6%	623
10:15 PM	99	15	114	13.2%	557
10:30 PM	85	11	96	11.5%	491
10:45 PM	62	18	80	22.5%	418
11:00 PM	59	15	74	20.3%	364
11:15 PM	46	11	57	19.3%	307
11:30 PM	28	19	47	40.4%	258
11:45 PM	25	18	43	41.9%	221

GROWTH ANALYSIS

AM PEAK HOUR	7:15 to 8:15 AM	GROWTH RATE	2.00%	
PM PEAK HOUR	4:45 to 5:45 PM	YEAR	2023	2033
TOTAL 24 HR TRAFFIC	24,130		25,100	30,600
AM PEAK TRAFFIC	1,828		1,900	2,320
PM PEAK TRAFFIC	2,135		2,220	2,710
TOTAL 24 HR TRUCK %	11.5%			
AM PEAK HOUR TRUCK %	7.6%			
PM PEAK HOUR TRUCK %	6.7%			

Study Name I265 WB MP35.5 Start Date 06/23/2021 Start Time 12:00 AM

Site Code Site 2 - Wednesday

Channel	Direction	1				
Direction	Westbound	Ī				
	CARS	TRUCKS/BUSES	TOTAL	TRUCK/BUS %	HOURLY	,
12:00 AM	21		13	34	38.2%	
12:15 AM	18	3	7	25	28.0%	
12:30 AM	24	.	10	34	29.4%	
12:45 AM	23	3	13	36	36.1%	129
1:00 AM	11		17	28	60.7%	123
1:15 AM	15	5	7	22	31.8%	120
1:30 AM	12	2	16	28	57.1%	114
1:45 AM	12	2	12	24	50.0%	102
2:00 AM	21		13	34	38.2%	108
2:15 AM	15	5	15	30	50.0%	116
2:30 AM	18	3	13	31	41.9%	119
2:45 AM	13	3	20	33	60.6%	128
3:00 AM	14	1	18	32	56.3%	126
3:15 AM	21		11	32	34.4%	128
3:30 AM	42	2	15	57	26.3%	154
3:45 AM	53	3	12	65	18.5%	186
4:00 AM	64	ļ.	16	80	20.0%	234
4:15 AM	36	3	14	50	28.0%	252
4:30 AM	35		20	55	36.4%	250

4:45 AM	29	14	43	32.6%	228
5:00 AM	35	17	52	32.7%	200
5:15 AM	43	17	60	28.3%	210
5:30 AM	80	21	101	20.8%	256
5:45 AM	88	21	109	19.3%	322
6:00 AM	105	39	144	27.1%	414
6:15 AM	153	25	178	14.0%	532
6:30 AM	177	41	218	18.8%	649
6:45 AM	192	39	231	16.9%	771
7:00 AM	204	45	249	18.1%	876
7:15 AM	270	47	317	14.8%	1015
7:30 AM	320	45	365	12.3%	1162
7:45 AM	366	55	421	13.1%	1352
8:00 AM	285	53	338	15.7%	1441
8:15 AM	322	48	370	13.0%	1494
8:30 AM	298	56	354	15.8%	1483
8:45 AM	295	51	346	14.7%	1408
9:00 AM	283	61	344	17.7%	1414
9:15 AM	277	53	330	16.1%	1374
9:30 AM	267	54	321	16.8%	1341
9:45 AM	276	38	314	12.1%	1309
10:00 AM	266	51	317	16.1%	1282
10:15 AM	262	53	315	16.8%	1267
10:30 AM	296	50	346	14.5%	1292
10:45 AM	254	63	317	19.9%	1295
11:00 AM	267	54	321	16.8%	1299
11:15 AM	266	48	314	15.3%	1298
11:30 AM	254	43	297	14.5%	1249
11:45 AM	291	68	359	18.9%	1291
12:00 PM	274	53	327	16.2%	1297
12:15 PM	305	58	363	16.0%	1346
12:30 PM	268	63	331	19.0%	1380

12:45 PM	349	59	408	14.5%	1429
1:00 PM	331	42	373	11.3%	1475
1:15 PM	307	41	348	11.8%	1460
1:30 PM	271	48	319	15.0%	1448
1:45 PM	291	52	343	15.2%	1383
2:00 PM	296	59	355	16.6%	1365
2:15 PM	359	64	423	15.1%	1440
2:30 PM	363	77	440	17.5%	1561
2:45 PM	353	53	406	13.1%	1624
3:00 PM	381	55	436	12.6%	1705
3:15 PM	409	44	453	9.7%	1735
3:30 PM	453	48	501	9.6%	1796
3:45 PM	414	42	456	9.2%	1846
4:00 PM	475	57	532	10.7%	1942
4:15 PM	492	50	542	9.2%	2031
4:30 PM	478	35	513	6.8%	2043
4:45 PM	500	26	526	4.9%	2113
5:00 PM	532	58	590	9.8%	2171
5:15 PM	513	39	552	7.1%	2181
5:30 PM	437	34	471	7.2%	2139
5:45 PM	438	27	465	5.8%	2078
6:00 PM	401	48	449	10.7%	1937
6:15 PM	386	44	430	10.2%	1815
6:30 PM	353	41	394	10.4%	1738
6:45 PM	303	23	326	7.1%	1599
7:00 PM	301	31	332	9.3%	1482
7:15 PM	242	27	269	10.0%	1321
7:30 PM	250	20	270	7.4%	1197
7:45 PM	235	26	261	10.0%	1132
8:00 PM	226	31	257	12.1%	1057
8:15 PM	175	27	202	13.4%	990
8:30 PM	183	26	209	12.4%	929

8:45 PM	159	23	182	12.6%	850
9:00 PM	186	26	212	12.3%	805
9:15 PM	161	23	184	12.5%	787
9:30 PM	142	22	164	13.4%	742
9:45 PM	150	19	169	11.2%	729
10:00 PM	134	15	149	10.1%	666
10:15 PM	123	20	143	14.0%	625
10:30 PM	86	26	112	23.2%	573
10:45 PM	79	22	101	21.8%	505
11:00 PM	61	20	81	24.7%	437
11:15 PM	49	19	68	27.9%	362
11:30 PM	54	16	70	22.9%	320
11:45 PM	32	19	51	37.3%	270

GROWTH ANALYSIS

AM PEAK HOUR	7:30 to 8:30 AM	GROWTH RATE	2.00%	
PM PEAK HOUR	4:30 to 5:30 PM	YEAR	2023	2033
TOTAL 24 HR TRAFFIC	24,079		25,050	30,540
AM PEAK TRAFFIC	1,494		1,550	1,890
PM PEAK TRAFFIC	2,181		2,270	2,770
TOTAL 24 HR TRUCK %	13.8%			
AM PEAK HOUR TRUCK %	13.5%			
PM PEAK HOUR TRUCK %	7.2%			

APPENDIX F – NOISE METER CERTIFICATIONS

Scantek, Inc.

CALIBRATION LABORATORY

ISO 17025: 2017, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.46215

Instrument: Sound Level Meter

Model: NL20

Manufacturer: Rion

Serial number: 00
Tested with: M

00110039

Microphone UC52 s/n 77412

Preamplifier NH21 s/n 00177

Type (class): Customer:

Tel/Fax:

HMB Professional Engineers, Inc.

502-695-9800 / -9810

Date Calibrated:3/25/2021 Cal Due: 3/25/2023

Status: Received Sent
In tolerance: X X
Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No
Calibration service: __Basic X Standard

Address: 3 HMB Circle US 460, Frankfort, KY,

40601

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N	Cal Data	Traceability evidence	Cal. Due
instrument - Manufacturer			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31061	Jul 31, 2020	Scantek, Inc./ NVLAP	Jul 31, 2021
DS-360-SRS	Function Generator	61646	Dec 3, 2020	ACR Env./ A2LA	Dec 3, 2022
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Dec 04, 2020	ACR Env./ A2LA	Dec 04, 2021
HM30-Thommen	Meteo Station	1040170/39633	Dec 7, 2021	ACR Env./ A2LA	Dec 7, 2022
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	1-12-1
1251-Norsonic	Calibrator	30878	Oct 26, 2020	Scantek, Inc./ NVLAP	Oct 26, 2021
4226-Brüel&Kjær	Multifunction calibrator	2305103	Sep 25, 2019	Brüel&Kjær/ DANAK	Sep 25, 2021

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.4	100.26	45.5

Calibrated by:	Ronnie Buchanan	Authorized signatory:	/ William D. Gallagher
Signature	Rounie Brchanan	Signature	Willer Muller
Date	3/25/2021	Date	3/26/2021

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Y:\Calibration Lab\SLM 2021\RIONL20_00110039_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.3
ACOUSTICAL TEST OF A FREQUENCY WEIGHTING - IEC 61672-3 ED.2.0 CLAUSE 12	Passed	0.3
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.2
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.3
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1

- 1 The results of this calibration apply only to the instrument type with serial number identified in this report.
- 2 Parameters are certified at actual environmental conditions.
- 3 The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. However, No general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1 because evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conforms to the requirements of IEC 61672-1:2002, and because the periodic tests of IEC 61672-3 cover only a limited subset of the specifications in IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

		ments to the matrament.	
Microphone:	Rion UC52 s/n 77412 fo	or acoustical test	
Preamplifier:	Rion NH21 s/n 00177 f	or all tests	
Other: line adap	tor ADP005 (18pF) for	electrical tests	
Accompanying a	coustical calibrator:	Rion NC-73 s/n 10417585	
Windscreen:	Rion WS-10		

Measured Data: in Test Report # 46215 of 8+1 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Y:\Calibration Lab\SLM 2021\RIONL20_00110039_M1.doc

Ph/Fax: 410-290-7726/ -9167

callab@scantekinc.com

Summary of Test Report No.:46215

Rion Type: NL20 Serial no: 00110039

Customer:

HMB Professional Engineers, Inc.

Address:

3 HMB Circle US 460, Frankfort, KY, 40601

Contact Person: Phone No.:

Mark Gavula 502-695-9800

Fax No.:

-9810

eMail:

mgavula@hmbpe.com

Microphone:

Type: UC52

Serial no: 77412

Sens:dB

Preamplifier

Rion

Type: NH21

Serial no: 00177 Serial no: 10417585

Level:93.89dB

Calibrator: Wind screen Rion Rion Type: NC-73 Type: WS-10

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Acoustical test of a frequency weighting - IEC 61672-3 Ed.2.0 Clause 12	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed

Environmental conditions:

Pressure:

Temperature:

Relative humidity:

100.26

45.5

Date of calibration: 3/25/2021 Date of issue: 3/26/2021 Supervisor: Steven E. Marshall Measurements performed by:

Ronnie Buchanan

Software version: 6.1 T

Scantek, Inc. 6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:46215

Manufacturer:

Rion

Instrument type:

NL₂₀

Serial no:

00110039

Customer:

HMB Professional Engineers, Inc.

Department:

Order No:

Contact Person:

Mark Gavula

Address:

3 HMB Circle US 460, Frankfort, KY, 40601

Environmental conditions:

Pressure:

100.26

Temperature:

23.4

Relative humidity:

45.5

Supervisor

Steven E. Marshall

Engineer

Ronnie Buchanan

Date:

3/25/2021

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

```
Reference Calibrator: WSC4 - NOR1251-30878
  Reference calibrator level: 114.00
  Before calibration:
   Environmental corrections: 0.00
  Other corrections: -0.02
   Notional level: 113.98
  Reference calibrator level before calibration: 114.0
  After calibration:
    Environmental corrections: 0.00
    Other corrections: -0.02
    Notional level: 113.98
  Reference calibrator level after calibration: 114.2
  Associated Calibrator: Rion - NC-73 - 10417585
  Associated calibrator level: 93.89
Initial level check:
  Environmental corrections: 0.00 Other corrections: -0.02
   Notional level: 93.87
 Indicated level: 93.9
Final level statement:
   Environmental corrections after calibration: 0.00
  Other corrections: -0.02
   Notional level: 93.87
 Indicated level after calibration: 94.0
 This value shall be used for adjusting the sound level meter in the future.
 Test Passed
```

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level (dB)	Max (dB)	Uncert.	Result	Comment
		, /	(GD)		
A	18.3	20.0	0.3	P	Equivalent capacity
C	25.4	27.0	0.3	P	Equivalent capacity
Z	24.6	32.0	0.3	P	Equivalent capacity
Test Passed					

Acoustical test of a frequency weighting - IEC 61672-3 Ed.2.0 Clause 12

A-Weighted	results: free	field	response		
Frequency	Response	T	Tol.		Result
	(dB)	(dB)	(dB)	(dB)	
125 Hz	-0.3	1.5	-1.5	0.1	P
1 kHz	0.0	1.0	-1.0	0.1	P
4 kHz	-1.1	3.0	-3.0	0.2	P
8 kHz	1.6	5.0	-5.0	0.4	P
Test Passed	f				

```
The overall frequency response of the sound level meter, nominal case
reflections and microphone response has shown to conform with the
 requirements in IEC 61672-3 for a class 2 sound level meter.
Frequency response test using multi frequency calibrator.
Sources for correction data:
 Calibrator levels and uncertainty: B&K
Microphone field corrections and uncertainty:
 Case reflections and uncertainty:
Wind screen corrections and uncertainty:
 Tabular information
 Calibrator = WSC4 at 94dB
txtMFCL125 = 94.06
                              0.10
 txtMFCLU125 =
txtSU125 = 0.20

txtM125_1 = 78.5

txtM125_2 = 78.5

txtM125_3 = 78.5
                0.20
txtMFCL1k = 94.05
 txtMFCLU1k = 0.10
 txtSU1k = 0.15
txtSUIK = 0.15

txtM1k_1 = 94.5

txtM1k_2 = 94.5

txtM1k_3 = 94.5

txtMFCL4k = 93.92
txtMFCLU4k = 0.10
txtSU4k = 0.40
 txtM4k_1 =
                94.5
txtM4k_2 = 94.5

txtM4k_3 = 94.5
txtMFCL8k = 93.88
txtMFCLU8k = 0.11txtSU8k = 0.50
txtM8k_1 = 92.5
txtM8k_2 = 92.5

txtM8k_3 = 92.5

txtSLM125 = 78.5
txtNC125 = 16.1
txtSLMU125 = 0.1
txtMic125 = 0.0
txtMicU125 = 0.05
 txtCR125 = 0.0
  txtCRU125 =
                 0.0
txtWS125 =
txtWSU125 =
txtSLM1k = 94.5
 txtNC1k =
               0
 txtSLMU1k = 0.1
 txtMFCL1k = 94.05
txtMFCLU1k = 0.10
txtMicU1k = 0.1
txtMicU1k = 0.0
                 0.4
txtCRU1k = 0.0
  txtWS1k =
txtWSU1k =
 txtSLM4k = 94.5
 txtNC4k =
                 -1.0
txtSLMU4k = 0.1
txtMFCL4k = 93.92
```

Acoustical test of a frequency weighting - IEC 61672-3 Ed.2.0 Clause 12

txtMFCLU4k = 0.10txtMic4k = 0.2 txtMicU4k = 0.2txtCR4k = 0.0txtCRU4k = 0.0txtWS4k = txtWSU4k = 92.5 txtSLM8k = 1.1 txtNC8k = txtSLMU8k = txtMFCL8k = 93.88 txtMFCLU8k = 0.11 93.88 txtMic8k = 2.7 $\begin{array}{ll} \text{txtMicU8k} = & \text{0.4} \\ \text{txtCR8k} = & \text{0.0} \end{array}$ txtCRU8k = 0.0 txtWS8k = txtWSU8k =

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	01.	Uncert.	Dev.	Result
(HZ)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.9	2.0	-2.0	0.2	-0.1	P
125.9	83.0	82.8	1.5	-1.5	0.2	-0.2	P
251.2	83.0	82.8	1.5	-1.5	0.2	-0.2	P
501.2	83.0	82.9	1.5	-1.5	0.2	-0.1	P
1000.0	83.0	83.0	1.0	-1.0	0.2	0.0	P
1995.3	83.0	83.0	2.0	-2.0	0.2	0.0	P
3981.1	83.0	83.0	3.0	-3.0	0.2	0.0	P
7943.3	83.0	83.1	5.0	-5.0	0.2	0.1	P
Test Passed							

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref. Level	Meas. Value	To	01.	Uncert.	Dev.	Result
(HZ)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.9	2.0	-2.0	0.2	-0.1	P
125.9	83.0	82.9	1.5	-1.5	0.2	-0.1	P
251.2	83.0	82.9	1.5	-1.5	0.2	-0.1	P
501.2	83.0	83.0	1.5	-1.5	0.2	0.0	P
1000.0	83.0	83.0	1.0	-1.0	0.2	0.0	P
1995.3	83.0	83.0	2.0	-2.0	0.2	0.0	P
3981.1	83.0	83.0	3.0	-3.0	0.2	0.0	P
7943.3	83.0	83.1	5.0	-5.0	0.2	0.1	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref. Level	Meas. Value	Т	01.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.8	2.0	-2.0	0.2	-0.2	P
125.9	83.0	82.9	1.5	-1.5	0.2	-0.1	P
251.2	83.0	82.9	1.5	-1.5	0.2	-0.1	P
501.2	83.0	83.0	1.5	-1.5	0.2	0.0	P
1000.0	83.0	83.0	1.0	-1.0	0.2	0.0	P
1995.3	83.0	83.1	2.0	-2.0	0.2	0.1	P
3981.1	83.0	83.0	3.0	-3.0	0.2	0.0	P
7943.3	83.0	83.0	5.0	-5.0	0.2	0.0	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weigh	itings	Ref.	Measured	To	01.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.1	0.1	-0.1	0.2	0.1	P
Fast	C	94.0	94.1	0.1	-0.1	0.2	0.1	P
Fast	Z	94.0	94.1	0.1	-0.1	0.2	0.1	P
Fast	Flat	94.0	94.1	0.1	-0.1	0.2	0.1	P
Slow	A	94.0	94.1	0.1	-0.1	0.2	0.1	P
Leq	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Test	Passed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

Ref.	Measured (dB)	To (dB)	ol. (dB)	Uncert. (dB)	Dev. (dB)	Result
Full scale			1027	1421	(42)	
	And the state of t		oo CDT .	maaa waman t		
The followi		ients an	Le SPL	measurement	5	
Measured at				0 05		
74.0	74.0	1.1		0.25	0.0	P
79.0	79.0	1.1	-1.1	0.25	0.0	P
84.6	84.6	1.1	-1.1	0.25	0.0	P
85.6	85.6	1.1	-1.1	0.25	0.0	P
86.6	86.6	1.1	-1.1	0.25	0.0	P
87.6	87.6	1.1	-1.1	0.25	0.0	P
88.6	88.6	1.1	-1.1	0.25	0.0	P
74.0	74.9	1.1	-1.1	0.25	0.9	P
69.0	69.1	1.1	-1.1	0.25	0.1	P
64.0	64.1	1.1	-1.1	0.25	0.1	P
59.0	59.1	1.1	-1.1		0.1	P
54.0	54.1	1.1	-1.1		0.1	P
49.0	49.1	1.1	-1.1	0.25	0.1	P P
44.0	44.0	1.1	-1.1	0.25	0.0	P
39.0	39.0	1.1	-1,1	0.25	0.0	P
37.0	37.0	1.1	-1.1	0.25	0.0	P
36.0	35.9	1.1	-1.1	0.25	-0.1	P
35.0	35.0	1.1	-1.1	0.25	0.0	P P

Level linearity on t		ence le	vel range Uncert.		572-3 Ed.2 Result	Clause	16
	(dB)		(dB)		Nesurc		
34.0 34.1	1.1	-1.1	0.25	0.1	P		
33.0 33.0	1.1	-1.1	0.25	0.0	P		
Measured at 1 kHz							
94.0 94.0	1.1	-1.1	0.25	0.0	P		
99.0 99.0		-1.1	0.25	0.0	P		
104.0 103.9	1.1	-1.1	0.25	-0.1	P		
109.0 109.0	1.1	-1.1	0.25	0.0	P		
114.0 114.0	1.1	-1.1	0.25	0.0	P		
119.0 119.0	1.1	-1.1	0.25	0.0	P		
124.0 124.0	1.1	-1.1					
			0.25	0.0	P		
125.0 125.0	1.1	-1.1	0.25	0.0	P		
126.0 126.0	1.1	-1.1	0.25	0.0	P		
127.0 127.0	1.1	-1.1	0.25	0.0	P		
128.0 128.0	1.1	-1.1	0.25	0.0	P		
94.0 94.0	1.1	-1.1	0.25	0.0	P		
89.0 89.0	1.1	-1.1		0.0	P		
84.0 84.0		-1.1		0.0	P		
79.0 78.9	1.1	-1.1	0.25	-0.1	P		
74.0 73.9		-1.1	0.25	-0.1	P		
69.0 68.9	1.1	-1.1		-0.1	P		
64.0 63.9	1.1	-1.1	0.25	-0.1	P		
59.0 58.9	1.1	-1.1	0.25	-0.1	P		
54.0 53.9	1.1	-1.1	0.25	-0.1	P		
49.0 49.0	1.1	-1.1	0.25	0.0	P		
44.0 43.9	1.1	-1.1	0.25	-0.1	P		
39.0 38.9	1.1	-1.1	0.25	-0.1	P		
37.0 36.9	1.1	-1.1	0.25	-0.1	P		
36.0 35.9	1.1	-1.1	0.25	-0.1	P		
35.0 34.9	1.1	-1.1	0.25	-0.1	P		
34.0 33.8	1.1	-1.1	0.25	-0.2	P		
33.0 32.9	1.1	-1.1	0.25	-0.1	P		
Measured at 8 kHz							
94.0 94.0	1.1	-1.1	0.25	0.0	P		
99.0 99.0	1.1	-1.1	0.25	0.0	P		
104.0 104.0	1.1	-1.1	0.25	0.0	P		
109.0 109.0	1.1	-1.1	0.25	0.0	P		
114.0 114.0	1.1	-1.1	0.25	0.0	P		
119.0 119.0	1.1	-1.1	0.25	0.0	P		
122.9 123.0	1.1	-1.1	0.25	0.1	P		
123.9 124.0	1.1	-1.1	0.25	0.1	P		
124.9 125.0	1.1	-1.1	0.25	0.1	P		
125.9 126.0	1.1	-1.1	0.25	0.1	P		
94.0 94.0	1.1	-1.1	0.25	0.0	P		
89.0 89.0	1.1	-1.1	0.25	0.0	P		
84.0 84.0	1.1	-1.1	0.25	0.0			
79.0 79.0	1.1	-1.1	0.25	0.0	P		
74.0 74.0	1.1	-1.1	0.25	0.0	P		
69.0 69.0	1.1	-1.1	0.25	0.0	P		
64.0 64.0	1.1	-1.1	0.25	0.0			
59.0 59.0	1.1	-1.1	0.25	0.0			
54.0 54.1	1.1	-1.1	0.25				
			0.25	0.1	P		
49.0 49.1	1.1	-1.1		0.1			
44.0 44.1	1.1	-1.1 -1.1	0.25	0.1			
39.0 39.0 37.0 37.0	1.1		0.25	0.0	P		
	1.1	-1.1			P		
36.0 36.0	1.1	-1.1	0.25	0.0	P		
35.0 35.0	1.1	-1.1	0.25	0.0	P		

Level	linea	rity on the	refere	ence le	vel range -	IEC 616	72-3 Ed.2	Clause	16
	Ref.	Measured	To	01.	Uncert.	Dev.	Result		
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)			
	34.0	34.0	1.1	-1.1	0.25	0.0	P		
	33.0	33.0	1.1	-1.1	0.25	0.0	P		
Toet	Dagend								

Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17

Full Scale	Ref. Value	Measured Value	Tol. Value	Uncert.	Dev.	Result
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Measured at 1	kHz				7.5	
The following	measure	ments are SPI	L measure	ments		
Measuring the						
130	94.0	93.9	1.1	0.25	-0.1	P
120	94.0	93.9	1.1	0.25	-0.1	P
110	94.0	93.9	1.1	0.25	-0.1	P
100	94.0	94.0	1.1	0.25	0.0	P
Measuring 5 d	B below	full scale or	n all ava	ilable rang	es.	
130	125.0	125.0	1.1	0.25	0.0	P
120	115.0	115.0	1.1	0.25	0.0	P
110	105.0	105.0	1.1	0.25	0.0	P
100	95.0	95.0	1.1	0.25	0.0	P
90	85.0	85.0	1.1	0.25	0.0	P
80	75.0	75.0	1.1	0.25	0.0	P
Test Passed						

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burs	t type	Ref.	Measured	To	01.	Uncert.	Dev.	Result
		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	200 mSec	125.0	125.0	1.0	-1.0	0.3	0.0	P
Fast	2.0 mSec	108.0	108.0	1.0	-2.5	0.3	0.0	P
Fast	0.25 mSec	99.0	98.9	1.5	-5.0	0.3	-0.1	P
Slow	200 mSec	118.6	118.6	1.0	-1.0	0.3	0.0	P
Slow	2.0 mSec	99.0	99.0	1.0	-5.0	0.3	0.0	P
SEL	200 mSec	119.0	119.0	1.0	-1.0	0.3	0.0	P
SEL	2.0 mSec	99.0	99.0	1.0	-2.5	0.3	0.0	P
SEL	0.25 mSec	90.0	89.9	1.8	-5.0	0.3	-0.1	P
Test	Passed							

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

Measur (dB)	ed Tol. (+/-dB)	Uncert. (dB)	Result
Level difference of positive and negative pulses: 0.1		0.25	P
Positive 1/2 cycle 4 kHz. Overload occurred at: 139.3			
Negative 1/2 cycle 4 kHz. Overload occurred at: 139.2 Test Passed			

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
137.0	137.0	0.0	0.3	0.1	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal: Time inteval (mm:SS)			Difference (dB)	Tolerence (dB)	Result
25:17	94.0	94.1	0.1	0.3	P
Test Passed RIONL20.ini RIONL20.ini			TJ.T	255	

23

Scantek, Inc.

ISO 17025: 2017, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.46216

Acoustical Calibrator Instrument:

Date Calibrated: 3/25/2021 Cal Due: 3/25/2023

Model: NC-73 Rion

Status:

Sent

Manufacturer: Serial number:

In tolerance: 10417585 Out of tolerance: X

Class (IEC 60942):

See comments:

Contains non-accredited tests: Yes X No

Received

Barometer type:

Customer:

Barometer s/n:

HMB Professional Engineers, Inc.

Address:

3 HMB Circle US 460, Frankfort, KY,

Tel/Fax:

502-695-9800 / -9810

40601

Tested in accordance with the following procedures and standards:

Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

	Description	C/N	Cal. Date Traceability evidence	Traceability evidence	Cal. Due	
Instrument - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation		
483B-Norsonic	SME Cal Unit	31061	Jul 31, 2020	Scantek, Inc./ NVLAP	Jul 31, 2021	
DS-360-SRS	Function Generator	61646	Dec 3, 2020	ACR Env./ A2LA	Dec 3, 2022	
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Dec 04, 2020	ACR Env./ A2LA	Dec 04, 2021	
HM30-Thommen	Meteo Station	1040170/39633	Dec 7, 2021	ACR Env./ A2LA	Dec 7, 2022	
140-Norsonic	Real Time Analyzer	1403978	Mar 25, 2021	Scantek, Inc. / NVLAP	Mar 25, 2022	
PC Program 1018 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	1	
4192-Brüel&Kjær	Microphone	2854675	Jan 15, 2021	Scantek, Inc. / NVLAP	Jan 15, 2022	
1203-Norsonic	Preamplifier	21270	Jan 15, 2021	Scantek, Inc./ NVLAP	Jan 15, 2022	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	Ronnie Buchanan	Authorized signatory:	, William D. Gallagher
Signature	Donnie Buchanon	Signature	Celler Salla
Date	3/25/2021	Date	3/29/2021

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Y:\Calibration Lab\Cal 2021\RIONNC73_10417585_M1.doc

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM STANDARDS REFERENCED IN PROCEDURES:	MET ²	NOT MET	COMMENTS
Manufacturer specifications			
Manufacturer specifications: Sound pressure level	X		
Manufacturer specifications: Frequency	X		
Manufacturer specifications: Total harmonic distortion	X		
Current standards			
ANSI \$1,40:2006 B.3 / IEC 60942: 2003 B.2 - Preliminary inspection	X		
ANSI S1.40:2006 B.4.4 / IEC 60942: 2003 B.3.4 - Sound pressure level	X		
ANSI S1.40:2006 A.5.4 / IEC 60942: 2003 A.4.4 - Sound pressure level stability			
ANSI S1.40:2006 B.4.5 / IEC 60942: 2003 B.3.5 - Frequency	X		
ANSI \$1.40:2006 B.4.6 / IEC 60942: 2003 B.3.6 - Total harmonic distortion	X		

- 1 The results of this calibration apply only to the instrument type with serial number identified in this report.
- 2 The tests marked with (*) are not covered by the current NVLAP accreditation.

Main measured parameters 3:

Measured ⁴ /Acceptable ⁵ Tone frequency (Hz):	Measured ⁴ /Acceptable ⁵ Total Harmonic Distortion (%):	Measured ⁴ /Acceptable Level ⁵ (dB):
994.32 ± 0.99/1000.0 ± 20.0	$0.18 \pm 0.10 / < 4$	93.89 ± 0.12/94.0 ± 0.75

- 3 The stated level is valid at measurement conditions.
- 4 The above expanded uncertainties for frequency and distortion are calculated with a coverage factor k=2; for level k=2.00
- 5 Acceptable parameters values are from the current standards

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.6 ± 0.4	100.32 ± 0.000	44.9 ± 0.4

Tests made with following attachments to instrument:

Calibrator ½" Adaptor Type: NC-71-S02	
Other:	

Adjustments: Unit was not adjusted.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Measured Data: in Acoustical Calibrator Test Report # 46216 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Columbia, MD 21045 USA callab@scantekinc.com
Callibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Y:\Calibration Lab\Cal 2021\RIONNC73_10417585_M1.doc

Ph/Fax: 410-290-7726/ -9167

Test Report No.:46216

Manufacturer: Rion
Type: NC-73
Serial no: 10417585

Customer:

HMB Professional Engineers, Inc.

Department: Address:

3 HMB Circle US 460, Frankfort, KY, 40601

Order No:

Mark Gavula

Contact Person: Phone No.:

502-695-9800 -9810

Fax No.: eMail:

mgavula@hmbpe.com

Measurement Results:

	Level:	P. Stab:	Frequency:	F. Stab:	Distortion:
	(dB)	(dB)	(Hz)	(%)	(% TD)
1:	93.90	0.02	994.32	0.00	0.18
2:	93.89	0.01	994.33	0.00	0.18
3:	93.89	0.01	994.32	0.00	0.18
Result (Average):	93.89	0.01	994.32	0.00	0.18
Expanded Uncertainty:	0.12	0.02	0.99	0.01	0.10
Degree of Freedom:	>100	>100	>100	41	>100
Coverage Factor:	2.00	2.00	2.00	2.13	2.00
The stated levels are rel	lative to 2	ОрРа.			

The stated level is valid at measurement conditions.

Reference microphone: 4192-2854675. Volume correction: 0.000 dB

Records:Y:\Calibration Lab\Cal 2021\RIONNC73 10417585 M1.nmf

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA publication EA-4/02.

Environmental conditions:

Pressure: Temperature: Relative humidity: $100.315 \pm 0.030 \text{ kPa}$ $22.6 \pm 0.4 ^{\circ}\text{C}$ $44.9 \pm 0.4 ^{\circ}\text{RH}$

Date of calibration: 3/25/2021 Date of issue: 3/25/2021

Supervisor : Steven E. Marshall

Measurements performed by:

Ronnie Buchanan Software version: 6.1T Scantek, Inc. 6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com