GEOTECHNICAL ENGINEERING STUDY

CROSSINGS AT SOUTHPARK 10511 WEST MANSLICK ROAD FAIRDALE, KENTUCKY

ASHER PROJECT No. 21-108

Prepared For:

WBCS Architecture+Design jonathan@wbcsarch.com

Prepared By:

Asher Engineering, Inc. 1021 South Floyd Street Louisville, Kentucky 40203

Asher Engineering, Inc.

Environmental & Engineering Consulting

October 12, 2021

WBCS Architecture+Design jonathan@wbcsarch.com

Re: Geotechnical Engineering Study

Crossings at SouthPark 10511 West Manslick Road Louisville, Kentucky

Asher Engineering has completed a Geotechnical Engineering Study for the referenced project. This report contains the findings of our subsurface exploration, geotechnical recommendations to aid design of foundations and floor slabs, and construction recommendations with regard to site work, fill placement, and foundation installation and inspection.

We appreciate the opportunity to be of service to you on this project. If we can be of further assistance, or if you have any questions regarding this report, please contact our office.

Sincerely,

Richard A. Linker, P. E.

TABLE OF CONTENTS

LETTER OF TRANSMITTALi			
1.0	PROJECT INFORMATION		
2.0	SUBSURFACE EXPLORATION		.1
3.0	DESIG	GN RECOMMENDATIONS	.2
	3.1	Site Development	.2
	3.2	Site Development	.2
	3.3	Pavement	.3
4.0		TRUCTION RECOMMENDATIONS	
	4.1	Subgrade Preparation Engineered Fill	4
	4.2	Engineered Fill	.4
	4.3	Foundation Excavations	4

Appendix

Site Location Historical Aerial Photographs Test Pit Locations

1.0 PROJECT INFORMATION

The site is located at 10511 W. Manslick Rd., about 1 mile south of I-265 (Gene Snyder), in Fairdale, Kentucky. The site is a flat to gently sloping, heavily wooded tract of about 15.7 acres. A review of historical aerial photographs revealed that the site has not been developed in the past, and has been heavily wooded dating back to the 1990s. Prior to 1990, the site was farmland planted in crops.

Proposed for construction are eight 3-Story, shallow foundation, slab on grade apartment buildings with 24 units each. A 1-story slab on grade Club House, and a 1-Story slab on grade commercial bldg would also be construction near the front (west) end of the site. A detention pond would also be provided near the front of the property. Asphalt paved parking and access drives will be provided throughout the site.

2.0 SUBSURFACE EXPLORATION

The subsurface conditions were explored by conducting 11 test pits across the site (one test pit at each building location, and one test pit in the retention pond area). The test pits were very consistent across the property. About 12 in. of topsoil underlain by another 6 in. of very silty clay soil was encountered at the ground surface. The thick topsoil / very silty soil layer is underlain by medium stiff to stiff, natural Silty Clay (CL) soil extending to at least 8 ft. depth. Bedrock was not encountered in any of the test pits; however, indications of weathered shale bedrock were noted at the 6 to 8 ft. depth in Test Pits 2, 3, 4, 7, and 8. Water was not encountered in any of the test pits.

3.0 DESIGN AND CONSTRUCTION RECOMMENDATIONS

The following design and construction recommendations have been developed on the basis of the previously described project characteristics and subsurface conditions. Please notify our office if the project description included herein is incorrect, or if the location of the proposed structure has changed.

3.1 Site Development

The subsurface conditions are favorable for the proposed development, and the support of the new structures on shallow foundations and slab on grade construction.

We recommend a 12 in stripping depth be used for sitework and site balance considerations. Some isolated areas of thicker topsoil may be encountered. The relatively thick topsoil layer is due to the site being wooded for the last 30 years, preceded by the property being planted in crops.

The on-site soil (including the soil in the retention pond area) is also suitable for use as structural fill. However, the soil is very silty and will be very sensitive to moisture, and construction traffic and vibrations. The sitework would benefit greatly if conducted during the dry, hot time of the year. Still, some areas may require undercutting and stabilization with crushed stone, or lime stabilization to achieve a firm soil subgrade for support of the new bldgs and pavement areas.

3.2 Shallow Foundations and Floor Slabs

Footings bearing on firm natural soil, or engineered fill placed over firm soil may be proportioned using a net allowable bearing capacity of 2600 psf. Footings can bear on firm natural soil or bedrock. A Site Classification C should be used for seismic design. Wall footings should 16 in. wide and column footings should be at least 24 in. wide in order to provide an adequate factor of safety for bearing capacity. All exterior footings and footings in unheated areas must bear at least 24 in. below final exterior grade for frost protection. Interior footings can bear at nominal depths below the floor.

The building subgrades should be inspected and approved by the geotechnical engineer prior to the placement of grade raise fill or the stone subbase. The slab should be supported on a 4-in. layer of KY Dense Graded Aggregate (DGA) compacted to 98 percent of the standard Proctor (ASTM D-698).

3.4 Below Grade Walls

Below grade walls should be designed to provide drainage to relieve hydrostatic pressure. A clean, free draining granular fill (KY No. 57 stone) should be used to backfill against below grade walls. The backfill zone should be drained using a perforated pipe at the base of the wall. An Equivalent Hydrostatic Pressure (EHP) of 50 pcf may be used to design below grade walls. A unit weight of 130 pcf should be used for the granular backfill.

3.5 Pavements

New pavement areas should be inspected by the geotechnical engineer to determine the suitability of the subgrade and to provide recommendations for stabilization if necessary. Assuming proper subgrade preparation, a California Bearing Ratio (CBR) value of 5 is recommended. This value applies for both undisturbed soil and the stone subbase that is stable under a proofroll, and for soil that is recompacted to at least 95 percent of the standard Proctor maximum dry density.

The following asphalt pavement section is recommended for areas that will be limited to automobiles and light trucks:

Automobile and Light Truck Areas

1.0 in. asphalt concrete surface 2.0 in. asphalt concrete base

4.0 in. KY DGA limestone

4.0 in. 4-Minus or Surge limestone

Areas that may experience heavier loading conditions should be provided with the following pavement section.

Heavy Truck Areas

1.0 in. asphalt concrete surface

3.0 in. asphalt concrete base

4.0 in. KY DGA

6.0 in 4-Minus or Surge limestone

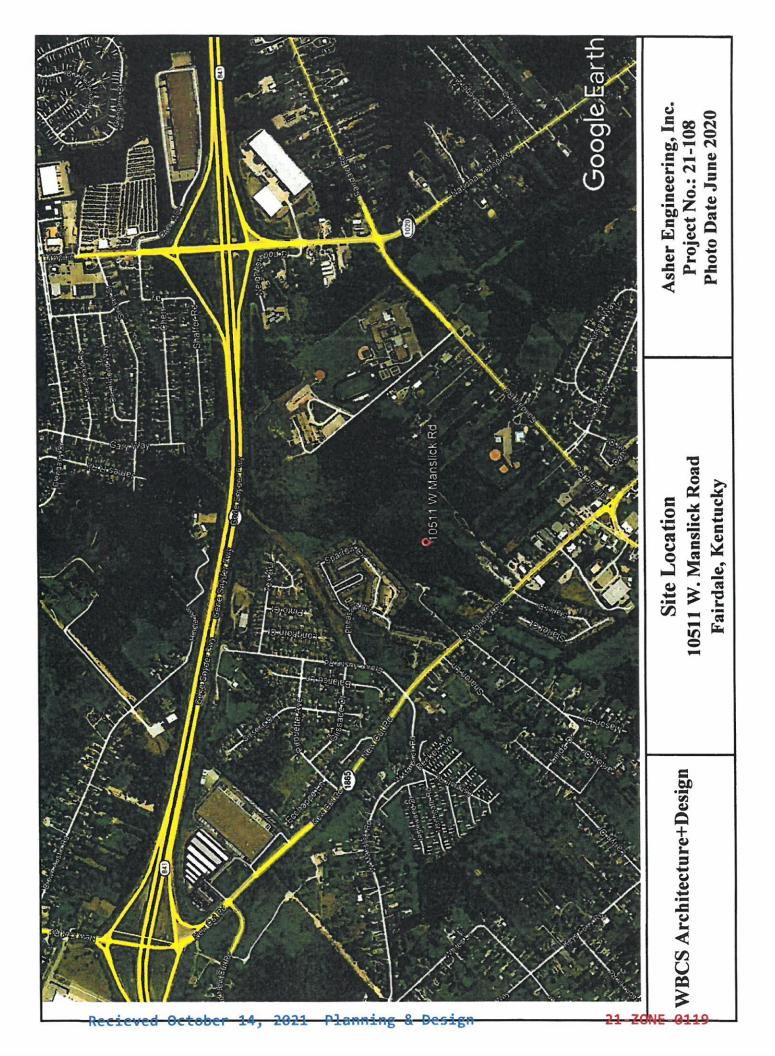
4.0 CONSTRUCTION RECOMMENDATIONS

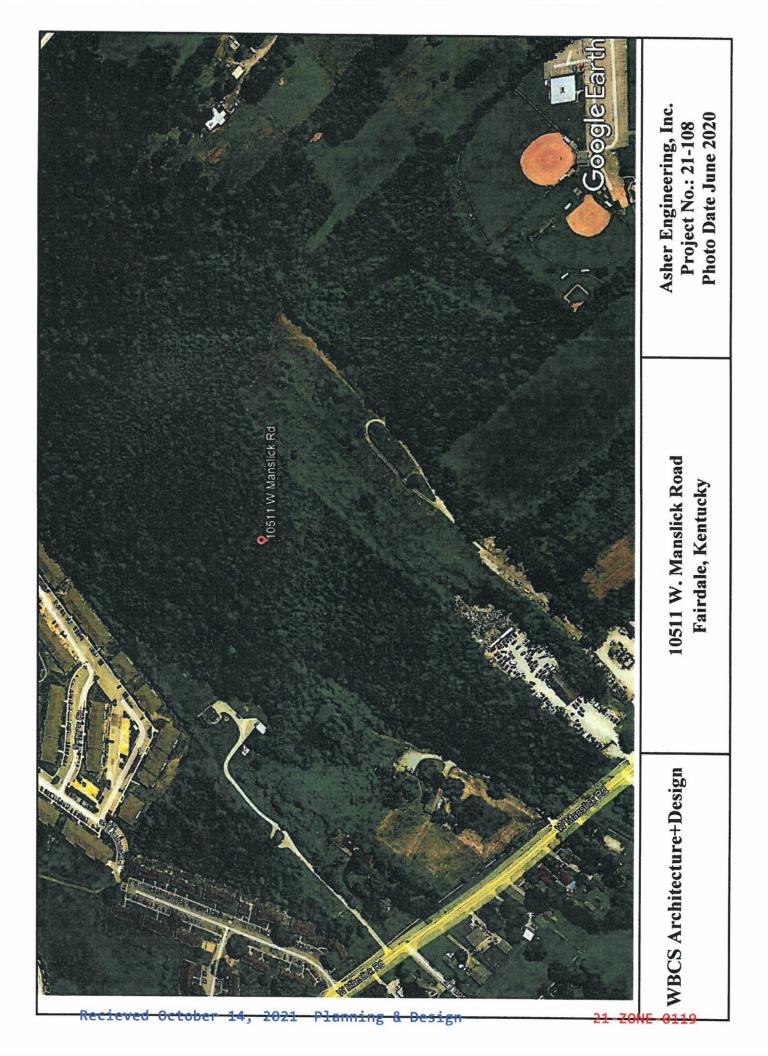
Variations in subsurface conditions should be expected during construction. It is therefore recommended that the geotechnical engineer be retained by the Owner to review the soils-related phases of the project and to correlate the test data with the soil conditions that are encountered during construction.

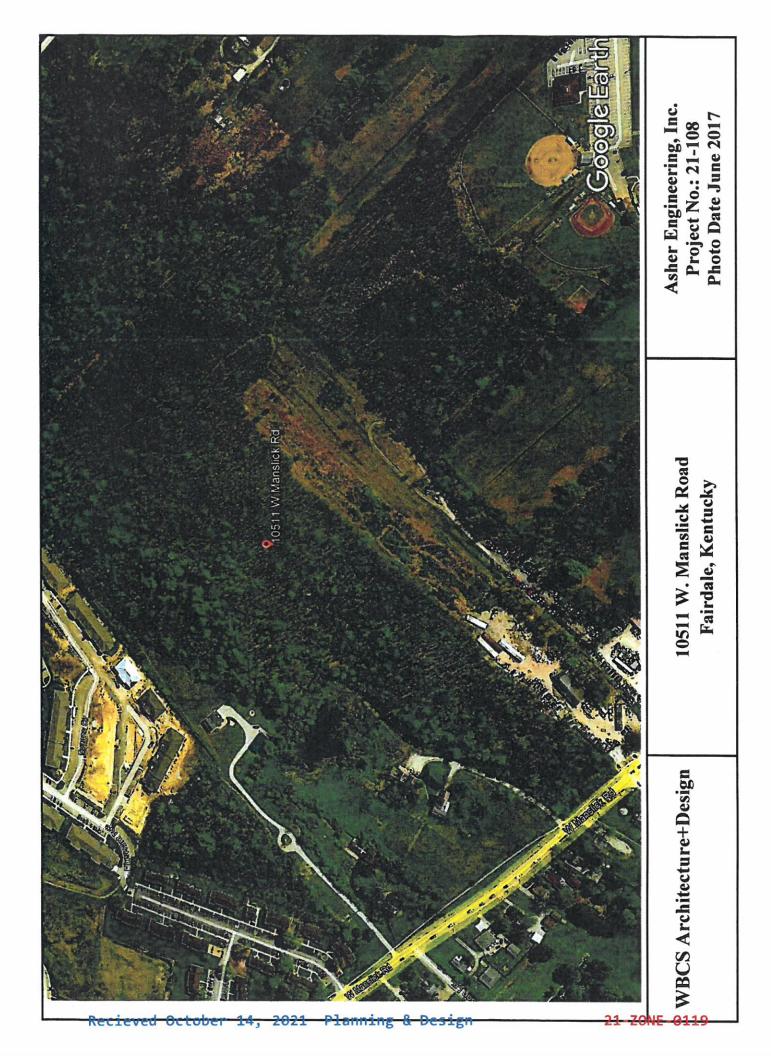
4.1 Subgrade Preparation

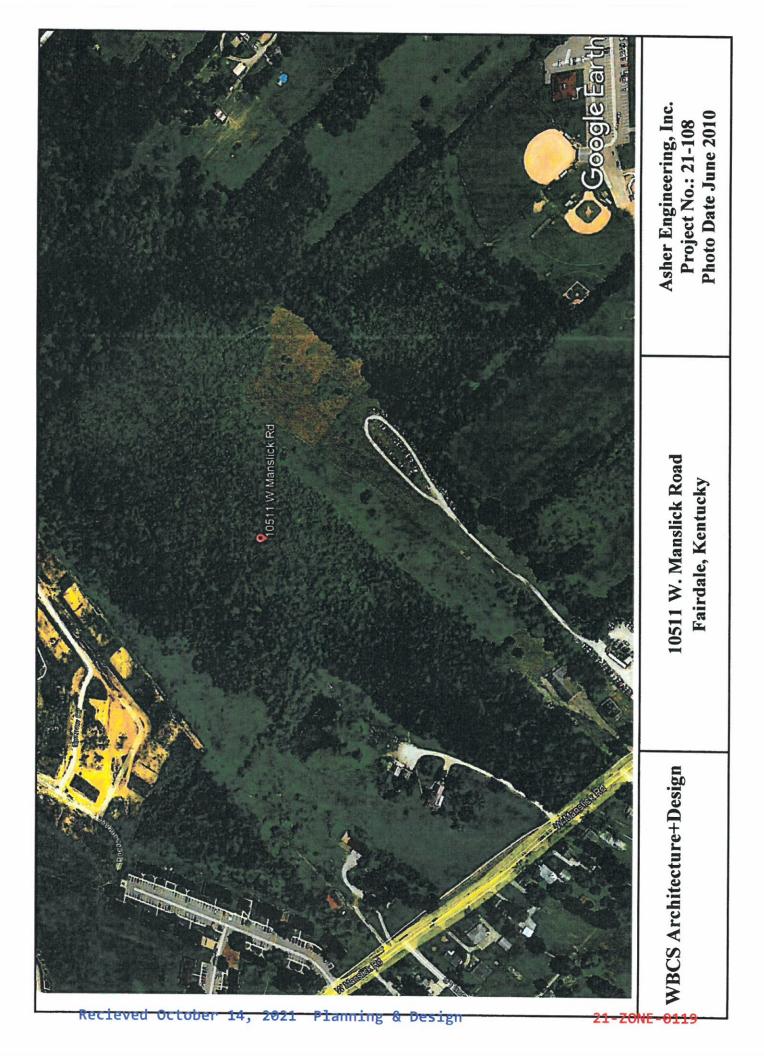
Prior to construction or the placement of new engineered fill or stone subbase, the exposed subgrade should be evaluated by the project geotechnical engineer. The existing subgrade should be carefully inspected by proofrolling with a loaded dump truck prior to the placement of fill to identify soft areas. Any soft areas identified by the proofroll would be undercut and stabilized with crushed stone. The contractor should exercise discretion when selecting equipment sizes and also control surface water while the subgrade soils are exposed. The severity of this potential problem depends to a great extent on the weather conditions during construction.

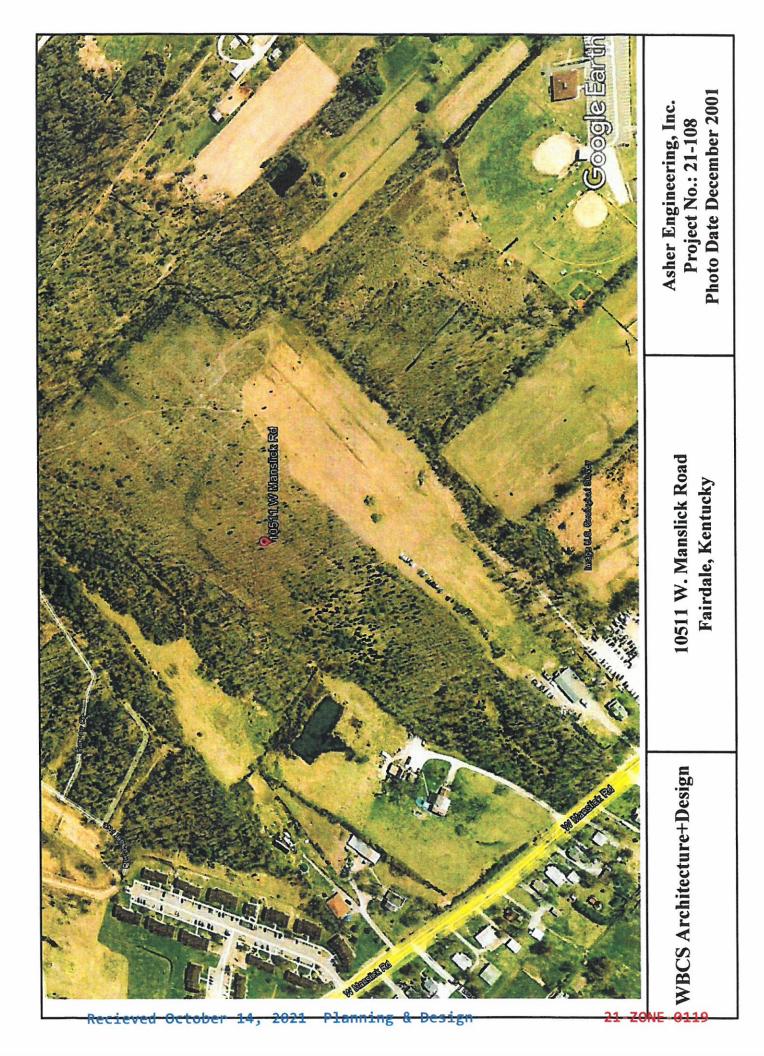
4.2 Engineered Fill

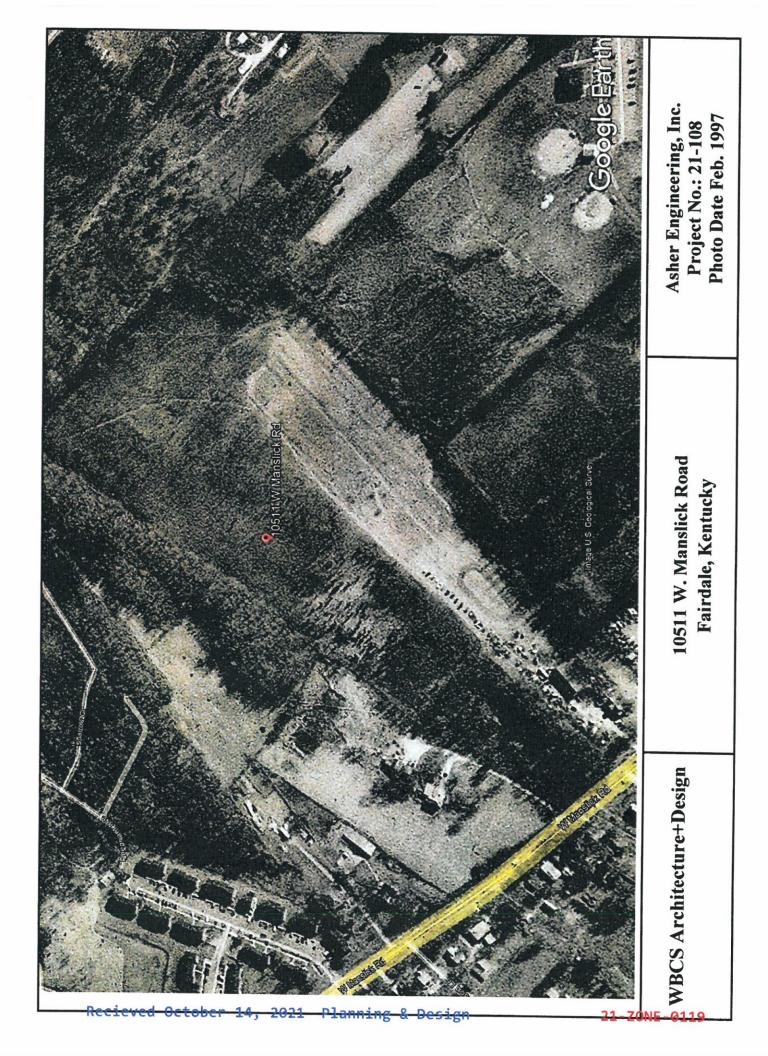

Engineered fill should be placed on a prepared subgrade that has been inspected and approved by the project geotechnical engineer. The inspection would include proofrolling of the exposed subgrade with a loaded pan or other suitable rubber tired piece of equipment. If unsuitable material is disclosed, an appropriate remedial measure would be recommended by the geotechnical engineer at that time. Engineered fill placement and compaction operations should be monitored by the geotechnical engineer or his representative. Field density tests should be performed on each lift as necessary to insure that the specified compaction is being achieved. Soil fill placed in the proposed building area should be compacted to at least 98 percent of the standard Proctor maximum dry density (ASTM D-698). Fill placed in the paved areas should be compacted to 95 percent, and fill placed in green areas to 90 percent.

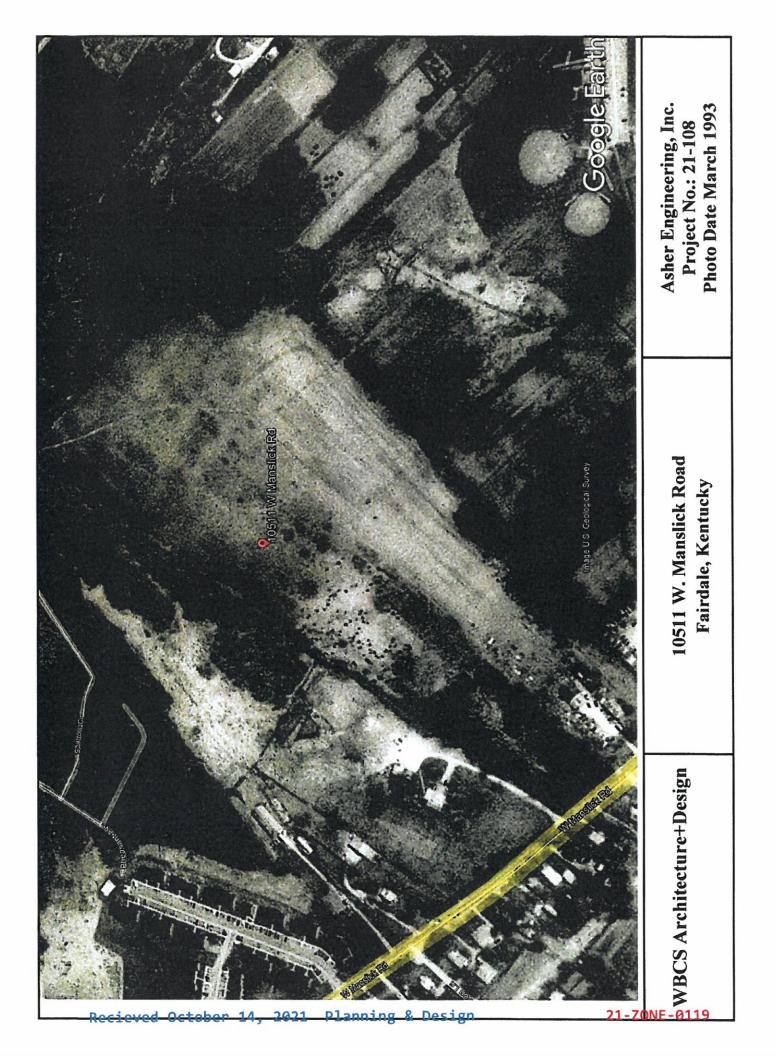

4.3 Foundation Excavations

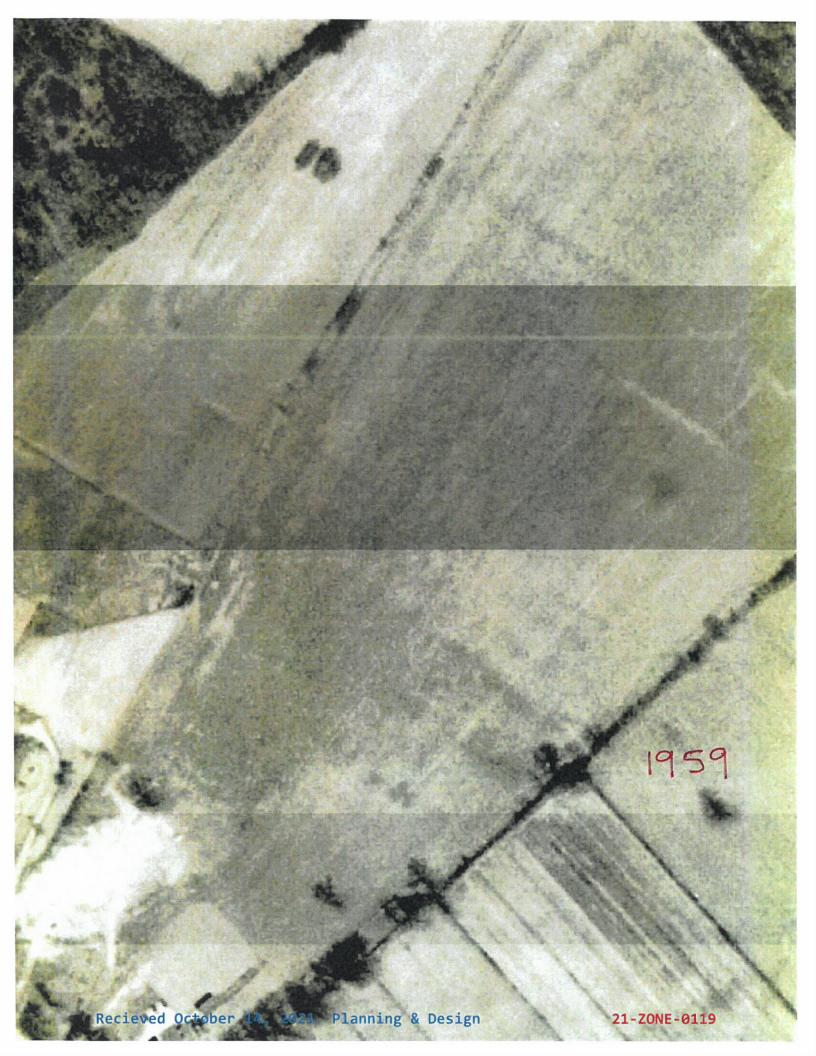

All foundation excavations should be evaluated by the geotechnical engineer or his representative to insure adequate foundation support. All concrete for foundations should be poured the same day the excavation is made.

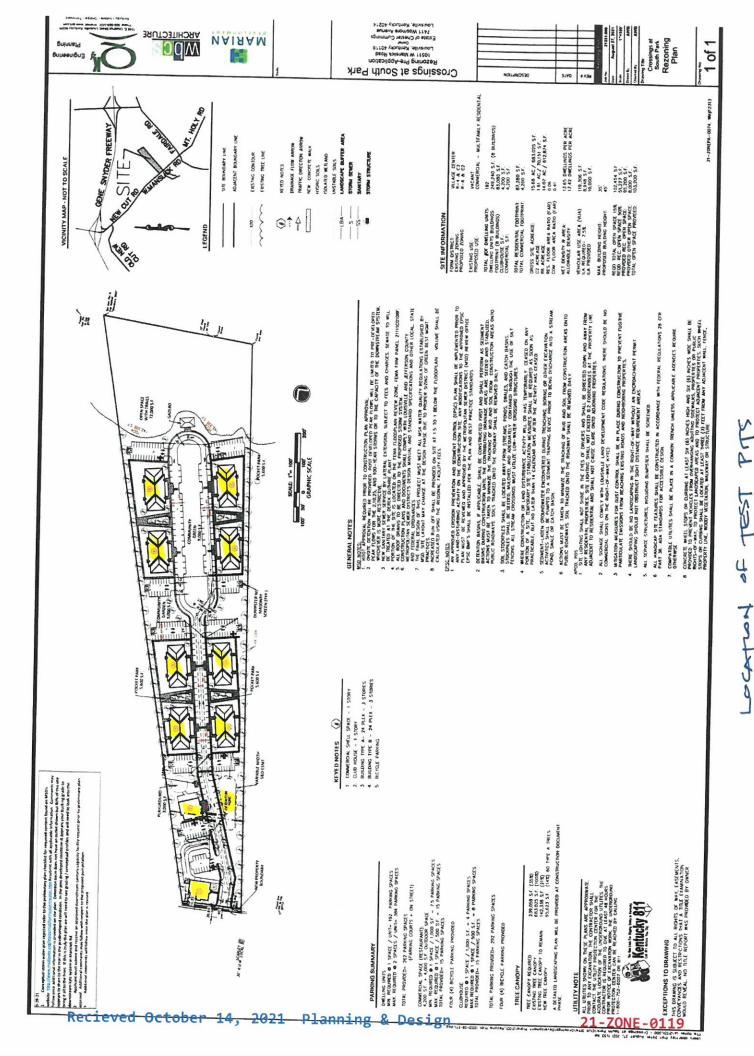

APPENDIX


Site Location Photograph Historical Aerial Photographs Location of Test Pits









1139 South Fourth Street Louisville, KY 40203 502.625.3009 Corporate Headquarters 6575 West Loop South, Suite 300 Bellaire, TX 77401

Main: 713.520.5400

VIA EMAIL

August 12, 2021

Ms. Ana Nouri WBCS Architecture Architectural Project Manager 1801 Payne Street Louisville, Kentucky 40206 ana@wbcsarch.com

Subject:

Water/Wetland Delineation Summary Report

Crossings at South Park Jefferson County, Kentucky Redwing Project No.: 104385

Dear Ms. Nouri:

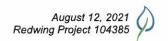
RES Kentucky, LLC dba Redwing (Redwing) is pleased to provide WBCS Architecture with this Water/Wetland Delineation Summary Report for the Crossings at South Park property located in Louisville, Jefferson County, Kentucky. The approximately 18-acre property is located along the northeast side of Manslick Road, approximately one mile southeast of the interchange of Interstate 265 and New Cut Road (Figure 1). The goal of these services was to identify the location and extent of jurisdictional waters/wetlands and threatened/endangered (T/E) species habitat on the site to assist with preliminary project planning.

Based on the delineation, no jurisdictional water/wetland features are present on the site. Non-jurisdictional features on site include one forested wetland measuring 0.288 acre. In addition, suitable habitat for the Indiana bat (*Myotis sodalis*) and the northern long-eared bat (*Myotis septentrionalis*) is present throughout much of the mixed-aged woods habitat on the site.

METHODOLOGY

The water/wetland delineation included in-house and field components. In-house research involved review of the USGS topographic quadrangle map, aerial photography, Jefferson County soil survey, and Federal Emergency Management Agency floodplain mapping. Redwing conducted a field delineation on August 4, 2021, to identify the location and extent of jurisdictional and non-jurisdictional waters/wetlands on the site. During the site visit, the presence of streams and open

water bodies was evaluated based on observations of ordinary high-water mark, defined bed and bank features, and flow regimes. Potential wetland areas were investigated using the Routine On-Site Determination Method as defined in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountain and Piedmont Region – Version 2.0 (April 2012). This technique uses a multi-parameter approach that requires positive evidence of three criteria: wetland hydrology, hydric soils, and hydrophytic vegetation. This delineation has not been verified by the U.S. Army Corps of Engineers (USACE), who holds final authority over determinations of the location and extent of jurisdictional waters/wetlands.


The field assessment was also used to identify the presence of suitable habitat for T/E species known to occur in Jefferson County, including the Indiana bat (*Myotis sodalis*), northern long-eared bat (*Myotis septentrionalis*), gray bat (*Myotis grisescens*), and running buffalo clover (*Trifolium stoloniferum*). Potential impacts to T/E species must be addressed in any federal permitting process.

RESULTS

Based on the delineation, no jurisdictional waters are present on the site. One forested wetland measuring 0.288 acre was identified on site, but it is considered non-jurisdictional under the *Navigable Waters Protection Rule: Definition of "Waters of the United States"* (NWPR), effective June 22, 2020. The results of the water/wetland delineation are depicted on Figure 2

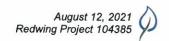
Wetland 1 is located in the north-central portion of the site. It is lacks a sufficient connection to a jurisdictional feature and is therefore considered non-jurisdictional.

Habitat on site consists of mixed-aged upland woods throughout the entire site. Much of the mixed-aged upland woods are considered suitable summer roosting habitat for the federally endangered Indiana bat and the federally threatened northern long-eared bat. Based on maps released by the U.S. Fish and Wildlife Service (USFWS), the project is located within a zone designated as "Potential" habitat for the Indiana bat and "Known Summer 1" habitat for the northern long-eared bat. No suitable habitat for the running buffalo clover was observed on the site.

DISCUSSION

Potential development-related issues are discussed below in terms of waters/wetlands, federally threatened/endangered species, and cultural-historic and archaeological resources.

THREATENED/ENDANGERED SPECIES


Under the Section 404 permitting process, the USACE determines if consultation with the USFWS is required to address potential impacts to T/E species. The primary T/E species issue of concern at this site is the clearing of suitable Indiana and northern long-eared bat summer habitat. Based on maps released by the USFWS, the project is located within a zone designated as "Potential" habitat for the Indiana bat and "Known Summer 1" habitat for the northern long-eared bat. Suitable summer habitat for the Indiana and northern long-eared bats includes the mixed age woods throughout the site. Impacts to this habitat typically requires consultation with the USFWS under the Section 404 permitting process and could include a combination of seasonal clearing, a presence/absence bat survey, and/or paying a per-acre fee.

CULTURAL HISTORIC AND ARCHAEOLOGICAL RESOURCES

Under the Section 404 permitting process, the USACE determines if consultation with the State Historic Preservation Office is required to address potential impacts to significant archaeological/historic features. We are not aware of any archaeological features or studies that have been done on the site. However, we can obtain a quote for these surveys, if required.

CONCLUSION

In conclusion, based on Redwing's delineation, there are no jurisdictional features present on the site. One non-jurisdictional forested wetland measuring 0.288 acre was identified on the site. The wetland does not abut a jurisdictional feature and is therefore considered non-jurisdictional. Therefore, no Section 404/401 permits from, nor coordination with, the USACE or KDOW are required. However, if you require a jurisdictional determination for due diligence purposes or for MSD approval, we can initiate this process.

We appreciate the opportunity to assist you on this important project. Please call Matt Blake at (502) 625-3009 with any questions on this report or the overall project.

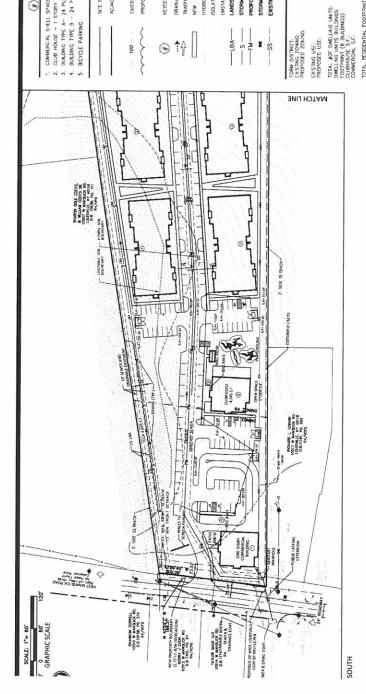
Sincerely,

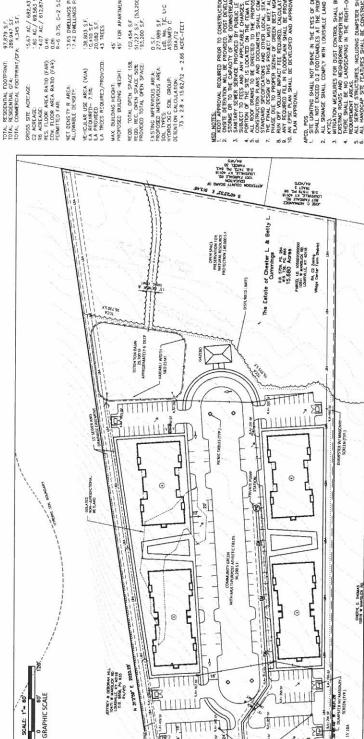
Valerie J. Jones
Valerie J. Jones

Ecologist I

L. Matthew Blake
L. Matthew Blake (Aug 12, 2021 08:29 EDT)

L. Matthew Blake Project Manager II


R:\Projects\104385-Crossings at South Park\Reports\Summary Report\104385_Crossings at South Park_Summary Report.docx


Attachments: **Figures**

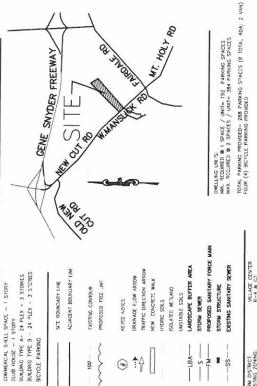

FIGURES

FIGURE 1

s at South Park/MXD/Summary Report/WaterWetland Map.mxd, 08-10-2021, ebowman

(#

COUNTERING SPACE:
4,200 S.F. + 600 S.F. OUTDON STACE
4,200 S.F. + 600 S.F. OUTDON STACE
MAN. RECURED 6 I SPACE / 1,000 S.F. = 10 PARMIC SPACES
1071, PROUGED 6 ID PARMIC SPACES / 200 S.F. = 10 PARMIC SPACES
FOUR (4) SECTIE PARMIC SPACES 2 VAN ADA
FOUR (4) SECTIE PARMIC SPACES 2

192 249,240 S.F. (8 BUILDINGS) 83,080 S.F. 4,200 S.F. 4,200 S.F. VACANT COMMERCIAL - MULTIFAMILY

97,879 S.F. 289,947 S.F. A: 4,345 S.F.

A DETAILED LANDSCAPING PLAN WILL BE PROVIDED AT CONSTRUCTION DOCUMENT PHASE. 238.852 S.F. (15%) 683.025 S.F. (100%) 136,560 S.F. (20%) 102,302 S.F. (15%) 86 TYPE A TREES TREE CANOPY REQUIRED EXISTING TREE CANOPY TO REMAIN NEW TREE CANOPY TO REMAIN NEW TREE CANOPY

15.67 AC./ 682.437 S.F. 1.60 AC./ 69.563 S.F. 1.407 AC./ 612.874 S.F. 0.46 0.06 R-6 0.75, C-2 5.0

13.65 DWELLINGS PER ACRE

(53,200 S.F.

102,454 S.F 51,227 S.F. (5 193,200 S.F.

45' FOR APARTMENTS

138.803 S.F. 10,410 S.F. 20,082 S.F. 43 TREES

THS DRAWING IS SUBJECT TO ALL RICHTS OF WAY, EASEMENTS, CONVEYANCES AND RESTRICTIONS THAT A TITLE EXAMINATION WOULD REVEAL, NO TITLE REPORT WAS PROVIDED BY OWNER.

ANALYSERON, RECURED FROM DO CONSTRUCTION PLAN APPROVA.

DOSTE DEFENDED. CENTED FROM DO CONSTRUCTION PLAN APPROVA.

BELL STATES OF THE CLASSOTY OF THE DONNESSENGEN FROM THE CENTED FOR THE 210.25, AND 100-FEAR

SANITARY SERVER SERVER FROM SED BY THE CENTED AND APPROVAL.

SANITARY SERVER SERVER FROM SED BY THE CENTED AND APPROVAL.

FOR FIRST IS LOCATED ON THE TEXA FLOODING FROM SET FROM SET THE CENTED AND APPROVED BY THE CENTED AND APPROVED THE CENTED AND APPROVED THE CENTED AND APPROVED AND APPROVED AND APPROVED THE CENTED APPROVED AND APPROVED BY A 1.5.

ANY RECORDED TILL IN FLOODEAUN SMALL ENTED AT 1.5.

ANY RECORDED TILL IN FLOODEAUN SMALL BE ADDRESSED AND APPROVED BY AND STANDARD SPECIFICATIONS PRIOR TO CONSTRUCTION PLANS AND EDEBLISH SMALL SHALL SHALL SMALL SHALL SHALL SHALL SHALL SHALL SMALL SHALL SHA

AND THE UNITED SHALL NOT SHAKE IN THE FYES OF DRINGES AND SHALL BE DRINGED DOWN AND WAY FROW ANY PEOU ANY PEOU

NORTH