final repor

August 11, 2022

Traffic Impact Study

Smyrna Village 8912 Smyrna Parkway Louisville, KY

Prepared for

Louisville Metro Planning Commission Kentucky Transportation Cabinet

Table of Contents

INTRODUCTION	2
Figure 1. Site Map	
EXISTING CONDITIONS	
Figure 2. Existing Peak Hour Volumes	3
FUTURE CONDITIONS	4
Figure 3. No Build Peak Hour Volumes	4
TRIP GENERATION	5
Table 1. Peak Hour Trips Generated by Site	5
Figure 4. Trip Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	6
Figure 6. Build Peak Hour Volumes	
ANALYSIS	7
Table 2. Peak Hour Level of Service	8
Figure 7. 2034 No Build Peak Hour Volumes	g
Figure 8. 2034 Build Peak Hour Volumes	10
Table 3. 2034 Peak Hour Level of Service	11
CONCLUSIONS	11
ADDENIOLY	12

INTRODUCTION

The development plan for 8912 Smyrna Parkway in Louisville, KY shows an apartment community with 192 units. **Figure 1** displays a map of the site. Access to the development will be from the Smyrna Parkway frontage road. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study, the impact area was defined to be the intersections of Smyrna Parkway with Manslick Road, the frontage road (KY 6320) and the ramps to I 265.

Figure 1. Site Map

EXISTING CONDITIONS

Smyrna Parkway is a Metro maintained road with an estimated 2022 ADT of 18,000 vehicles per day between the I 265 and Manslick Road (KY 2845), as estimated from a 2020 Kentucky Transportation Cabinet count at station D41. The road is a four-lane highway with eleven-foot lanes, a 20-foot median, and a ten-foot shoulder. The speed limit is 35 mph. There are no sidewalks. The intersections with the I 265 ramps and Manslick Road are controlled with a traffic signal. The intersection with the frontage road is controlled with a stop sign on the frontage road. Each of the intersections have dedicated left turn lanes. The northbound approach at Manslick Road has a dedicated right turn lane.

The frontage road (KY 6320) is maintained by the Kentucky Transportation Cabinet with an estimated 2022 ADT of 100 vehicles per day as provided by the Kentucky Transportation Cabinet at station 124. The road is a two-lane highway with eleven-foot lanes (provided by the Kentucky Transportation Cabinet). The speed limit is 35 mph. There are no sidewalks.

22-DDP-0033

Peak hour traffic counts for the intersections were obtained on Thursday, May 26, 2022. The a.m. peak hour occurred between 8:00 and 9:00 a.m. The p.m. peak occurred between 4:45 and 5:45 p.m. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes.

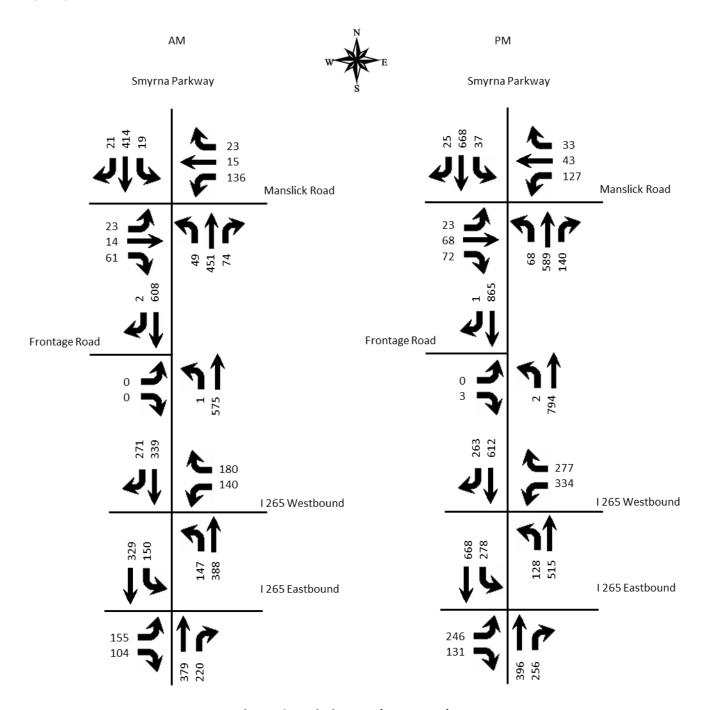


Figure 2. Existing Peak Hour Volumes

FUTURE CONDITIONS

The project completion date is 2024. An annual growth rate of 1.0 percent was applied to all volumes. This is based upon a review of historical traffic counts at stations D41 and 402. **Figure 3** displays the 2024 No Build peak hour volumes.

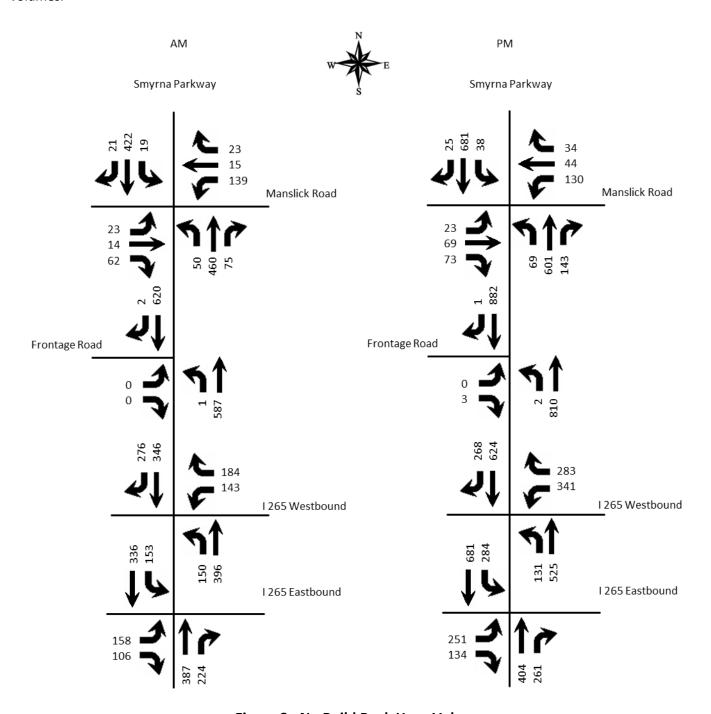



Figure 3. No Build Peak Hour Volumes

TRIP GENERATION

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 11th Edition contains trip generation rates for a wide range of developments. The land uses of "Multifamily Housing (Low Rise) 220" was reviewed and determined to be the best match. The trip generation results are listed in **Table 1**. The trips were assigned to the highway network with the percentages shown in **Figure 4**. **Figure 5** shows the trips generated by this development and distributed throughout the road network during the peak hours. **Figure 6** displays the individual turning movements for the peak hours when the development is completed.

Table 1. Peak Hour Trips Generated by Site

	A.M. I	Peak	Hour	P.M. F	Peak	Hour
Land Use	Trips	In	Out	Trips	In	Out
Multifamily Housing Low-Rise (192 units)	82	20	62	103	65	38

Figure 4. Trip Distribution Percentages

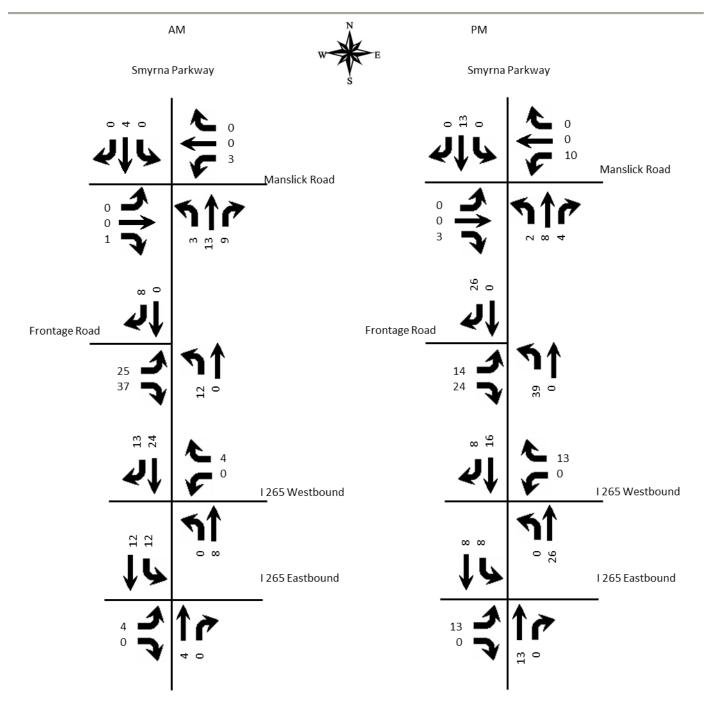


Figure 5. Peak Hour Trips Generated by Site

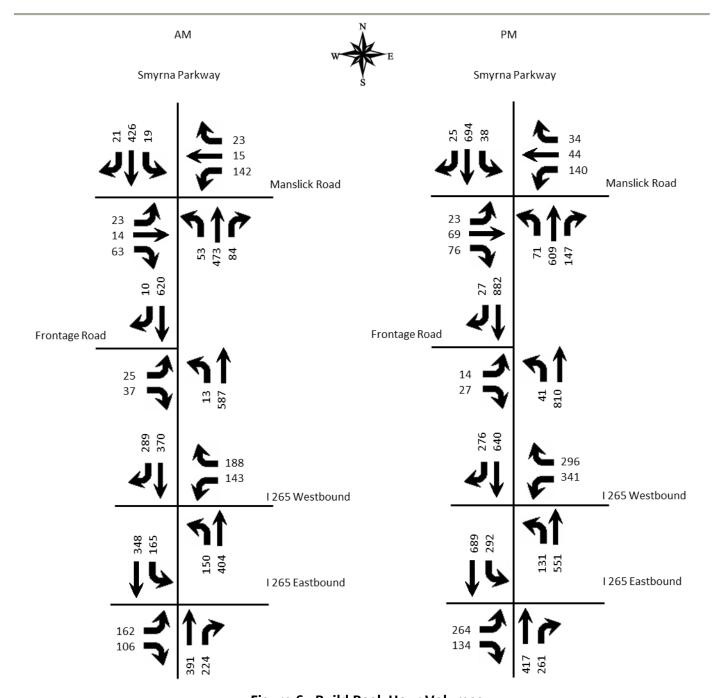


Figure 6. Build Peak Hour Volumes

ANALYSIS

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service". Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst.

Level of Service results depend upon the facility that is analyzed. In this case, the Level of Service is based upon the total delay experienced at an intersection.

To evaluate the impact of the proposed development, the vehicle delays at the intersections were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 7th edition. Future delays and Level of Service were determined for the intersections using the HCS Streets (version 2022) software. The delays and Level of Service are summarized in **Table 2**.

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Approach	2022	2024	2024	2022	2024	2024
7,65104011	Existing	No Build	Build	Existing	No Build	Build
Smyrna Parkway at I 265 Eastbound	В	В	В	В	В	В
Sillyilla Farkway at 1 205 Eastboulld	13.0	13.1	13.1	15.5	15.8	16.4
I 265 Ramp Eastbound	С	С	С	С	С	С
	22.4	22.6	22.6	29.3	29.9	30.6
Smyrna Parkway Northbound	В	В	В	В	В	В
	13.9	14.0	14.1	17.6	17.8	18.5
Smyrna Parkway Southbound	Α	Α	Α	Α	Α	Α
	6.6	6.7	6.8	8.6	8.8	9.1
Smyrna Parkway at I 265 Westbound	В	В	В	В	В	В
Sillyriia Parkway at 1 205 Westboulid	13.0	13.1	13.2	17.3	17.6	17.9
I 265 Ramp Westbound	С	С	С	С	С	С
- 200 Kamp Wookboana	22.6	22.9	23.0	27.2	27.7	28.9
Smyrna Parkway Northbound	Α	Α	Α	Α	Α	Α
	6.4	6.4	6.5	8.9	9.1	9.1
Smyrna Parkway Southbound	В	В	В	В	В	В
Cinyma : aimia, Coamboana	13.9	13.9	14.0	16.8	17.0	17.0
Smyrna Parkway at Frontage Road						
Frontage Road Eastbound			В	В	В	С
Trontage Road Eastbodild	0	0	13.9	11.5	11.5	15.6
Smyrna Parkway Northbound (left)	Α	Α	Α	Α	Α	В
Chryffia i arkway i vorthbouria (icit)	9.0	9.0	9.1	9.7	9.8	10.2
Oncome Bankaran at Manadial Bank	В	В	В	В	С	С
Smyrna Parkway at Manslick Road	16.7	16.9	17.0	19.8	20.2	21.1
Manslick Road Eastbound	В	В	В	С	С	C
Wallonok Road Edobboulid	19.7	19.9	20.0	29.1	29.8	30.6
Manslick Road Westbound	С	С	С	С	С	D
Mandiok Road Westbound	22.9	23.3	23.6	33.1	34.1	35.6
Smyrna Parkway Northbound	В	В	В	В	В	В
Sinyma i aikway Northboullu	15.1	15.2	15.3	15.7	16.0	16.8
Smyrna Parkway Southbound	В	В	В	В	В	В
Sinyma raikway Southbound	15.7	15.9	16.0	18.7	19.1	19.9

Key: Level of Service, Delay in seconds per vehicle

The frontage road intersection was evaluated for turn lanes using the Kentucky Transportation Cabinet <u>Highway Design Guidance Manual</u> dated July, 2020. The Kentucky Transportation Cabinet policy requires analysis of 2034. An annual growth rate of 1.0 percent was applied for the 2034 No Build volumes shown in **Figure 7**. The site volumes were added for the 2034 Build volumes in **Figure 8**. Using the volumes in Figure 8, a right turn lane will not be required.

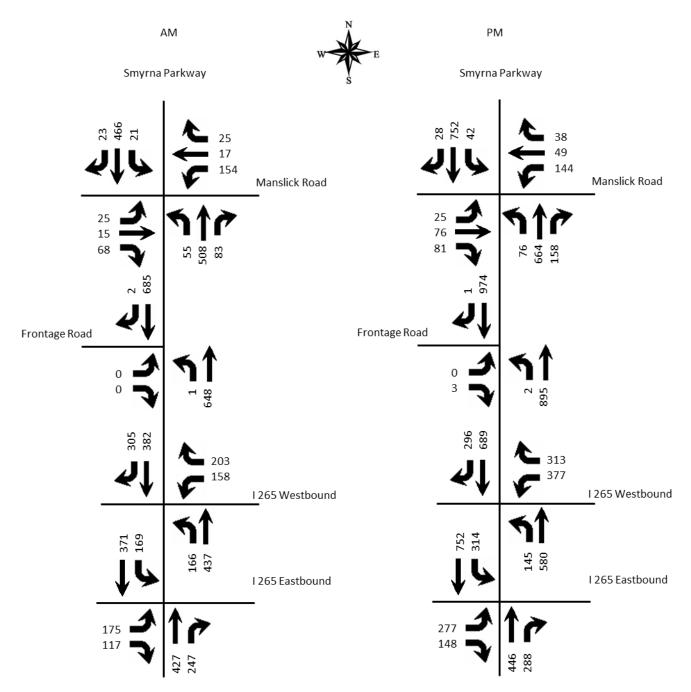


Figure 7. 2034 No Build Peak Hour Volumes

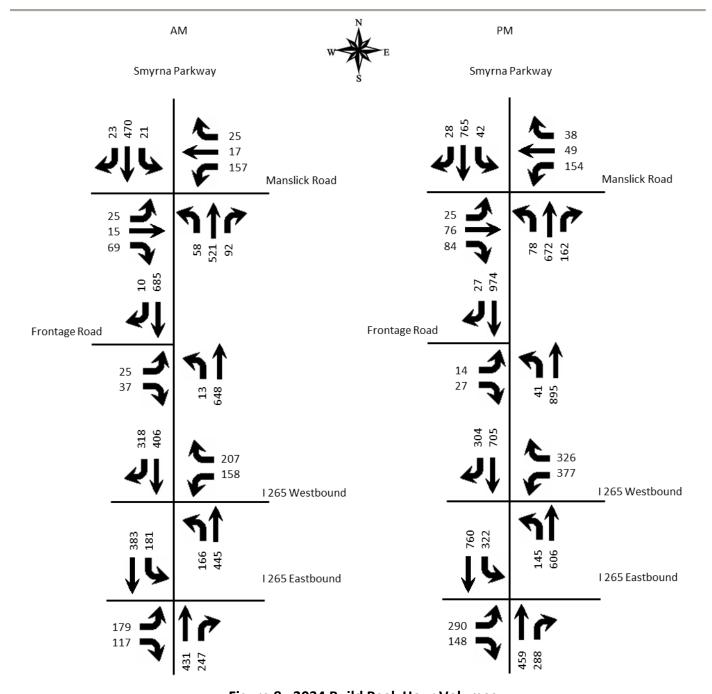


Figure 8. 2034 Build Peak Hour Volumes

Table 3. 2034 Peak Hour Level of Service

		A.M.			P.M.	
Approach	2022	2034	2034	2022	2034	2034
Approach	Existing	No Build	Build	Existing	No Build	Build
	В	В	В	В	В	В
Smyrna Parkway at I 265 Eastbound	13.0	13.6	13.7	15.5	17.4	17.9
I 265 Ramp Eastbound	С	С	С	С	С	С
1 200 Kamp Ladiboana	22.4	23.9	24.0	29.3	33.6	33.6
Smyrna Parkway Northbound	В	В	В	В	В	В
Chryma r antway rtoralboard	13.9	14.3	14.6	17.6	19.4	19.9
Smyrna Parkway Southbound	Α	Α	Α	Α	Α	Α
Only that ankway Countroonia	6.6	7.0	7.1	8.6	9.6	9.9
Consume Devices at LOCE Weathering	В	В	В	В	В	С
Smyrna Parkway at I 265 Westbound	13.0	13.8	13.9	17.3	19.5	20.1
I 265 Ramp Westbound	С	С	С	С	С	С
1 200 Ramp Westboard	22.6	24.6	24.8	27.2	31.6	33.5
Smyrna Parkway Northbound	Α	Α	Α	Α	В	В
Omyrna i arkway i torunbouria	6.4	6.8	6.9	8.9	10.1	10.1
Smyrna Parkway Southbound	В	В	В	В	В	В
Only that animaly countries and	13.9	14.4	14.5	16.8	18.3	18.3
Smyrna Parkway at Frontage Road						
Frontage Road Eastbound			В	В	В	С
Trontage Road Eastboard	0	0	14.8	11.5	12.0	16.8
Smyrna Parkway Northbound (left)	Α	Α	Α	Α	В	В
Chryma i antway ivortibodila (icit)	9.0	9.3	9.4	9.7	10.2	10.7
Owner Barlows of Manager Bar	В	В	В	В	С	С
Smyrna Parkway at Manslick Road	16.7	18.0	18.1	19.8	23.4	24.7
Manslick Road Eastbound	В	С	С	С	С	С
Manonok Roda Edobbana	19.7	21.5	21.6	29.1	34.0	34.8
Manslick Road Westbound	С	С	С	С	D	D
Managar Road Production	22.9	25.7	26.0	33.1	39.7	41.4
Smyrna Parkway Northbound	В	В	В	В	В	В
Chryma Fanway Normbound	15.1	16.1	16.1	15.7	17.7	18.8
Smyrna Parkway Southbound	В	В	В	В	С	С
Chryma i anway Counbound	15.7	16.7	16.9	18.7	22.8	24.3

Key: Level of Service, Delay in seconds per vehicle

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2024 and 2034, there will be a manageable impact to the existing highway network, with Levels of Service remaining within acceptable limits. The delays experienced in the area will increase within acceptable limits. No improvements are required.

APPENDIX

Traffic Counts

Marr Traffic DATA COLLECTION www.marrtraffic.com

Louisville KY (Smyrna Pkway)

Site 4 of 4

Smyrna Pkwy (South) Smyrna Pkwy (North)

I-265 Gene Snyder Fwy W/Bound Off-Ramp

I-265 Gene Snyder Fwy W/Bound On-Ramp

Date

Thursday, May 26, 2022

Weather Mostly Cloudy

70°F

Lat/Long 38.116817°, -85.643636°

0700 - 0900 (Weekday 2h Session) (05-26-2022)

All vehicles

	No	orthbou	nd			So	uthbou	ınd			Е	astboun	d		Westbound	
	Smyrn	a Pkwy (South)			Smyrna	a Pkwy	(North)		265 Gen	e Snyde	r Fwy W	/Bound (Off-Rain	265 Gene Snyder Fwy W/Bound On-Ran	np
	Thru	Right	U-Turn	App	Left	Thru		U-Turn	App	Left	Thru	Right		App		Int
TIME	4.1	4.2	4.3	Total	4.4	4.5		4.6	Total	4.7	4.8	4.9		Total		Total
0700 - 0715	88	65	0	153	46	32		0	78	42	0	18		60		291
0715 - 0730	122	72	0	194	41	42		0	83	51	0	19		70		347
0730 - 0745	93	69	0	162	53	65		0	118	38	0	16		54		334
0745 - 0800	76	47	0	123	42	75		0	117	39	0	26		65		305
Hourly Total	379	253	0	632	182	214		0	396	170	0	79		249		1277
0800 - 0815	76	62	0	138	36	76		0	112	37	0	30		67		317
0815 - 0830	74	54	0	128	32	84		0	116	44	0	16		60		304
0830 - 0845	113	57	0	170	49	95		0	144	33	0	26		59		373
0845 - 0900	116	47	0	163	33	74		0	107	41	0	32		73		343
Hourly Total	379	220	0	599	150	329		0	479	155	0	104		259		1337
Grand Total	758	473	0	1231	332	543		0	875	325	0	183		508		2614
Approach %	61.58	38.42	0.00	-	37.94	62.06		0.00	-	63.98	0.00	36.02		-		
Intersection %	29.00	18.09	0.00	47.09	12.70	20.77		0.00	33.47	12.43	0.00	7.00		19.43		
PHF	0.82	0.89	0.00	0.88	0.77	0.87		0.00	0.83	0.88	0.00	0.81		0.89		0.90
<u>-</u>		-		-												

1600 - 1800 (Weekday 2h Session) (05-26-2022)

	No	orthbou	nd			So	uthbou	ınd			E	astboun	ıd	Westbound
	Smyrna	a Pkwy (South)			Smyrn	a Pkwy	(North)	1-2	265 Gen	e Snyde	r Fwy W	/Bound Off-	Ran265 Gene Snyder Fwy W/Bound On-Ramp
	Thru	Right	U-Turn	App	Left	Thru		U-Turn	App	Left	Thru	Right	A	op Int
TIME	4.1	4.2	4.3	Total	4.4	4.5		4.6	Total	4.7	4.8	4.9	То	tal
1600 - 1615	100	44	0	144	69	138		0	207	58	0	34	9	2 443
1615 - 1630	87	53	0	140	59	141		0	200	58	0	33	9	431
1630 - 1645	79	45	0	124	81	159		0	240	52	0	34	8	450
1645 - 1700	99	57	0	156	72	162		0	234	47	0	32	7	79 469
Hourly Total	365	199	0	564	281	600		0	881	215	0	133	34	1793
1700 - 1715	104	80	0	184	75	194		0	269	56	0	33	8	542
1715 - 1730	104	65	0	169	66	161		0	227	76	0	25	10	01 497
1730 - 1745	89	54	0	143	65	151		0	216	67	0	41	10	08 467
1745 - 1800	82	43	0	125	57	145		0	202	52	0	23	7	402
Hourly Total	379	242	0	621	263	651		0	914	251	0	122	37	1908
							_							
Grand Total	744	441	0	1185	544	1251		0	1795	466	0	255	72	21 3701
Approach %	62.78	37.22	0.00	-	30.31	69.69		0.00	-	64.63	0.00	35.37		-
Intersection %	20.10	11.92	0.00	32.02	14.70	33.80		0.00	48.50	12.59	0.00	6.89	19	.48
			-				_		-					
PHF	0.95	0.80	0.00	0.89	0.93	0.86		0.00	0.88	0.81	0.00	0.80	0.	0.91

www.marrtraffic.com

Site 3 of 4

Smyrna Pkwy (South) Smyrna Pkwy (North)

Louisville KY (Smyrna Pkway)

I-265 Gene Snyder Fwy W/Bound On-Ramp I-265 Gene Snyder Fwy W/Bound Off-Ramp Date

Thursday, May 26, 2022

Weather Mostly Cloudy 70°F

Lat/Long 38.119579°, -85.643504°

0700 - 0900 (Weekday 2h Session) (05-26-2022)

All vehicles

		No	rthbou	nd		Sc	uthbou	nd		Eastbound		V	/estboun	nd		Ī
		Smyrna	a Pkwy (South)		Smyrn	a Pkwy i	(North)	I-:	265 Gene Snyder Fwy W/Bound On-Ram	265 Gen	e Snyde	r Fwy W/	/Bound	Off-Ran	np
	Left	Thru		U-Turn	App	Thru	Right	U-Turn	App		Left	Thru	Right		App	Int
TIME	3.1	3.2		3.3	Total	3.4	3.5	3.6	Total		3.7	3.8	3.9		Total	Total
0700 - 0715	45	85		0	130	70	78	0	148		8	0	42		50	328
0715 - 0730	54	120		0	174	63	74	0	137		19	0	52		71	382
0730 - 0745	35	95		0	130	93	75	0	168		25	0	27		52	350
0745 - 0800	30	85		0	115	86	69	0	155		32	0	29		61	331
Hourly Total	164	385		0	549	312	296	0	608		84	0	150		234	1391
0800 - 0815	32	79		1	112	76	86	0	162		35	0	42		77	351
0815 - 0830	29	88		0	117	79	74	0	153		37	0	56		93	363
0830 - 0845	37	111		0	148	109	67	0	176		36	0	43		79	403
0845 - 0900	48	110		0	158	75	44	0	119		32	0	39		71	348
Hourly Total	146	388		1	535	339	271	0	610		140	0	180		320	1465
Grand Total	310	773		1	1084	651	567	0	1218		224	0	330		554	2856
Approach %	28.60	71.31		0.09	-	53.45	46.55	0.00	-		40.43	0.00	59.57		-	
Intersection %	10.85	27.07		0.04	37.96	22.79	19.85	0.00	42.65		7.84	0.00	11.55		19.40	
PHF	0.76	0.87		0.25	0.85	0.78	0.79	0.00	0.87		0.95	0.00	0.80		0.86	0.91

1600 - 1800 (Weekday 2h Session) (05-26-2022)

		No	rthbou	nd		Sc	uthbou	nd		Eastbound		W	/estbour	nd		
		Smyrna	a Pkwy (South)		Smyrn	a Pkwy i	(North)	I-:	265 Gene Snyder Fwy W/Bound On-Ralศ	265 Gen	e Snyde	r Fwy W,	/Bound	Off-Ran	пр
	Left	Thru		U-Turn	App	Thru	Right	U-Turn	App		Left	Thru	Right		App	Int
TIME	3.1	3.2		3.3	Total	3.4	3.5	3.6	Total		3.7	3.8	3.9		Total	Total
1600 - 1615	28	130		0	158	148	73	0	221		58	0	72		130	509
1615 - 1630	29	115		0	144	143	71	0	214		58	0	54		112	470
1630 - 1645	25	106		0	131	172	72	0	244		67	0	53		120	495
1645 - 1700	29	117		0	146	159	75	0	234		75	0	58		133	513
Hourly Total	111	468		0	579	622	291	0	913		258	0	237		495	1987
1700 - 1715	34	127		0	161	175	60	0	235		95	0	72		167	563
1715 - 1730	32	149		0	181	144	58	0	202		83	0	78		161	544
1730 - 1745	33	122		0	155	134	70	0	204		81	1	69		151	510
1745 - 1800	28	105		0	133	135	59	0	194		67	0	74		141	468
Hourly Total	127	503		0	630	588	247	0	835		326	1	293		620	2085
							•					-				
Grand Total	238	971		0	1209	1210	538	0	1748		584	1	530		1115	4072
Approach %	19.69	80.31		0.00	-	69.22	30.78	0.00	-		52.38	0.09	47.53		-	
Intersection %	5.84	23.85		0.00	29.69	29.72	13.21	0.00	42.93		14.34	0.02	13.02		27.38	
PHF	0.94	0.86		0.00	0.89	0.87	0.88	0.00	0.93		0.88	0.25	0.89		0.92	0.95

Marr Traffic DATA COLLECTION

www.marrtraffic.com

Site 2 of 4

Smyrna Pkwy (South) Smyrna Pkwy (North) KY-6320 Driveway

Louisville KY (Smyrna Pkway)

Date

Thursday, May 26, 2022

Weather Mostly Cloudy 70°F

Lat/Long 38.121475°, -85.643282°

0700 - 0900 (Weekday 2h Session) (05-26-2022)

All vehicles

		No	orthbou	nd			So	uthbou	nd			E	astboun	ıd			W	/estbou	nd		1
		Smyrna	a Pkwy (South)			Smyrn	a Pkwy (North)				KY-6320)			[Orivewa	У		
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	2.1	2.2	2.3	2.4	Total	2.5	2.6	2.7	2.8	Total	2.9	2.10	2.11	2.12	Total	2.13	2.14	2.15	2.16	Total	Total
0700 - 0715	0	126	0	0	126	0	145	0	0	145	1	0	0	0	1	0	0	0	0	0	272
0715 - 0730	0	171	0	0	171	0	137	0	0	137	0	0	0	0	0	0	0	0	0	0	308
0730 - 0745	1	122	0	0	123	0	172	0	0	172	0	0	0	0	0	0	0	0	0	0	295
0745 - 0800	0	108	0	0	108	0	154	0	0	154	0	0	1	0	1	0	0	0	0	0	263
Hourly Total	1	527	0	0	528	0	608	0	0	608	1	0	1	0	2	0	0	0	0	0	1138
0800 - 0815	0	125	0	0	125	0	162	0	0	162	0	0	0	0	0	0	0	0	0	0	287
0815 - 0830	0	144	0	0	144	0	149	0	0	149	0	0	0	0	0	0	0	0	0	0	293
0830 - 0845	0	157	0	0	157	0	179	0	0	179	0	0	0	0	0	0	0	0	0	0	336
0845 - 0900	1	149	0	0	150	0	118	2	0	120	0	0	0	0	0	0	0	0	0	0	270
Hourly Total	1	575	0	0	576	0	608	2	0	610	0	0	0	0	0	0	0	0	0	0	1186
Grand Total	2	1102	0	0	1104	0	1216	2	0	1218	1	0	1	0	2	0	0	0	0	0	2324
Approach %	0.18	99.82	0.00	0.00	-	0.00	99.84	0.16	0.00	-	50.00	0.00	50.00	0.00	-	0.00	0.00	0.00	0.00	-	
Intersection %	0.09	47.42	0.00	0.00	47.50	0.00	52.32	0.09	0.00	52.41	0.04	0.00	0.04	0.00	0.09	0.00	0.00	0.00	0.00	0.00	1
PHF	0.25	0.92	0.00	0.00	0.92	0.00	0.85	0.25	0.00	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88

1600 - 1800 (Weekday 2h Session) (05-26-2022)

		No	rthbou	nd			So	uthbou	nd			Е	astbour	ıd			W	/estbou	nd		
		Smyrna	a Pkwy (South)			Smyrn	a Pkwy (North)				KY-6320)			[Drivewa	у		
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	2.1	2.2	2.3	2.4	Total	2.5	2.6	2.7	2.8	Total	2.9	2.10	2.11	2.12	Total	2.13	2.14	2.15	2.16	Total	Total
1600 - 1615	1	203	0	0	204	0	224	0	0	224	0	0	5	0	5	0	0	0	0	0	433
1615 - 1630	1	168	0	1	170	0	214	0	0	214	0	0	1	0	1	0	0	0	0	0	385
1630 - 1645	1	154	0	0	155	0	246	1	0	247	1	0	0	0	1	0	0	0	0	0	403
1645 - 1700	0	178	0	0	178	0	224	0	0	224	0	0	1	0	1	0	0	0	0	0	403
Hourly Total	3	703	0	1	707	0	908	1	0	909	1	0	7	0	8	0	0	0	0	0	1624
1700 - 1715	1	197	0	0	198	0	235	1	0	236	0	0	1	0	1	0	0	0	0	0	435
1715 - 1730	0	228	0	0	228	0	204	0	1	205	0	0	1	0	1	0	0	0	0	0	434
1730 - 1745	1	191	0	0	192	0	202	0	0	202	0	0	0	0	0	0	0	0	0	0	394
1745 - 1800	1	176	0	0	177	0	190	2	0	192	0	0	0	0	0	0	0	0	0	0	369
Hourly Total	3	792	0	0	795	0	831	3	1	835	0	0	2	0	2	0	0	0	0	0	1632
Grand Total	6	1495	0	1	1502	0	1739	4	1	1744	1	0	9	0	10	0	0	0	0	0	3256
Approach %	0.40	99.53	0.00	0.07		0.00	99.71	0.23	0.06	-	10.00	0.00	90.00	0.00		0.00	0.00	0.00	0.00	-	
Intersection %	0.18	45.92	0.00	0.03	46.13	0.00	53.41	0.12	0.03	53.56	0.03	0.00	0.28	0.00	0.31	0.00	0.00	0.00	0.00	0.00	
		0.18 45.92 0.00 0.03 46.1																			
PHF	0.50	0.83	0.00	0.00	0.83	0.00	0.92	0.50	0.25	0.92	0.25	0.00	0.75	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.96
·																					

Marr Traffic DATA COLLECTION

www.marrtraffic.com

Site 1 of 4

Smyrna Pkwy (South) Smyrna Pkwy (North) E Manslick Rd (West) E Manslick Rd (East)

Louisville KY (Smyrna Pkway)

Date Thursday, May 26, 2022 Weather Mostly Cloudy 70°F

Lat/Long 38.122886°, -85.643116°

0700 - 0900 (Weekday 2h Session) (05-26-2022)

All vehicles

		No	rthbou	nd			So	uthbou	nd			E	astboun	d			W	estboui	nd		
		Smyrna	a Pkwy (South)			Smyrn	a Pkwy (North)			E Man	slick Rd	(West)			E Man	slick Rd	(East)		
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	1.1	1.2	1.3	1.4	Total	1.5	1.6	1.7	1.8	Total	1.9	1.10	1.11	1.12	Total	1.13	1.14	1.15	1.16	Total	Total
0700 - 0715	8	105	15	0	128	3	103	4	0	110	5	4	10	0	19	31	7	6	0	44	301
0715 - 0730	9	149	14	0	172	2	88	3	0	93	5	5	12	0	22	38	0	7	0	45	332
0730 - 0745	2	99	19	0	120	2	118	6	0	126	5	3	17	0	25	36	5	6	0	47	318
0745 - 0800	4	91	13	0	108	1	98	3	0	102	5	6	15	0	26	42	11	8	0	61	297
Hourly Total	23	444	61	0	528	8	407	16	0	431	20	18	54	0	92	147	23	27	0	197	1248
0800 - 0815	4	98	23	0	125	4	105	4	0	113	8	3	17	0	28	41	7	4	0	52	318
0815 - 0830	11	116	16	0	143	1	98	5	0	104	8	3	16	0	27	36	2	9	0	47	321
0830 - 0845	21	119	17	0	157	6	120	4	0	130	2	5	19	0	26	39	2	3	0	44	357
0845 - 0900	13	118	18	0	149	8	91	8	0	107	5	3	9	0	17	20	4	7	0	31	304
Hourly Total	49	451	74	0	574	19	414	21	0	454	23	14	61	0	98	136	15	23	0	174	1300
Grand Total	72	895	135	0	1102	27	821	37	0	885	43	32	115	0	190	283	38	50	0	371	2548
Approach %	6.53	81.22	12.25	0.00	-	3.05	92.77	4.18	0.00	-	22.63	16.84	60.53	0.00	-	76.28	10.24	13.48	0.00	-	
Intersection %	2.83	35.13	5.30	0.00	43.25	1.06	32.22	1.45	0.00	34.73	1.69	1.26	4.51	0.00	7.46	11.11	1.49	1.96	0.00	14.56	
PHF	0.58	0.95	0.80	0.00	0.91	0.59	0.86	0.66	0.00	0.87	0.72	0.70	0.80	0.00	0.88	0.83	0.54	0.64	0.00	0.84	0.91

1600 - 1800 (Weekday 2h Session) (05-26-2022)

		No	orthbou	nd			So	uthbou	nd			E	astboun	ıd			W	estboui	nd		
		Smyrn	a Pkwy (South)			Smyrn	a Pkwy (North)			E Man	slick Rd	(West)			E Man	slick Rd	(East)		
	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Left	Thru	Right	U-Turn	App	Int
TIME	1.1	1.2	1.3	1.4	Total	1.5	1.6	1.7	1.8	Total	1.9	1.10	1.11	1.12	Total	1.13	1.14	1.15	1.16	Total	Total
1600 - 1615	20	147	37	0	204	4	185	5	0	194	3	14	11	0	28	28	7	7	0	42	468
1615 - 1630	16	126	25	0	167	4	163	8	0	175	7	16	21	0	44	31	8	8	0	47	433
1630 - 1645	11	119	24	0	154	7	184	5	0	196	4	11	19	0	34	44	1	5	0	50	434
1645 - 1700	14	133	32	0	179	9	167	3	0	179	7	22	16	0	45	41	10	11	0	62	465
Hourly Total	61	525	118	0	704	24	699	21	0	744	21	63	67	0	151	144	26	31	0	201	1800
1700 - 1715	18	142	37	0	197	10	184	6	0	200	9	17	23	0	49	29	11	11	0	51	497
1715 - 1730	23	170	37	0	230	10	157	6	0	173	4	18	21	0	43	26	10	7	0	43	489
1730 - 1745	13	144	34	0	191	8	160	10	0	178	3	11	12	0	26	31	12	4	0	47	442
1745 - 1800	17	130	29	0	176	5	138	3	0	146	7	10	17	0	34	37	5	6	0	48	404
Hourly Total	71	586	137	0	794	33	639	25	0	697	23	56	73	0	152	123	38	28	0	189	1832
Grand Total	132	1111	255	0	1498	57	1338	46	0	1441	44	119	140	0	303	267	64	59	0	390	3632
Approach %	8.81	74.17	17.02	0.00	-	3.96	92.85	3.19	0.00	-	14.52	39.27	46.20	0.00	1	68.46	16.41	15.13	0.00	-	
Intersection %	3.63	30.59	7.02	0.00	41.24	1.57	36.84	1.27	0.00	39.68	1.21	3.28	3.85	0.00	8.34	7.35	1.76	1.62	0.00	10.74	
PHF	0.74	0.87	0.95	0.00	0.87	0.93	0.91	0.63	0.00	0.91	0.64	0.77	0.78	0.00	0.83	0.77	0.90	0.75	0.00	0.82	0.95

HCS Reports

		HCS	Sigr	nalized	Inte	rsect	ion R	esu	lts Sun	nmary					
General Inform	nation	I							Intersec		_		- 1	111	
Agency		Diane B. Zimmerma	an Traff						Duration		0.250				
Analyst		DBZ		Analys	is Date	Aug 1	1, 2022		Area Typ	е	Other		<u>^</u>		
Jurisdiction				Time F		AM Pe	eak		PHF		0.90		*		
Urban Street		Smyrna Parkway		Analys	is Year	2022			Analysis	Period	1> 8:0	00	37		
Intersection		I 265 EB		File Na	ıme	AM 22	.xus							ttr	
Project Descrip	tion	Smyrna Village											T	4144	10
	4:							,,,			NID				
Demand Infor					EB	T 5		W	_		NB			SB	
Approach Move				L	Т	R	L	1	R	L	T	R	L	T	R
Demand (v), v	/eh/h			155		104	_				379	220	150	329	
Signal Informa	ation				IJ	1 1:		7							
Cycle, s	50.6	Reference Phase	2	1	1/2	1:7							tz.		7
Offset, s	0	Reference Point	End			1						1	2	3	
Uncoordinated	_	Simult. Gap E/W	On	Green		16.3	8.1	0.0	_	0.0				,	
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.9	3.1	3.3	0.0	_	0.0		5	<u> </u>	-/ ,	
1 orce wode	FIXEG	Simult, Gap N/S	OII	Neu	2.3	J. I	0.0	10.0	0.0	10.0		3		,	
Timer Results				EBL		EBT	WBI		WBT	NB		NBT	SBI		SBT
	igned Phase					4	***	-	וטייי	IND		2	1		6
	se Number					9.0						7.3	1.0		4.0
	ise Number lase Duration, s				-	15.4		-				23.4	11.8	-	35.2
						7.3		-				7.1	6.4	-	7.1
				_	-			-			-			_	
Max Allow Hea				_	-	5.2	_	-		_	-	5.1	4.6	$\overline{}$	5.1
Queue Clearan		, - ,		_	-	6.6	_	-		_	-	8.2	4.8	-	4.8
Green Extension		(g e), S		_	_	1.6		-		_	-	8.1	0.6	$\overline{}$	8.1
Phase Call Pro					-	0.98		-			_	1.00	0.90	-	1.00
Max Out Proba	bility				_	0.00		_				0.00	0.00)	0.00
Movement Gro	oun Res	uite			EB			WE	3		NB			SB	
Approach Move	•	Juito			T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7		14	-	H	+ '`	-	2	12	1	6	 '`
Adjusted Flow		\ veh/h		172		116			_		421	244	165	362	
		**	n	1753		1485			_		1781	1598	1767	1654	\vdash
Queue Service		ow Rate (s), veh/h/l		4.6		3.6					4.6	6.2	2.8	2.8	-
				4.6		3.6					4.6	6.2	2.8	2.8	
•		e Time (<i>g ₅</i>), s									_			_	
Green Ratio (0.16		0.16					0.32	0.32	0.47	0.56	
, ,		atio (V)		281		238					1147	515	554	1837	
Capacity (c),				0.614		0.486					0.367	0.475	0.298	0.197	
Capacity (c), Volume-to-Cap	((3) f			0.4		0.0					0.0	0.0	4.5	4.0	
Capacity (c), Volume-to-Cap Back of Queue	ack of Queue (Q), ft/ln (90 th percentile)			3.4		2.2			_		2.8	3.6	1.5	1.2	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue	(Q), v	ack of Queue (Q), veh/ln (90 th percentile) ueue Storage Ratio (RQ) (90 th percentile)				0.00					0.00	0.00	0.14	0.00	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage	(Q), ve Ratio (RQ) (90 th percent		0.00							13.2	13.7	8.4	5.6	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	(Q), ve Ratio ((d ₁), s	RQ) (90 th percent		19.8		19.4					0.5	4.5	0.5	. () 4	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	(Q), vo Ratio ((d1), s elay (d2	RQ) (90 th percent /veh e), s/veh		19.8 3.1		19.4 2.2					0.3	1.0	0.3	0.1	$\overline{}$
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	(Q), ve Ratio ((d1), s elay (d2 elay (d	RQ) (90 th percent /veh e), s/veh 3), s/veh		19.8 3.1 0.0		19.4 2.2 0.0					0.0	0.0	0.0	0.0	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay ((Q), vo e Ratio ((d1), s elay (d2 elay (d), s/vo	RQ) (90 th percent /veh s), s/veh s), s/veh eh		19.8 3.1 0.0 22.9		19.4 2.2 0.0 21.6					0.0 13.5	0.0	0.0 8.7	0.0 5.7	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	(Q), vo e Ratio ((d1), s elay (d2 elay (d), s/vo e (LOS)	RQ) (90 th percent /veh a), s/veh 3), s/veh eh		19.8 3.1 0.0 22.9 C		19.4 2.2 0.0 21.6 C					0.0 13.5 B	0.0 14.7 B	0.0 8.7 A	0.0 5.7 A	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	(Q), vo e Ratio ((d1), s elay (d2 elay (d), s/vo e (LOS) y, s/veh	RQ) (90 th percent/veh (yeh), s/veh (3), s/veh eh		19.8 3.1 0.0 22.9		19.4 2.2 0.0 21.6 C	0.0			13.9	0.0 13.5 B	0.0 14.7 B	0.0 8.7 A 6.6	0.0 5.7 A	A
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	(Q), vo e Ratio ((d1), s elay (d2 elay (d), s/vo e (LOS) y, s/veh	RQ) (90 th percent/veh (yeh), s/veh (3), s/veh eh		19.8 3.1 0.0 22.9 C		19.4 2.2 0.0 21.6 C				13.9	0.0 13.5 B	0.0 14.7 B	0.0 8.7 A	0.0 5.7 A	A
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	e Ratio ((d 1), selay (d 2 elay (d 4), s/vele (LOS) y, s/veh	RQ) (90 th percent/veh (yeh), s/veh (3), s/veh eh		19.8 3.1 0.0 22.9 C		19.4 2.2 0.0 21.6 C				13.9	0.0 13.5 B	0.0 14.7 B	0.0 8.7 A 6.6	0.0 5.7 A	A
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	e Ratio ((d 1), s elay (d 2 elay (d 3 elay (d 3 elay (d 3 elay (s/ve) elay, s/ve) elay, s/ve	RQ) (90 th percent/veh (yeh) (19.8 3.1 0.0 22.9 C 22.4	EB	19.4 2.2 0.0 21.6 C	5.0	WE			0.0 13.5 B	0.0 14.7 B	0.0 8.7 A 6.6 B	0.0 5.7 A SB	
Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	e (Q), ve e Ratio ((d1), s elay (d2 elay (d3, s/ve e (LOS) y, s/veh elay, s/ve	RQ) (90 th percent/veh (yeh 3), s/veh 3), s/veh eh /LOS		19.8 3.1 0.0 22.9 C	EB	19.4 2.2 0.0 21.6 C		WE	3 B	13.9 1.38 1.04	0.0 13.5 B	0.0 14.7 B	0.0 8.7 A 6.6	0.0 5.7 A SB	A B A

		нся	Sigr	nalize	1 Inte	rsect	ion R	esu	Its Sum	mary					
General Inform	nation	I							Intersect				4 ú	111	24
Agency		Diane B. Zimmerma	an Traffi			1			Duration,		0.250		-		
Analyst		DBZ		_		Aug 1			Area Typ	e	Other				
Jurisdiction				Time F		AM Pe			PHF		0.90				
Urban Street		Smyrna Parkway		-		2024 1			Analysis	Period	1> 8:0	00			
Intersection		I 265 EB		File Na	ime	AM 24	NB.xus	S						111	
Project Descrip	ition	Smyrna Village												HINY	Pr [C
Demand Infor	mation				EB			W	/B		NB			SB	
Approach Move				L	T	R	L		ΓR	L	T	R	L	T	T R
Demand (v), v				158		106	 -	+	<u> </u>	<u> </u>	387	224	153	336	+ '`
Demand (V), V	CIVII			100		100					007	227	100	000	
Signal Informa	ation				IJ	1 15	Т	Т		\top					
Cycle, s	51.3	Reference Phase	2	1	4.7	1 43	"Ľ					_	Þ		~
Offset, s	0	Reference Point	End	Green	5.5	16.7	8.3	0.0	0.0	0.0		1	2	3	<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0				7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.9	3.1	3.3	0.0		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas						4						2	1		6
Case Number	se Number					9.0						7.3	1.0		4.0
Phase Duration						15.6						23.8	11.9	9	35.7
Change Period	, (Y+R	c), S				7.3						7.1	6.4		7.1
Max Allow Hea	dway (I	MAH), s				5.2						5.1	4.6		5.1
Queue Clearan	ice Time	e (g s), s				6.8						8.4	4.9		4.9
Green Extension	n Time	(g e), S				1.6						8.3	0.6		8.3
Phase Call Pro	bability					0.98						1.00	0.91	1	1.00
Max Out Proba	bility					0.00						0.00	0.00)	0.00
		.,									N.E				
Movement Gro		sults		.	EB			WE	_		NB			SB	
Approach Move				L	T	R	ㄴ	Т	R	L	T	R	L	T	R
Assigned Move		\ 1.0		7		14					2	12	1	6	-
Adjusted Flow				176		118	\vdash		-		430	249	168	370	-
		ow Rate (s), veh/h/l	n	1753		1485	\vdash		-		1781	1598	1767	1654	-
Queue Service		- ,.		4.8		3.7	\vdash		_		4.7	6.4	2.9	2.9	\vdash
		e Time (gε), s		4.8		3.7			_		4.7	6.4	2.9	2.9	-
Cycle Queue C						0.16			+		0.33	0.33	0.47	0.56	
Cycle Queue C Green Ratio (g				0.16		-					1101	521	551	1843 0.201	
Cycle Queue C Green Ratio (c Capacity (c), v	veh/h	atio (V)		284		240			+			0.470	0.205		1
Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap	veh/h acity Ra	_ ,	\	$\overline{}$		-					0.370	0.478	0.305	0.201	
Cycle Queue C Green Ratio (g Capacity (c), V Volume-to-Cap Back of Queue	veh/h acity Ra (Q), fi	t/ln (90 th percentile		284 0.618		240 0.490					0.370				
Cycle Queue C Green Ratio (¿ Capacity (c), V Volume-to-Cap Back of Queue Back of Queue	veh/h pacity Ra (Q), fi (Q), ve	t/In (90 th percentile eh/In (90 th percenti	ile)	284 0.618 3.5		240 0.490 2.3					0.370 2.9	3.7	1.6	1.2	
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage	veh/h vacity Ra (Q), fi (Q), ve Ratio (t/In(90 th percentile eh/In(90 th percent RQ)(90 th percent	ile)	284 0.618 3.5 0.00		240 0.490 2.3 0.00					0.370 2.9 0.00	3.7	1.6 0.15	1.2	
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	veh/h pacity Ra (Q), fi (Q), ve Ratio ((d1), s	t/In (90 th percentile eh/In (90 th percent RQ) (90 th percent /veh	ile)	284 0.618 3.5 0.00 20.0		240 0.490 2.3 0.00 19.6					0.370 2.9 0.00 13.2	3.7 0.00 13.8	1.6 0.15 8.4	1.2 0.00 5.7	
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	veh/h pacity Ra (Q), ff (Q), ve Ratio ((d1), selay (d2)	t/In (90 th percentile eh/In (90 th percent RQ) (90 th percent /veh e), s/veh	ile)	284 0.618 3.5 0.00 20.0 3.1		240 0.490 2.3 0.00 19.6 2.2					0.370 2.9 0.00 13.2 0.3	3.7 0.00 13.8 1.0	1.6 0.15 8.4 0.4	1.2 0.00 5.7 0.1	
Cycle Queue C Green Ratio (¿ Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	veh/h pacity Ra (Q), ff (Q), ve Ratio ((d1), selay (d2 pelay (d	t/in (90 th percentile eh/in (90 th percent RQ) (90 th percent /veh e), s/veh 3), s/veh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0		240 0.490 2.3 0.00 19.6 2.2 0.0					0.370 2.9 0.00 13.2 0.3 0.0	3.7 0.00 13.8 1.0 0.0	1.6 0.15 8.4 0.4 0.0	1.2 0.00 5.7 0.1 0.0	
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (veh/h pacity Ra e (Q), fe e Ratio ((d1), s elay (d2 elay (d), s/ve (d1), s/ve	t/in (90 th percentile eh/in (90 th percent RQ) (90 th percent /veh e), s/veh eh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1		240 0.490 2.3 0.00 19.6 2.2 0.0 21.8					0.370 2.9 0.00 13.2 0.3 0.0 13.5	3.7 0.00 13.8 1.0 0.0 14.8	1.6 0.15 8.4 0.4 0.0 8.8	1.2 0.00 5.7 0.1 0.0 5.7	
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	veh/h pacity Ra (Q), fi (Q), ve Ratio ((d1), se Play (d2) Play (d3), s/ve e (LOS)	t/in (90 th percentile eh/in (90 th percentile RQ) (90 th percentive h/veh s), s/veh s), s/veh eh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1 C		240 0.490 2.3 0.00 19.6 2.2 0.0 21.8				14.6	0.370 2.9 0.00 13.2 0.3 0.0 13.5 B	3.7 0.00 13.8 1.0 0.0 14.8 B	1.6 0.15 8.4 0.4 0.0 8.8 A	1.2 0.00 5.7 0.1 0.0 5.7 A	Δ
Cycle Queue Control Queue Storage Uniform Delay Incremental Delay Incremental Delay Control Delay (Level of Service Approach Delay	veh/h hacity Ra (Q), fi (Q), ve Ratio ((d1), se Play (d2) Play (d3), s/ve e (LOS) y, s/veh	t/in (90 th percentile eh/in (90 th percentile eh/in (90 th percentile RQ) (90 th percentive h/veh 2), s/veh 3), s/veh eh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1		240 0.490 2.3 0.00 19.6 2.2 0.0 21.8 C	0.0			14.0	0.370 2.9 0.00 13.2 0.3 0.0 13.5 B	3.7 0.00 13.8 1.0 0.0 14.8 B	1.6 0.15 8.4 0.4 0.0 8.8 A	1.2 0.00 5.7 0.1 0.0 5.7 A	A
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	veh/h hacity Ra (Q), fi (Q), ve Ratio ((d1), se Play (d2) Play (d3), s/ve e (LOS) y, s/veh	t/in (90 th percentile eh/in (90 th percentile eh/in (90 th percentile RQ) (90 th percentive h/veh 2), s/veh 3), s/veh eh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1 C		240 0.490 2.3 0.00 19.6 2.2 0.0 21.8 C	0.0			14.0	0.370 2.9 0.00 13.2 0.3 0.0 13.5 B	3.7 0.00 13.8 1.0 0.0 14.8 B	1.6 0.15 8.4 0.4 0.0 8.8 A	1.2 0.00 5.7 0.1 0.0 5.7 A	A
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	veh/h vacity Ra (Q), fi (Q), ve Ratio ((d1), se elay (d2 elay (d), s/ve e (LOS) y, s/veh elay, s/veh	t/in (90 th percentile eh/in (90 th percentile eh/in (90 th percentile RQ) (90 th percentive h/veh 2), s/veh 3), s/veh eh	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1 C		240 0.490 2.3 0.00 19.6 2.2 0.0 21.8 C			3	14.0	0.370 2.9 0.00 13.2 0.3 0.0 13.5 B	3.7 0.00 13.8 1.0 0.0 14.8 B	1.6 0.15 8.4 0.4 0.0 8.8 A	1.2 0.00 5.7 0.1 0.0 5.7 A	A
Cycle Queue Control Queue Storage Uniform Delay Incremental Delay Incremental Delay Control Delay (Level of Service Approach Delay	veh/h vacity Ra (Q), fi (Q), ve Ratio ((d1), se elay (d2) elay (d3), s/ve e (LOS) y, s/veh elay, s/ve	t/In (90 th percentile eh/In (90 th percentile eh/In (90 th percent RQ) (90 th percent /veh e), s/veh eh / LOS eh / LOS	ile)	284 0.618 3.5 0.00 20.0 3.1 0.0 23.1 C	EB	240 0.490 2.3 0.00 19.6 2.2 0.0 21.8 C		WE	3 B	14.0	0.370 2.9 0.00 13.2 0.3 0.0 13.5 B	3.7 0.00 13.8 1.0 0.0 14.8 B	1.6 0.15 8.4 0.4 0.0 8.8 A	1.2 0.00 5.7 0.1 0.0 5.7 A	A

		НС	S Sigr	nalize	d Inte	ersect	ion R	esul	ts Sur	nmar	/				
O	4:								l	4: I	41			با جاديار إنه ا	N II
General Inform	nation	Diana B. Zimana ama	- T ff	in Familia				\rightarrow	Intersec		-		ı i	ŢŢŢ	
Agency		Diane B. Zimmerma	an iran	V .			4 0000	\rightarrow	Duration	•	0.250		7		
Analyst		DBZ				Aug 1		\rightarrow	Area Ty	oe	Other				
Jurisdiction		0 0 1		Time F		AM Pe		\rightarrow	PHF	<u> </u>	0.90				
Urban Street		Smyrna Parkway				2024			Analysis	Period	1> 8:0	00	- 5		
Intersection		I 265 EB		File Na	ame	AM 24	B.xus						- 4	111	
Project Descrip	tion	Smyrna Village	_		_			_		_			-	HIMY	P C
Demand Infor	mation				EB			WI	B		NB			SB	
Approach Move				L	T	R	1	T		1	T	R	1	T	TF
Demand (v), v				162	<u> </u>	106	1	+	- '`	+-	391	224	165	348	+
20114114 (17)	01111			102		100							100	0.0	
Signal Informa	ation				ΠŢ			Т							
Cycle, s	51.6	Reference Phase	2			10	2 K.					7	P		~
Offset, s	0	Reference Point	End	Green	5.5	16.8	8.5	0.0	0.0	0.0		1	2	3	7
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0	_			7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.9	3.1	3.3	0.0		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	-	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е					4						2	1		6
Case Number	ase Number nase Duration, s					9.0						7.3	1.0		4.0
	nase Duration, s					15.8						23.9	11.9)	35.8
Change Period	hase Duration, s hange Period, ($Y+R_c$), s					7.3						7.1	6.4		7.1
Max Allow Hea	dway (<i>I</i>	MAH), s				5.2						5.1	4.6		5.1
Queue Clearar	ice Time	e (g s), s				6.9						8.4	5.0		4.9
Green Extension	on Time	(ge), s				1.7						8.4	0.7		8.4
Phase Call Pro	bability					0.99						1.00	0.92	2	1.00
Max Out Proba	bility					0.00						0.00	0.00)	0.00
Marrans					ED.			VA/ID			NID			65	
Movement Gro		SUITS		,	EB		,	WB			NB	Б	-	SB	T 5
Approach Move				L	T	R	느	Т	R	<u> </u>	T	R	L	T	R
Assigned Move		/ \ voh/h		7		14					2	12	170	6	-
Adjusted Flow		*	lua.	180		118			-		434	249	176	371	
		ow Rate (s), veh/h/l	II)	1753		1485			-		1781	1598	1767	1654	
Queue Service				4.9		3.7					4.8	6.4	3.0	2.9	
		e Time (<i>g</i> _c), s		4.9		3.7			_		4.8	6.4	3.0	2.9	-
Green Ratio (g				0.16		0.16					0.33	0.33	0.47	0.56	
Capacity (c), v		atio (V)		288		244					1160	521	549	1841	-
Volume-to-Cap				0.624		0.482					0.374	0.478	0.320	0.201	
		t/ln (90 th percentile		0.7		0.0					2.0	0.7	4.7	4.0	-
		eh/ln (90 th percent		3.7		2.3					3.0	3.7	1.7	1.2	
		RQ) (90 th percent	uie)	0.00		0.00			-		0.00	0.00	0.15	0.00	
Uniform Delay				20.1		19.6					13.4	13.9	8.6	5.7	
Incremental De		,.		3.1		2.1					0.3	1.0	0.4	0.1	
Initial Queue D		,·		0.0		0.0					0.0	0.0	0.0	0.0	
Control Dala				23.2		21.7					13.7	14.9	8.9	5.8	-
Control Delay (C		С				4.4	B	В	A	A	
Level of Service	<i>.</i> .			22.6		C 13	0.0			14.		В	6.8		Α
Level of Service Approach Dela		en / LOS				13	3.1						В		
Level of Service	lay, s/ve														
Level of Service Approach Dela Intersection De					FR			\//R			NR			SR	
Level of Service Approach Dela	sults	/108		2.29	EB	В	2.29	WB	В	1.3	NB 8	A	1.64	SB	В

		нся	Sigr	nalize	d Inte	ersecti	ion R	esul	ts Sur	nmar	/				
General Inform	nation	1						_	Intersed		_		- i	4741	34 L
Agency		Diane B. Zimmerma	an Traff	-					Duration		0.250		-		
Analyst		DBZ		<u> </u>		Aug 1		_	Area Ty	е	Other				
Jurisdiction				Time F		AM Pe	eak		PHF		0.90		₽		
Urban Street		Smyrna Parkway		Analys	is Year			_	Analysis	Period	1> 8:0	00	3		
Intersection		I 265 EB		File Na	ame	AM 34	NB.xus	3						ttr	
Project Descrip	tion	Smyrna Village											ħ	4144	10
Demand Infor	nation				EB			W	D		NB			SB	
Approach Move				L	T	R	L	T		L	T	R	L	T	F
Demand (v), v				175	<u>'</u>	117	-	-	K	-	427	247	169	371	-
Demand (V),	CII/II			173		117					421	241	103	3/1	
Signal Informa	tion				IJ		T	т		\top					
Cycle, s	55.0	Reference Phase	2	1	4.3	1 42	,E					_	Þ		~
Offset, s	0	Reference Point	End	Green	5.7	19.0	9.4	0.0	0.0	0.0		1	2	3	<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0	-			7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.9	3.1	3.3	0.0		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	-	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	se Number					4						2	1		6
Case Number	ise Number ase Duration, s					9.0		\perp				7.3	1.0		4.0
	ase Duration, s					16.7		\perp			$\overline{}$	26.1	12.1		38.2
	ase Duration, s ange Period, (Y+R ɛ), s					7.3		_				7.1	6.4		7.1
Max Allow Hea	dway (<i>l</i>	MAH), s				5.2		\perp				5.1	4.6		5.1
Queue Clearar	ce Time	e (g s), s				7.7		\perp				9.5	5.3		5.4
Green Extension	n Time	(g e), S				1.8		\perp				9.6	0.7		9.6
Phase Call Pro	bability					0.99		\perp				1.00	0.94	<u> </u>	1.00
Max Out Proba	bility					0.00						0.00	0.00		0.00
Mayamant Cr	un Ba	uulte.			EB			WB	,		NB			SB	
Approach Move		suits		L	T	R	L	T	R	L	T	R	L	T	F
Assigned Move				7		14	-		K	-	2	12	1	6	H-
		\ vob/b		194		130			+	-	474	274	186	408	-
Adjusted Flow			l n			-			+	-			_	_	\vdash
		ow Rate (s), veh/h/l	ın	1753		1485			+	-	1781	1598	1767	1654	-
Queue Service		g s), s e Time (g c), s		5.7 5.7		4.4					5.5	7.5 7.5	3.3	3.4	
		e fille (gc), S		0.17		0.17					0.35	0.35	0.49	0.57	
Green Ratio (c), Capacity (c),				301		255					1233	553	539	1873	
Volume-to-Cap		atio (X)		0.645		0.509			_		0.385		0.345	0.218	
volume-to-cap			1)	0.040		0.008					0.000	0.430	0.040	0.210	
Back of Ougue	. ,.	<u> </u>	,	4.2		2.7					3.5	4.4	1.9	1.5	
Back of Queue				0.00		0.00					0.00	0.00	0.17	0.00	
Back of Queue	ack of Queue (Q), veh/ln (90 th percentile) ueue Storage Ratio (RQ) (90 th percentile)					20.7					13.6	14.2	8.7	5.9	
Back of Queue Queue Storage	•	niform Delay (d ₁), s/veh				2.2					0.3	1.0	0.4	0.1	
Back of Queue Queue Storage Uniform Delay	(d 1), s			3.3		-					0.0	0.0	0.0	0.0	
Back of Queue Queue Storage Uniform Delay Incremental De	(d 1), s lay (d 2), s/veh		0.0		0.0					_	0.0			
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	(d 1), s lay (d 2 elay (d), s/veh 3), s/veh		0.0		22.9					13.8	15.2	9.2	6.0	
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay ((d 1), s lay (d 2 elay (d d), s/v	e), s/veh 3), s/veh eh		0.0 24.5		22.9			+		13.8 B	15.2 B	9.2 A	6.0 A	
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	(d 1), s lay (d 2 elay (d d), s/v e (LOS)	e), s/veh 3), s/veh eh		0.0 24.5 C		22.9 C	0.0			14	В	В	Α	A	Δ
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	(d 1), s lay (d 2 elay (d d), s/ve e (LOS) y, s/veh	e), s/veh 3), s/veh eh		0.0 24.5		22.9 C	0.0	T		14.	В	В	A 7.0	A	A
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	(d 1), s lay (d 2 elay (d d), s/ve e (LOS) y, s/veh	e), s/veh 3), s/veh eh		0.0 24.5 C		22.9 C				14.	В	В	Α	A	A
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	(d 1), s lay (d 2 elay (d d), s/ve e (LOS) y, s/veh lay, s/ve	e), s/veh 3), s/veh eh		0.0 24.5 C	EB	22.9 C		WB	3	14.	В	В	A 7.0	A	A
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	(d1), s lay (d2 elay (d d), s/v e (LOS) y, s/veh lay, s/ve	e), s/veh 3), s/veh eh / LOS		0.0 24.5 C	EB	22.9 C		_	3 B	14.	B 3 NB	В	A 7.0	A	A

		1100	Joigi	ialize	4 11110	ersect	ion ix	csu	13 (Juiiii	iiai y					
General Inform									luán		am luda	ormatio	_		المالما	k U
	iation	Diano P. Zimmorma	on Troff	ic Engine	ooring								PF1		III,	
Agency		Diane B. Zimmerma	ап пап			Δι:α 4	1 2022			ation, h		0.250				
Analyst		DBZ				AM D			PHF	a Type -		Other			. ;	
Jurisdiction		D		Time F		AM Pe						0.90				
Urban Street		Smyrna Parkway		Analys					Ana	ilysis P	erioa	1> 8:0	00	-5		
Intersection		I 265 EB		File Na	ame	AM 34	B.xus								111	
Project Descrip	tion	Smyrna Village							_						A I SY	Pr In
Demand Inforr	nation				EB			W	D			NB			SB	
					T	R	L	T	_	R	L	T	R	L	T	T R
Approach Move					-	_	+-	+-'	-	K	-	+	-	-	-	K
Demand (v), v	en/n			179		117		_	_			431	247	181	383	
Signal Informa	tion				П	1 1:	Т	Т								
Cycle, s	55.6	Reference Phase	2	1	17	1,7						_ \		₽.		7
Offset, s	0	Reference Point	End			î							1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green	-	19.2	9.7	0.0	-	0.0	0.0				_	
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.9	3.1	3.3	0.0	-	0.0	0.0		5	<u> </u>	-	
Torce Mode	rixed	Simult. Gap 14/5	OII	Neu	۵.ک	3.1	0.0	10.0	,	0.0	10.0		3	0	,	
Timer Results				EBL		EBT	WBI		WE	зт П	NBL		NBT	SBI		SBT
	0			EBL		4	VVDI	-	VVE	-	NDL		2	1	-	6
Assigned Phase	se Number					9.0		-		-			7.3	1.0		4.0
	ase Number ase Duration, s				-			+		-		\rightarrow			_	
					_	17.0	_	-		-		\rightarrow	26.3	12.3	$\overline{}$	38.7
				-	-	7.3		\rightarrow		\rightarrow		-	7.1	6.4	_	7.1
Max Allow Head		,-		_	_	5.2		\rightarrow		\rightarrow		\rightarrow	5.1	4.6	$\overline{}$	5.1
Queue Clearan				_	_	7.9		-		_		$\overline{}$	9.6	5.5	_	5.4
Green Extension		(g e), s			\perp	1.8		\rightarrow		\rightarrow		\rightarrow	9.6	0.8	\rightarrow	9.7
Phase Call Pro					\rightarrow	0.99		_		_		\rightarrow	1.00	0.95	$\overline{}$	1.00
Max Out Proba	bility					0.00							0.00	0.00)	0.00
Mayamant Cr	Dad				EB			10/5	,			ND			CB	
Movement Gro		suits			EB			WE	_	_		NB			SB	
Approach Move				L	Т	R	L	Т		R	L	T	R	L	T	R
Assigned Move		\		7		14			-	-		2	12	1	6	
Adjusted Flow I		,·		199		130			+	_		479	274	193	409	
		ow Rate (s), veh/h/l	ln	1753		1485			+	-		1781	1598	1767	1654	_
Queue Service		• ,,		5.9		4.4				_		5.7	7.6	3.5	3.4	
Cycle Queue C		e Time (g c), s		5.9		4.4			-			5.7	7.6	3.5	3.4	
Green Ratio (g				0.17		0.17			_			0.35	0.35	0.49	0.57	
Capacity (c), v				305		258						1230	552	541	1876	
Volume-to-Cap				0.652		0.503			_			0.389	0.497	0.358	0.218	
		t/In (90 th percentile							1							
	, ,	eh/In (90 th percent		4.4		2.8						3.6	4.5	2.0	1.5	
Queue Storage	Ratio (RQ) (90 th percent	tile)	0.00		0.00						0.00	0.00	0.19	0.00	
Uniform Delay				21.4		20.8						13.8	14.4	8.8	5.9	
Incremental De	lay (d 2), s/veh		3.3		2.2						0.3	1.0	0.5	0.1	
Initial Queue De	elay (<i>d</i>	3), s/veh		0.0		0.0						0.0	0.0	0.0	0.0	
Control Delay (d), s/v	eh		24.8		23.0						14.1	15.4	9.3	6.0	
Level of Service	e (LOS)			С		С						В	В	Α	Α	
Approach Delay	y, s/veh	/LOS		24.0		С	0.0				14.6		В	7.1		Α
Intersection De	lay, s/ve	eh / LOS				13	3.7							В		
Multimodal Re		// 00			EB	-		WE				NB	•		SB	
Pedestrian LOS	Score	/ LOS		2.29		В	2.29	<u>' </u>	В	· I	1.38		Α	1.64	+	В

		нся	Sign	nalized	Inte	rsect	ion R	esu	lts Sur	nmar	У				
General Inforr	nation								Interse	tion In	formati	on	J	الطبلية	b L
Agency	nation	Diane B. Zimmerma	an Traff	ic Engine	eering				Duration		0.250			111	
Analyst		DBZ	an man		is Date	Aug 1	1 2022		Area Ty	·	Other				
Jurisdiction		1002		Time F		PM Pe			PHF		0.91		→ <u></u>		
Urban Street		Smyrna Parkway			is Year	_	, dit		Analysis	Period	_	45			
Intersection		I 265 EB		File Na		PM 22	2.xus		7 and you	. 00					
Project Descrip	otion	Smyrna Village											7	AIAY	\$+ (°
,		, ,													
Demand Infor	mation				EB			W	'B		NB			SB	
Approach Move	ement			L	Т	R	L		ΓR	L	Т	R	L	Т	R
Demand (v), v	/eh/h			246		131				_	396	256	278	668	
Signal Informa	ation				Ţ,	153									
Cycle, s	70.7	Reference Phase	2	1	1/2	1/2	2				(₽.		7
Offset, s	0	Reference Point	End	<u> </u>		1		\perp		\perp		1	2	3	<u></u>
Uncoordinated	_	Simult. Gap E/W	On	Green		25.3	14.5	0.0		0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.9	3.1	3.3	0.0		0.0		5		-	
T Groot Widge	Tixou	Olimaia Gap 14/G	011	1100		10.1	10.0	10.0	0.0	10.0					
Timer Results				EBL		EBT	WBI	- T	WBT	NE	BL	NBT	SBI	-	SBT
Assigned Phas						4		\neg				2	1		6
Case Number	se Number					9.0						7.3	1.0		4.0
Phase Duration	ase Number ase Duration, s				2	21.8		\neg				32.4	16.5	5	48.9
Change Period	I, (Y+R	c), S				7.3						7.1	6.4		7.1
Max Allow Hea	dway (/	MAH), s				5.2						5.1	4.6		5.1
Queue Clearar	nce Time	e (g s), s				12.2						11.7	8.9		10.2
Green Extension	on Time	(ge),s				2.2						13.5	1.2		13.8
Phase Call Pro	bability					1.00						1.00	1.00)	1.00
Max Out Proba	bility				(0.02						0.01	0.0		0.00
Movement Gre	oun Res	uilte			EB			WE	3		NB			SB	
Approach Move	<u> </u>	Juito		L	T	R	L	Т	R	L	T	R	L	T	R
Assigned Move				7		14			+ '`	<u> </u>	2	12	1	6	<u> </u>
Adjusted Flow), veh/h		270		144					435	281	304	730	
		ow Rate (s), veh/h/l	n	1753		1485					1781	1598	1767	1654	
Queue Service				10.2		6.0			_		6.3	9.7	6.9	8.2	
		e Time (<i>g</i> ₅), s		10.2		6.0					6.3	9.7	6.9	8.2	
Green Ratio (, ,		0.21		0.21					0.36	0.36	0.53	0.59	
Capacity (c),				360		305					1273	571	609	1955	
Volume-to-Cap		atio (X)		0.751		0.472					0.342	_	0.498	0.373	
Back of Queue	(Q), f	t/ln (90 th percentile	:)												
		eh/ln (90 th percenti		7.1		3.8					4.3	5.8	4.1	4.1	
Queue Storage	Ratio (RQ) (90 th percent	tile)	0.00		0.00					0.00	0.00	0.38	0.00	
Uniform Delay	(d 1), s	/veh		26.4		24.7					16.6	17.7	10.2	7.6	
Incremental De	elay (d 2), s/veh		4.5		1.6					0.2	0.9	0.6	0.1	
Initial Queue D	elay (d	3), s/veh		0.0		0.0					0.0	0.0	0.0	0.0	
Control Delay (· /·			30.9		26.4					16.9	18.7	10.8	7.7	
				С		С					В	В	В	A	
	•			29.3		С	0.0			17	6	В	8.6		Α
Approach Dela	lav s/ve	eh / LOS				15	5.5						В		
Level of Service Approach Dela Intersection De	nay, or re														
Approach Dela Intersection De					ED			10/0	2		NID			CP.	
Approach Dela	esults	/1.08		2.30	EB	В	2.30	WE	B	1.3	NB	A	1.64	SB	В

		НС	Sign	nalized	d Inte	rsect	ion R	esu	lts	Sumi	mary					
																c t
General Inforn	nation	la: 5 =:							_			ormatic		- i	474	20 (4
Agency		Diane B. Zimmerma	an Traff	-		T			_	ration, l		0.250		2		
Analyst		DBZ				Aug 1			-	еа Туре		Other				
Jurisdiction				Time F		PM Pe			PH			0.91		- F		
Urban Street		Smyrna Parkway		Analys		-	No Build		Ana	alysis P	eriod	1> 4:4	15			
Intersection		I 265 EB		File Na	ame	PM 24	NB.xus	; 							111	
Project Descrip	tion	Smyrna Village	_		_			_	_	_	_	_	_	n	4144	P C
Demand Inforr	nation				EB			W	/D			NB			SB	
					T	T D	+ -	T	_	D		T	R		T T	T
Approach Move				251	<u> </u>	134	L			R	L	404	261	284	-	R
Demand (v), v	en/n			251		134	_	_				404	261	204	681	_
Signal Informa	tion				IJ	15	Т	т			7	_				
Cycle, s	72.3	Reference Phase	2	1	1/2	1/2	_ 1-2					_		t		
Offset, s	0	Reference Point	End			<u>l</u> îr		\perp			\perp		1	2	3	<u></u>
Uncoordinated	Yes	Simult. Gap E/W	On	Green		26.1	15.0	0.0		0.0	0.0				,	
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.9	3.1	3.3	0.0		0.0	0.0		5	e –	-	
. STOC MOGC	1 IXCU	Carrier Sup 14/5	311	1100	5	0.1	0.0	0.0		. 0.0	0.0					
Timer Results				EBL		EBT	WBI		W	ВТ	NBL		NBT	SBI		SBT
Assigned Phas	e					4	-,,5,	-		-	.,5		2	1		6
Case Number	ase Number					9.0		\rightarrow					7.3	1.0		4.0
	nase Duration, s					22.3		_		_		-	33.2	16.8	_	50.0
	nase Duration, s nange Period, (Y+R c), s					7.3		\rightarrow				-	7.1	6.4	-	7.1
Max Allow Hea					_	5.2		\rightarrow		\rightarrow		_	5.1	4.6	_	5.1
Queue Clearan						12.7		\rightarrow					12.1	9.2	_	10.5
Green Extension					_	2.3		_		-		_	13.9	1.2	_	14.3
Phase Call Pro		(9 =), 3				1.00		\rightarrow				-	1.00	1.00	-	1.00
Max Out Proba				_	\rightarrow	0.03	_	-		-		-	0.02	0.01	_	0.00
Wax Gut 1 Toba	Dility					0.00							0.02	0.01		0.00
Movement Gro	oup Res	sults			EB			WE	3	т		NB			SB	
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7		14						2	12	1	6	
Adjusted Flow I	Rate (v), veh/h		276		147			\top	\neg		444	287	310	744	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1753		1485			\top			1781	1598	1767	1654	
Queue Service	Time (g s), S		10.7		6.3			\top	\neg		6.6	10.1	7.2	8.5	-
Cycle Queue C				10.7		6.3			\uparrow			6.6	10.1	7.2	8.5	
Green Ratio (g		, , , ,		0.21		0.21						0.36	0.36	0.53	0.59	
Capacity (c), \				364		308			\top			1285	576	609	1963	
Volume-to-Cap		atio (X)		0.759		0.478						0.345	0.498	0.510	0.379	
		t/In (90 th percentile	:)						\dagger							
		eh/ln (90 th percent		7.4		4.0			\top	\neg		4.5	6.0	4.2	4.2	
	, ,	RQ) (90 th percent		0.00		0.00			\dagger			0.00	0.00	0.39	0.00	
Uniform Delay			,	27.0		25.2			+	\neg		16.9	18.0	10.3	7.7	
Incremental De				4.6		1.6				\rightarrow		0.2	0.9	0.6	0.1	
Initial Queue De		,.		0.0		0.0			+			0.0	0.0	0.0	0.0	
Control Delay (,, <u> </u>		31.6		26.9				\rightarrow		17.1	19.0	10.9	7.8	
Level of Service				С		C				\neg		В	В	В	A	
Approach Dela				29.9		С	0.0			\rightarrow	17.8		В	8.8		Α
Intersection De						15					. 7 .0			<u> </u>		,,
	, 5, 10															
Multimodal Re	sults				EB			WE	3			NB			SB	
	Coore	/1.08		2.30		В	2.30	\Box	E	3	1.39		Α	1.64	-	В
Pedestrian LOS	Score	, 200														

		НС	Sigr	nalize	d Inte	rsect	ion R	esu	Its	Sumi	mary					
General Inforn	nation								Inte	ersecti	on Info	rmatia			4741	h U
_	nation	Diana B. Zimmarma	n Troff	io Engin	noring							1		1	III.	
Agency		Diane B. Zimmerma	an iraff	,		A	1 0000		-	ration, h		0.250		2		
Analyst		DBZ				Aug 1				еа Туре		Other		-		
Jurisdiction		0 0		Time F		PM Pe			PH			0.91				
Urban Street		Smyrna Parkway		Analys		$\overline{}$			Ana	alysis P	erioa	1> 4:4	15	-5		
Intersection		I 265 EB		File Na	ame	PM 24	B.xus							- 4	ttr	
Project Descrip	tion	Smyrna Village													N I SO Y	P* [C]
Demand Inform	mation				EB			١٨	/B			NB			SB	
				L	Т	R	1	_	т Г	R	L	T	R	L	T	R
Approach Move				264	<u> </u>	134	+-	-	<u> </u>	K		417	261	292	689	K
Demand (v), v	en/n		-	264		134	_	-				417	201	292	609	
Signal Informa	ation				Ц	I J.	T	7				_				
Cycle, s	74.5	Reference Phase	2	1	1/2	42	_ 1-2						_	t		
Offset, s	0	Reference Point	End	<u> </u>		î		\perp					1	2	3	<u> </u>
Uncoordinated	Yes	Simult, Gap E/W	On	Green		26.8	15.9	0.0		0.0	0.0				,	
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.9	3.1	3.3	0.0		0.0	0.0		5	<u> </u>	-	
1 Of the Wildle	1 IXCU	Official Gap 14/3	Oll	rteu	2.0	0.1	0.0	0.0		0.0	0.0					
Timer Results				EBL		EBT	WBI		\٨/	ВТ	NBL		NBT	SBI		SBT
Assigned Phas				EDL		4	VVDI		VV	51	NDL		2	1	-	6
	se Number					9.0				\rightarrow			7.3	1.0		4.0
	se Number ase Duration, s				-	23.2	_	-		-		_	33.9	17.3	_	51.2
					+			\rightarrow		_		-			_	
	, ,	,,		_	-	7.3		-		-		-	7.1	6.4	_	7.1
Max Allow Hea				_	_	5.2	_	-		\rightarrow			5.1	4.6	-	5.1
Queue Clearan		(-).		-	_	13.6		-		\rightarrow		_	12.4	9.7	_	11.0
Green Extension		(g e), S		_	-	2.3	_	-		\rightarrow		\rightarrow	14.3	1.3	$\overline{}$	14.7
Phase Call Pro				_	\rightarrow	1.00		-		_		\rightarrow	1.00	1.00	$\overline{}$	1.00
Max Out Proba	bility					0.04		_	_				0.02	0.0		0.00
Movement Gro	un Pos	culte			EB			WE	2	$\overline{}$		NB			SB	
Approach Move		suits		L	T	R	L	T		R	L	T	R	L	T	R
Assigned Move				7		14	-	<u> </u>	+	<u> </u>		2	12	1	6	IX
		/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		290		147			+	-		458	287	320	754	
Adjusted Flow		**	in.	-					+	-		_	_	_		
		ow Rate (s), veh/h/l	n	1753		1485			+	_		1781	1598	1767	1654	
Queue Service		- /:		11.6		6.5			+	-		7.0	10.4	7.7	9.0	
		e Time (g c), s		11.6		6.5			+	-		7.0	10.4	7.7	9.0	
Green Ratio (g				0.21		0.21			+	-		0.36	0.36	0.53	0.59	
Capacity (c), v		-41- (\C)		375		318			-	\rightarrow		1281	575	603	1960	
Volume-to-Cap			`	0.773		0.463			+	\rightarrow		0.358	0.499	0.530	0.385	
	, .	t/ln (90 th percentile	,			4.			-			4.0	0.0	4.5		
	, , .	eh/ln (90 th percent		8.0		4.1			_	_		4.8	6.2	4.5	4.4	
		RQ) (90 th percent	tile)	0.00		0.00			1	_		0.00	0.00	0.42	0.00	
Uniform Delay				27.6		25.6			1			17.5	18.6	10.7	8.0	
Incremental De	-, .	*		4.8		1.5						0.2	1.0	0.7	0.1	
Initial Queue D		· · · · · · · · · · · · · · · · · · ·		0.0		0.0			_			0.0	0.0	0.0	0.0	
Control Delay (d), s/v	eh		32.4		27.0						17.8	19.6	11.4	8.1	
Level of Service				С		С						В	В	В	A	
Approach Dela	y, s/veh	/LOS		30.6		С	0.0				18.5		В	9.1		Α
Intersection De	lay, s/ve	eh / LOS				16	6.4							В		
	a14				EC			10/	,			ND			0.0	
NA 14:1 - 1 -	suits				EB			WE	3			NB			SB	
Multimodal Re Pedestrian LOS		/1.00		2.30		В	2.30	<u>, </u>	-	В	1.39		Α	1.68		В

		HCS	Sigr	nalized	d Inte	rsecti	on R	esu	its Sur	nmar	У				
General Inform	nation								Intersec	tion In	formatic	on	J.	14741	b L
Agency	nation	Diane B. Zimmerma	n Traff	ic Engine	erina				Duration		0.250			111	
Analyst		DBZ	ali IIali			Aug 11	1 2022	_	Area Ty		Other		2		
Jurisdiction		DBZ		Time F		PM Pe			PHF	,,,	0.91				
Urban Street		Smyrna Parkway			is Year	-			Analysis	Porioc		15	- 3		
Intersection		I 265 EB		File Na		-	NB.xus		Arialysis	renoc	17 4.	40	-		
	otion			FIIE IN	ine	PIVI 34	IND.XUS	>					- 4	2 1 2 2	34 6
Project Descrip	olion	Smyrna Village											_		A. (1811)
Demand Infor	mation				EB			W	B.		NB			SB	
Approach Move				L	T	R	1	T 1		1	T	R	L	T	F
Demand (v), v				277	<u> </u>	148	+-		- '`	1	446	-	314	752	<u> </u>
Domana (7),	7011111			2		110				•	110	200	011	102	
Signal Informa	ation				ΠĹ		T_	Т		\top					
Cycle, s	81.8	Reference Phase	2	1		1/2	,E					`	P		~
Offset, s	0	Reference Point	End	Green	12.2	31.0	17.8	0.0	0.0	0.0		1	2	3	<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0				7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.9	3.1	3.3	0.0		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	-	WBT	NE	BL	NBT	SBI	-	SBT
Assigned Phas	e					4						2	1		6
Case Number						9.0						7.3	1.0		4.0
Phase Duration	ase Duration, s					25.1						38.1	18.6	3	56.7
Change Period	I, (Y+R	c), S				7.3						7.1	6.4		7.1
Max Allow Hea	dway (/	MAH), s				5.2		\neg				5.1	4.6	\neg	5.1
Queue Clearar	nce Time	e (g s), s				15.5						14.6	10.8	3	12.7
Green Extension	on Time	(ge), s				2.4						16.4	1.3	\neg	17.0
Phase Call Pro	bability				1	1.00						1.00	1.00)	1.00
Max Out Proba	bility					0.08		\neg				0.04	0.02	2	0.01
Movement Gro		sults		<u> </u>	EB			WE	_	_	NB			SB	
Approach Move				느니	T	R	L	Т	R	ᆫ	T	R	L	T	R
Assigned Move				7		14				_	2	12	1	6	_
Adjusted Flow		,.		304		163					490	316	343	822	_
		ow Rate (s), veh/h/l	n	1753		1485					1781	1598	1767	1654	
Queue Service				13.5		7.9					8.1	12.6	8.8	10.7	$oxed{oxed}$
		e Time (g ε), s		13.5		7.9					8.1	12.6	8.8	10.7	
Green Ratio (g				0.22		0.22					0.38	0.38	0.55	0.61	
Capacity (c),				382		324					1349	605	603	2004	
Volume-to-Cap				0.796		0.502					0.363	0.523	0.569	0.410	
	, .	t/In (90 th percentile	,												
	, ,	eh/In (90 th percenti		9.1		5.0					5.5	7.2	5.1	5.2	
Queue Storage	Ratio (RQ) (90 th percent	ile)	0.00		0.00					0.00	0.00	0.47	0.00	
Uniform Delay	(d 1), s	/veh		30.3		28.1					18.3	19.7	11.2	8.5	
Incremental De	elay (d 2), s/veh		5.3		1.7					0.2	1.0	0.7	0.1	
Initial Queue D	elay (d	з), s/veh		0.0		0.0					0.0	0.0	0.0	0.0	
Control Delay ((d), s/v	eh		35.6		29.8					18.6	20.7	11.9	8.6	
Level of Servic	e (LOS)			D		С					В	С	В	Α	
Approach Dela	y, s/veh	/LOS		33.6		С	0.0			19	4	В	9.6		Α
Intersection De	elay, s/ve	eh / LOS				17	.4						В		
Multimodal Da	esults				EB			WE			NB			SB	
Multimodal Re															_
Pedestrian LOS Bicycle LOS So				2.31	\rightarrow	B F	2.31	_	В	1.3	9	Α	1.65		В

		нся	S Sigr	nalize	d Inte	rsect	ion R	esul	ts Su	mn	nary					
0	4:								l 4	4: -		4: -	_		الطياراة	N II
General Inform	nation	Diana B. Zimamanna	- T ff	ia Familia				\rightarrow				ormatio		ĺ	III	
Agency		Diane B. Zimmerma	an Irali	-		A 11	1 2022	\rightarrow	Duratio			0.250		2		
Analyst		DBZ				Aug 1		\rightarrow	Area T	ype		Other		<u></u>		
Jurisdiction		O Dd		Time F		PM Pe		\rightarrow	PHF	·- D		0.91				
Urban Street		Smyrna Parkway			is Year	-			Analys	IS P	erioa	1> 4:4	15	- 5		
Intersection		I 265 EB		File Na	ame	PM 34	B.xus							- 4	ttr	
Project Descrip	tion	Smyrna Village	_		_	_	_	_	_		_	_	_		M I WY	Pr III
Demand Infor	mation				EB			WI	3			NB			SB	
Approach Move				L	Т	R	1	T		2	L	T	R	L	T	TF
Demand (v), v				290	<u> </u>	148	+-	 				459	288	322	760	+
20114114 (7);				200		110						100		022	100	
Signal Informa	ation				17		Τ.	Т	$\neg \vdash$		П					
Cycle, s	82.6	Reference Phase	2	1	-	1 1/2	2 E.						∠	P		~
Offset, s	0	Reference Point	End	Green	12.2	31.0	18.6	0.0	0.	n	0.0		1	2	3	<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	_		0.0				7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.9	3.1	3.3	0.0	-		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	-	WBT		NBL		NBT	SBI	-	SBT
Assigned Phas	ase Number					4				1		\perp	2	1		6
Case Number	ase Number nase Duration, s					9.0		_		4			7.3	1.0	_	4.0
Phase Duration	nase Duration, s					25.9		\perp		\perp		;	38.1	18.6	3	56.7
Change Period	nase Duration, s nange Period, (Y+R c), s					7.3		\perp		1			7.1	6.4		7.1
Max Allow Hea	dway (/	<i>MAH</i>), s				5.2		\perp		\perp			5.1	4.6	\perp	5.1
Queue Clearan	ice Time	e (g s), s				16.2		\perp		┸			14.8	10.8	3	12.5
Green Extension	n Time	(g e), S				2.4				┸			16.2	1.3		16.8
Phase Call Pro	bability					1.00				┸			1.00	1.00)	1.00
Max Out Proba	bility					0.10		\perp		\perp			0.04	0.02	2	0.01
Manager and One	D							\A/D		Ŧ		NID			OB	
Movement Gro		suits			EB T	В		WB T	R	+		NB T	D		SB T	TB
Approach Move				7	- 1	R 14	L		K	+	L	2	12	1	6	R
		/ \ vob/b		_					+	+				338	797	-
Adjusted Flow		**	l	319		163	-		+	+	_	504	316		_	\vdash
		ow Rate (s), veh/h/	ın	1753		1485			+	+		1781	1598	1767	1654	\vdash
Queue Service		e Time (g ε), s		14.2		7.9	_		-	+		8.5	12.8	8.8	10.5	\vdash
Green Ratio (g		e Time (g c), s		0.23		7.9 0.23	_		+	+		8.5 0.38	12.8 0.38	8.8 0.55	0.60	-
						-	\vdash		+	+			-			\vdash
Capacity (c), v		atio / V \		396		335	-		+	+		1336	599	590	1984	-
			.\	0.805		0.485	\vdash		+	+		0.378	0.528	0.573	0.402	\vdash
		t/In (90 th percentile		0.5		5.0			-	+		5.7	7.4	5.1	5.2	-
		eh/ln (90 th percent		9.5		5.0				+		5.7	7.4 0.00	5.1 0.48	0.00	
		RQ) (90 th percen	uie)	_		0.00			-	+		0.00				
Uniform Delay				30.3		27.8				+		18.8	20.1	11.6	8.7	1
Incremental De		·-		5.5		1.5				+		0.3	1.0	0.8	0.1	
Initial Queue D		,.		0.0		0.0				+		0.0	0.0	0.0	0.0	
Control Delay (35.8		29.4				-		19.1 B	21.2	12.4	8.9	
Level of Service				D 33.6		С	0.0			+	10.0	_	В	В	A	^
Approach Delay, s/veh / LOS				33.6		C 17				+	19.9			9.9 B		A
- ' '	ay, S/VE	an / LOS				17	.5			-				U		
Intersection De					EB			WB				NB			SB	
Intersection De	sults															
- ' '		/LOS		2.31		В	2.31	_	В	+	1.39		Α	1.65		В

		нся	S Sigr	nalize	d Inte	rsect	ion R	esu	lts Sun	nmary					
•	4.													14144	E I
General Inform	nation	D D. 7!	T						Intersec				- 6	JII	
Agency		Diane B. Zimmerma	an Traff	1					Duration		0.250		-		
Analyst		DBZ		<u> </u>	is Date	+			Area Typ	е	Other		→ ->		
Jurisdiction				Time F		AM Pe	eak		PHF		0.91		4		,
Urban Street		Smyrna Parkway		<u> </u>	is Year	-			Analysis	Period	1> 8:0	00			
Intersection		I 265 WB		File Na	ame	AM 22	2.xus							511	
Project Descrip	otion	Smyrna Village												ነተተቀዮ	21
-	4:									_	NID			0.0	
Demand Infor					EB			W	_	+ .	NB		+ -	SB	T 5
Approach Move				L	Т	R	L	1	_	L	T	R	L	T	R
Demand (v), v	/eh/h						140	_	180	147	388		_	339	27
Signal Informa	ation					TII	3								
		Reference Phase	2	1		24		╡					κŤ	_	
Cycle, s Offset, s	54.2	Reference Point	End		\f\1	1:7						1	2	3	
Uncoordinated	_	Simult, Gap E/W	On	Green		19.0	10.3	0.0	_	0.0		, ,			5
			_	Yellow	2.8	3.5	2.6	0.0		0.0	^) 『4	,	7	~
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.5	2.0	0.0	0.0	10.0		5	ь	- /	
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SB		SBT
				EDL	-	EDI	VVDI	-	8	5	-	2	50	_	6
Assigned Phas	se Number						_	\rightarrow		_	_			_	
					_			+	9.0	1.0	_	4.0	_	-	7.3
	ase Duration, s ange Period, ($Y+Rc$), s						_	-	16.9	12.3	\rightarrow	37.3		\rightarrow	25.0
					_			\rightarrow	6.6	6.8	_	6.0	_		6.0
Max Allow Hea				_	_		_	\rightarrow	5.3	4.6	-	5.1	_	\rightarrow	5.1
Queue Clearan		(-).						\rightarrow	8.3	4.8	_	5.2		\perp	10.1
Green Extension		(ge), s		_	_			\rightarrow	2.0	0.6	-	9.0		\rightarrow	8.9
Phase Call Pro	bability							_	0.99	0.91		1.00		\perp	1.00
Max Out Proba	bility								0.00	0.00)	0.00			0.00
Mayamant Cr	oun Boo	uulte.			EB			WE	,		NB			SB	
Movement Gro		suits		L	Т	В		T	R	-	Т	R	-	T	R
Approach Move				-		R	L 3		18	5	2	K	L	6	16
Assigned Move		.) la //a					H-			_			_	-	-
Adjusted Flow			l				154		198	163	430			373	29
		ow Rate (s), veh/h/	ın				1781		1572	1781	1766		_	1738	159
Queue Service		- ,,					4.2		6.3	2.8	3.2			4.2	8.
		e Time (<i>g ₅</i>), s					4.2		6.3	2.8	3.2			4.2	8.
Green Ratio (g							0.19		0.19	0.49	0.58			0.35	0.3
Capacity (c), v		(1.7.2)					338		299	590	2041			1221	56
Volume-to-Cap			,				0.455		0.663	0.276	0.211			0.306	0.53
	, ,	t/ln (90 th percentile	,											-	
		eh/ln (90 th percent					3.0		4.2	1.5	1.5			2.6	4.6
		RQ) (90 th percent	tile)				0.00		0.00	0.13	0.00			0.00	0.0
Uniform Delay	` ''						19.5		20.4	8.2	5.5			12.8	14.
Incremental De	_ , ,	*					1.4		3.6	0.3	0.1			0.2	1.0
Initial Queue D		**					0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/v	eh					20.8		23.9	8.5	5.6			13.0	15.
Level of Service	e (LOS)						С		С	Α	Α			В	В
Approach Dela	y, s/veh	/LOS		0.0			22.6		С	6.4		Α	13.	9	В
Tippi dadii Dala	lay, s/ve	eh / LOS				13	3.0						В		
					EB			WE	3		NB			SB	
Intersection De	sults														
Intersection De Multimodal Re Pedestrian LOS		/1.0S		2.29	_	В	2.29	_	В	1.64		В	1.3		Α

		HCS	S Sigr	nalize	d Inte	rsect	ion Re	esu	Its Sun	ımary					
General Inform	nation								Intersec	tion Inf	ormatic	'n		. با جاء يار إنه لر	ьU
_	nation	Diana B. Zimmarm	on Troff	io Engin	coring						_		1	ŢŢŢ	
Agency		Diane B. Zimmerma	an rraff	4		A 4	4 0000		Duration		0.250		7 8		
Analyst		DBZ				Aug 1			Area Typ	е	Other		→ ->		
Jurisdiction				Time F		AM Pe			PHF		0.91				•
Urban Street		Smyrna Parkway		-	is Year	-	No Build		Analysis	Perioa	1> 8:0)0	-		
Intersection		I 265 WB		File Na	ame	AM 24	1 NB.xus	5						7	
Project Descrip	tion	Smyrna Village		_		_	_	_				_		HIPT	P I
Demand Infor	mation				EB			۱۸	/B		NB			SB	
Approach Move				L	T	R	1	_	T R		T	R		T	R
				-	-	K	-	\vdash		-	+	+ -	-	346	-
Demand (v), v	/en/n						143	_	184	150	396		_	346	27
Signal Informa	ation					T II	I 6	Т	1						
Cycle, s	55.1	Reference Phase	2	1		24		7					rd	/	
Offset, s	0	Reference Point	End		51							1	2	3	
Uncoordinated	_	Simult. Gap E/W	On	Green		19.5	10.6	0.		0.0					5
Force Mode	Fixed		On	Yellow Red	2.8	3.5	2.6	0.	_	0.0) _{[4}		7	~
Force Mode	Fixed	Simult. Gap N/S	Oil	Reu	2.0	2.5	2.0	0.	0 0.0	10.0		5	ь	- 1	
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SB		SBT
				EBL	-	EDI	VVDL	-	8	5	-	2) SB		6
Assigned Phas	e				_		_	-						_	
	se Number ase Duration, s				_		_	-	9.0	1.0	_	4.0	_	-	7.3
							_	-	17.2	12.3	-	37.9		\rightarrow	25.5
		**			_		_	4	6.6	6.8	_	6.0	_	-	6.0
Max Allow Hea					_			4	5.3	4.6	-	5.1	_	-	5.1
Queue Clearar		1 - //						4	8.6	4.9	_	5.3		\perp	10.3
Green Extension		(g e), S			\perp			4	2.0	0.6	-	9.2		\rightarrow	9.2
Phase Call Pro								4	1.00	0.92	_	1.00		-	1.00
Max Out Proba	bility								0.00	0.00)	0.00		\perp	0.00
M					ED			10/	<u> </u>		NID			0.0	
Movement Gro		suits			EB			WI			NB		-	SB	
Approach Move				L	Т	R	L	Т	R	L	T	R	L	T	R
Assigned Move		\					3		18	5	2		_	6	16
Adjusted Flow		,-					157		202	166	439		_	381	304
		ow Rate (s), veh/h/	ln				1781		1572	1781	1766			1738	159
Queue Service		- /-					4.3		6.6	2.9	3.3			4.4	8.3
		e Time (g c), s					4.3		6.6	2.9	3.3			4.4	8.3
Green Ratio (g							0.19		0.19	0.49	0.58			0.35	0.3
Capacity (c), v							343		302	587	2046			1235	56
Volume-to-Cap							0.459		0.669	0.283	0.215			0.308	0.53
		t/ln (90 th percentile													
	,,	eh/ln (90 th percent					3.1		4.4	1.6	1.5			2.7	4.6
		RQ) (90 th percen	tile)				0.00		0.00	0.14	0.00			0.00	0.0
Uniform Delay							19.7		20.6	8.3	5.6			12.9	14.
Incremental De		**					1.4		3.6	0.3	0.1			0.2	0.8
Initial Queue D							0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/v	eh					21.1		24.2	8.6	5.6			13.0	15.
Level of Servic	e (LOS)						С		С	Α	Α			В	В
Approach Dela	y, s/veh	/LOS		0.0			22.9		С	6.4		Α	13.	9	В
	lay, s/ve	eh / LOS				13	3.1						В		
Intersection De					ED.			WI	D		NB			SB	
Intersection De Multimodal Re Pedestrian LOS		/1.06		2.29	EB	В	2.29	_	В	1.64	_	В	1.3		A

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esu	Its Sun	nmary					
General Inform	nation								Intersec	tion Inf	ormatic	\n		14741	ьų
	nation	Diana B. Zimmarm	on Troff	io Engin	ooring						_			TIT	
Agency		Diane B. Zimmerma	an Irali	4		A 4	4 0000		Duration	•	0.250		-		
Analyst		DBZ				Aug 1			Area Typ	e	Other		→ -÷		~_
Jurisdiction				Time F		AM Pe			PHF	<u> </u>	0.91		_		•
Urban Street		Smyrna Parkway		-	is Year	-			Analysis	Period	1> 8:0	JU	-		
Intersection	41	I 265 WB		File Na	ame	AM 24	B.xus						- 4	711	
Project Descrip	tion	Smyrna Village	_		_	_								14147	Pr [D]
Demand Infor	Demand Information							۱۸	/B		NB			SB	
				L	EB T	R	1	_	T R		T	R	L	T	R
Approach Movement Demand (v), veh/h			-	<u>'</u>	K	143	\vdash	188	-	-	_	-	370	28	
Demand (V), V	/en/n			_			143	-	100	150	404		_	370	20
Signal Informa	ation					IJ	1 8								
Cycle, s	55.6	Reference Phase	2	1		2Ψ		7					KT	/	
Offset, s	0	Reference Point	End		1	1:"		_				1	2	3	
Uncoordinated	_	Simult. Gap E/W	On	Green Yellow		19.8	10.8	0.		0.0					5
Force Mode	Fixed		On	Red	2.8	3.5 2.5	2.6	0.		0.0) 5	6	7	Y
1 orce wode	TIXCU	Olifialt. Gap 14/5	OII	Ittcu	12.0	2.0	2.0	10.	0 0.0	10.0			-		
Timer Results				EBI	$\overline{}$	EBT	WBI	╗	WBT	NBI		NBT	SB		SBT
Assigned Phas				LDI	-	LDI	VVDI	+	8	5	_	2	35		6
Case Number					_		_	\dashv	9.0	1.0		4.0			7.3
					-		-	+	17.4	12.3	_	38.2	-	\rightarrow	25.8
Phase Duration, s							-	\dashv		_	-		-	_	
Change Period, (Y+Rc), s					-		_	+	6.6	6.8	_	6.0	-	_	6.0
Max Allow Headway (MAH), s					_		_	-	5.3	4.6	-	5.1	_	_	5.1
Queue Clearance Time (g s), s					_		_	-	8.8	4.9	_	5.4	_	\rightarrow	10.4
Green Extension Time (g e), s					_		_	-	2.1	0.6	-	9.5	_	\rightarrow	9.4
Phase Call Probability					_		_	4	1.00	0.92	_	1.00		_	1.00
Max Out Probability								_	0.00	0.00)	0.00			0.00
Movement Gro	nun Res	eulte			EB			WI	B.		NB			SB	
Approach Move		Juito		L	T	R		T		L	T	R	L	T	R
Assigned Move				<u> </u>	•	- 1	3	_	18	5	2	1	<u> </u>	6	16
Adjusted Flow		() veh/h					157		207	166	448		_	389	30
		ow Rate (s), veh/h/	In				1781		1572	1781	1766		_	1738	159
		(),	111				-		_	_			-	_	
Queue Service		g s), s e Time (g c), s					4.3		6.8	2.9	3.4			4.5	8.4
		e fille (gc), s							6.8					_	8.4
Green Ratio (g							0.19		0.19	0.49	0.58			0.36	0.3
Capacity (c), v		atio / V \					347		306	582	2045			1240	570
Volume-to-Cap			.\				0.453		0.675	0.286	0.219			0.314	0.53
		t/In (90 th percentile					0.4		4.5	10	4.0			0.7	1
	,,	eh/ln (90 th percent					3.1		4.5	1.6	1.6			2.7	4.6
		RQ) (90 th percen	tile)				0.00		0.00	0.14	0.00			0.00	0.0
Uniform Delay (d 1), s/veh							19.8		20.8	8.4	5.7			13.0	14.
Incremental De		**					1.3		3.7	0.3	0.1			0.2	0.9
Initial Queue D							0.0		0.0	0.0	0.0			0.0	0.0
	,,,						21.1		24.4	8.6	5.7			13.1	15.
Control Delay (0.0			С	_	С	Α	A			В	В
Control Delay (Level of Service	Approach Delay, s/veh / LOS						23.0		С	6.5		Α	14.	0	В
Control Delay (Level of Service Approach Dela		h / L OS				13	3.2						В		
Control Delay (Level of Service	lay, s/ve	3117 200													
Control Delay (Level of Servic Approach Dela Intersection De		5117 200			ER			۱۸/۱	R		NR			SR	
Control Delay (Level of Service Approach Dela	sults			2.29	EB	В	2.29	WI	ВВ	1.64	NB	В	1.3	SB	A

		нся	Sign	nalize	Inte	rsect	ion R	esu	Its Sun	ımary					
General Inform	nation								Intersec	tion Infe	ormatic	n n		14741	ja lj
Agency	iiatioii	Diane B. Zimmerma	an Traff	ic Engin	aorina				Duration		0.250			111	
Analyst		DBZ	ali IIali			Aug 1	1, 2022		Area Typ		Other		- 3		
Jurisdiction		DBZ		Time F		AM P			PHF	<u> </u>	0.91				•
Urban Street		Smyrna Parkway					No Build	,	Analysis	Deriod	1> 8:0	00	7	•	
	ntersection I 265 WB					$\overline{}$	4 NB.xus		Allalysis	renou	1 0.0	00	-		
	Project Description Smyrna Village					AIVI 3	+ IND.Xus	5					- 1	111	20 0
Project Descrip	MOH	Sillyilla Village													
Demand Infor	mation				EB		Т	V	/B	Т	NB		\top	SB	
Approach Movement				L	Т	R	L	Τ.	ΓR	L	Т	R	L	Т	R
Demand (v), v	/eh/h						158		203	166	437			382	30
Signal Informa	ntion				1										
Cycle, s	60.0	Reference Phase	2	1		21		Ħ					KÎ .	_	
Offset, s	00.0	Reference Point	End		51	1:7						1	2	3	
Uncoordinated		Simult. Gap E/W	On	Green		22.6	12.2	0.		0.0	_		⊥ ا		5
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.8	3.5 2.5	2.6	0.		0.0		\ 5	→	7	~
T OF OCT WIND GO	Tixed	Oliffalt. Gap 14/G	OII	Ittou	12.0	12.0	12.0	10.	0 0.0	0.0					
Timer Results				EBI	. T	EBT	WBI	L	WBT	NBI		NBT	SB	L	SBT
Assigned Phas	e								8	5		2			6
Case Number									9.0	1.0		4.0			7.3
Phase Duration, s									18.8	12.6		41.3			28.6
Change Period, ($Y+R_c$), s									6.6	6.8		6.0			6.0
Max Allow Headway (<i>MAH</i>), s									5.3	4.6		5.1			5.1
Queue Clearar	nce Time	e (g s), s							9.9	5.4		5.9			12.0
Green Extension Time (g e), s									2.2	0.7		10.7			10.6
Phase Call Probability								_	1.00	0.95		1.00	_		1.00
Max Out Proba	bility							_	0.01	0.00		0.00			0.00
Movement Gre	oup Res	sults			EB			WI	3		NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move							3		18	5	2			6	16
Adjusted Flow), veh/h					174		223	184	485			420	336
		ow Rate (s), veh/h/l	n				1781		1572	1781	1766			1738	159
Queue Service							5.2		7.9	3.4	3.9			5.2	10.
		e Time (<i>g</i> ∊), s					5.2		7.9	3.4	3.9			5.2	10.
Green Ratio ((3),					0.20		0.20	0.51	0.59			0.38	0.3
Capacity (c),	veh/h						361		319	576	2075			1310	602
Volume-to-Cap	acity Ra	ntio (X)					0.481		0.699	0.320	0.234			0.321	0.55
Back of Queue	(Q), f	t/ln (90 th percentile	:)												
Back of Queue	(Q), v	eh/ln (90 th percenti	ile)				3.8		5.2	2.0	1.9			3.2	5.3
Queue Storage Ratio (RQ) (90 th percentile)							0.00		0.00	0.17	0.00			0.00	0.0
Uniform Delay (d 1), s/veh							21.2		22.2	8.6	5.9			13.3	14.
Incremental Delay (d 2), s/veh							1.4		3.9	0.3	0.1			0.2	0.8
Incremental De	Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0	0.0			0.0	0.0	
Initial Queue D	Control Delay (d), s/veh						22.6		26.2	9.0	6.0			13.4	15.
Initial Queue D Control Delay (Level of Service (LOS)						С		С	Α	A			В	В
Initial Queue D Control Delay (Level of Servic		Approach Delay, s/veh / LOS		0.0			24.6	3	С	6.8		Α	14.	4	В
Initial Queue D Control Delay (Level of Servic Approach Dela	y, s/veh						3.8						В		
Initial Queue D Control Delay (Level of Servic	y, s/veh					13	5.0								
Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	y, s/veh elay, s/ve				FR	13	5.0	\٨/١	3		NR			SB	
Initial Queue D Control Delay (Level of Servic Approach Dela	y, s/veh elay, s/ve	eh / LOS		2.29	EB	B	2.29	WI	3 B	1.64	NB	В	1.3	SB 8	A

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esu	Its Sun	nmary					
General Inforn	nation								Intersec	tion Inf	ormatic	'n		14141	ьų
_	iation	Diane B. Zimmerm	an Traff	ic Engin	ooring				Duration		0.250			111	
Agency Analyst		DBZ	ali IIali	_		Aug 1	1 2022		Area Typ		Other		- 3 A		
Jurisdiction		DBZ				_			PHF		0.91		→ -		~_
		Cmurno Dorlavov								Dorind		20			•
Urban Street		Smyrna Parkway				-			Analysis	Period	1> 8:0	JU	-		
Intersection	41	I 265 WB		File Na	ame	AIVI 34	B.xus						- 4	111	
Project Descrip	tion	Smyrna Village												IN INT	M.III
Demand Infor	Demand Information							۱۸	/B		NB			SB	
	Approach Movement				EB	R		_	T R	L	T	R	L	T	T R
Approach Movement Demand (v), veh/h			<u> </u>	<u> </u>	+ -	158	+	207	166	_	K	+-	406	31	
Demand (v), v	en/n			_			100	-	207	100	445			400	31
Signal Informa	ation					IJ			Ĭ						
Cycle, s	60.6	Reference Phase	2	1		24		7					KŤ	_	
Offset, s	0	Reference Point	End		1	1:7		\perp				1	2	3	
Uncoordinated		Simult. Gap E/W	On	Green	-	22.9	12.4	0.	-	0.0					5
Force Mode	Fixed		On	Yellow Red	2.8	3.5 2.5	2.6	0.		0.0		5	6	7	~
roice wode	FIXEG	Simult. Gap 14/5	Oil	Incu	2.0	2.0	2.0	10.	0 0.0	10.0		0		-	
Timer Results				EBL		EBT	WBI	$\overline{}$	WBT	NB		NBT	SB		SBT
Assigned Phas	Δ			LUI	-	LUI	VVDI	-	8	5	-	2	30	_	6
Case Number							_	\rightarrow	9.0	1.0	_	4.0			7.3
					-		_	-	19.0		-	41.6	-	\rightarrow	28.9
Phase Duration		\ -		_			_	\dashv		12.7	-			_	
Change Period		**			_		_	-	6.6	6.8	_	6.0	_	_	6.0
Max Allow Headway (MAH), s							_	-	5.3	4.6	-	5.1	_	\rightarrow	5.1
Queue Clearance Time (g s), s							_	-	10.2	5.4	-	6.1	_	_	12.1
Green Extension Time (g e), s					_		_	-	2.3	0.7	\rightarrow	11.0	_	-	10.8
Phase Call Probability							_	4	1.00	0.96	-	1.00		_	1.00
Max Out Proba					_	0.01	0.00)	0.00			0.01			
Movement Gro	un Bo	nulto.			EB			WI	>		NB			SB	
Approach Move		suits		L	Т	R	L	T	R	L	T	R		T	R
Assigned Move				-	1	K	3		18	5	2	K	<u> </u>	6	16
		() , (ab/b								_			-	_	-
Adjusted Flow			l				174		227	184	494		_	429	33
		ow Rate (s), veh/h/	in				1781		1572	1781	1766		_	1738	159
Queue Service		<u> </u>					5.2		8.2	3.4	4.1		_	5.3	10.
		e Time (g c), s					5.2		8.2	3.4	4.1		_	5.3	10.
Green Ratio (g							0.20		0.20	0.51	0.59			0.38	0.3
Capacity (c), v							365		323	571	2075			1315	60
Volume-to-Cap							0.475		0.705	0.322	0.238			0.326	0.5
		t/ln (90 th percentile								_			_	_	
	, , .	eh/ln (90 th percent					3.8		5.3	2.0	2.0		_	3.3	5.3
		RQ) (90 th percen	tile)				0.00		0.00	0.17	0.00			0.00	0.0
Uniform Delay							21.2		22.4	8.7	6.0			13.4	14.
Incremental Delay (d 2), s/veh							1.4		4.0	0.3	0.1			0.2	0.9
Initial Queue D							0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/v	eh					22.6		26.4	9.1	6.1			13.5	15.
Level of Service	e (LOS)						С		С	Α	Α			В	В
Approach Dela	y, s/veh	/LOS		0.0			24.8		С	6.9		Α	14.	5	В
	lay, s/ve	eh / LOS				13	3.9						В		
Intersection De					ED.			WI	-		NB			SB	
	eulte	Multimodal Results													
		/1.08		2.29	EB	В	2.29	_	В	1.64		В	1.3	_	A

		нся	S Sigr	nalize	d Inte	rsect	ion R	esu	ilts Sun	nmary					
Canaral Inform	nation								Interne	tion Inf	a www a t i a			14744	h U
General Inform	nation	Diana B. Zimamanna	T#	ia Fasia					Intersec		-		- 1	ŢŢŢ	
Agency		Diane B. Zimmerma	an Iraff	4		A 4	4 0000		Duration	,	0.250		7		
Analyst		DBZ			is Date				Area Typ	e e	Other		-		_
Jurisdiction											0.95		-4		·-
Urban Street		Smyrna Parkway			is Year	-			Analysis	Period	1> 4:4	15			
Intersection		I 265 WB		File Na	ame	PM 22	2.xus						- 4	711	
Project Descrip	otion	Smyrna Village		_				_		_				HIMP	P C
Demand Infor	mation				EB			۱۸	VB		NB			SB	
Approach Movement				L	T	R	1	_	T R	L	T	R	L	T	T R
<u> </u>				-	<u> </u>	<u> </u>	334	\vdash	277	128	515	N	+-	612	26
Demand (v), v	/en/m		-	_			334	-	211	120	010			012	20
Signal Informa	ation						8								
Cycle, s	70.1	Reference Phase	2	1	F.4		E	\exists					4	/	
Offset, s	0	Reference Point	End	1	Tr.	1:7	45.5	1		1.		1	2	3	
Uncoordinated		Simult. Gap E/W	On	Green Yellow		26.8	18.3	0.		0.0					5
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.8	3.5	2.6	0.		0.0		5	6	7	-
. 5.55 111546	, ixou	5a.a. Gup 14/0	011				, =.0	- 0.	0.0	3.0					
Timer Results				EBL		EBT	WBI		WBT	NB		NBT	SB		SBT
Assigned Phas							1131	+	8	5		2			6
Case Number								_	9.0	1.0		4.0			7.3
Phase Duration, s								_	24.9	12.4	-	45.2		-	32.8
Change Period, ($Y+Rc$), s							_	-	6.6	6.8	-	6.0	_	\rightarrow	6.0
Max Allow Headway (<i>MAH</i>), s					_		_	-	5.2	4.6	_	5.1	_	-	5.1
Queue Clearance Time (g s), s							-	-	14.8	5.1	-	7.9		_	12.3
Green Extension Time (g e), s							_	\dashv	3.5	0.5	-	14.9		_	14.5
Phase Call Probability								\dashv	1.00	0.94	-	1.00			1.00
Max Out Probability					_		_	\dashv	0.14	0.00	-	0.00		-	0.02
Wax Out 1 Toba	ibility								0.14	0.00	,	0.00			0.02
Movement Gro	oup Res	sults			EB			WI	В		NB			SB	_
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move							3		18	5	2			6	16
Adjusted Flow), veh/h					352		292	140	565			666	28
		ow Rate (s), veh/h/	In				1781		1572	1781	1766			1738	159
Queue Service		1 ,					12.8		11.8	3.1	5.9			10.3	9.5
		e Time (g ε), s					12.8		11.8	3.1	5.9			10.3	9.5
Green Ratio (g		(30),0					0.26		0.26	0.49	0.56			0.38	0.3
Capacity (c), v							464		410	428	1977			1330	61
Volume-to-Cap		atio (X)					0.757		0.711	0.328				0.501	0.46
		t/In (90 th percentile	9)						2.7 11	1.525				1.507	
		eh/ln (90 th percent					8.4		7.1	2.0	3.4			5.7	5.0
	· /·	RQ) (90 th percen					0.00		0.00	0.17	0.00			0.00	0.0
Uniform Delay		, , , ,					23.9		23.5	11.2	8.1			16.5	16.
Incremental De							3.6		3.2	0.5	0.1			0.3	0.5
		,.					0.0		0.0	0.0	0.0			0.0	0.0
Initial Cillene in		··					27.5		26.8	11.6	8.2			16.8	16.
							C C		C	В	A			B	В
Control Delay (0.0			27.2		C	8.9		A	16.		В
Control Delay (Level of Service	y, Sivell			0.0		17	7.3		0	0.9			B	,	D
Control Delay (Level of Service Approach Dela	lav elve					1 /	.0						J		
Control Delay (Level of Service Approach Dela	lay, s/ve														
Control Delay (Level of Servic Approach Dela Intersection De		5117 200			FR			\///	В		NB			SB	
Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De Multimodal Re Pedestrian LOS	sults			2.30	EB	В	2.30	WI	ВВ	1.68	NB	В	1.3	SB 8	A

		НС	S Sigr	nalized	Inte	rsect	ion R	esu	Its Sun	nmary					
Camanal Info	4:								Interne	4: l -	4: -			Jal July I I	N E
General Inforn	nation	Diana B. Zimmarm	on Troff	io Engine	orina				Intersec			- 1	ŢŢŢ		
Agency		Diane B. Zimmerma	an Irali			A 4 .	1 0000		Duration		0.250		-		
Analyst		DBZ		-		Aug 1			Area Typ	e	Other				
Jurisdiction		O								D	0.95	4.5	1 4 77 6		•
Urban Street		Smyrna Parkway				-			Analysis	Period	1> 4:4	45	-		
Intersection	41	I 265 WB		File Na	me	PIVI 24	NB.xus	5					- 4	111	2.4
Project Descrip	tion	Smyrna Village												14141	n III
Demand Inform	nation				EB			V	VB		NB			SB	
Approach Move				L	T	R	L	_	T R	L	T	R	L	T	R
Demand (v), veh/h				_		<u> </u>	341	+	283	131	525	+ '`	1	624	26
Demand (v), v	CII/II						041		200	101	020		-	024	200
Signal Informa	tion					IJ.	K	J		\top					
Cycle, s	71.6	Reference Phase	2	1	E4	EW	∠	\exists					4	~	
Offset, s	0	Reference Point	End	0	<u> </u>	<u>":</u> ↑	10.0	1	0 00			1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		3.5	18.9 4.0	0.		0.0	-	< /			>
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.8	2.5	2.6	0.		0.0		5	6	7	_
Timer Results				EBL		EBT	WBI		WBT	NBI	-	NBT	SB		SBT
Assigned Phas	e				\neg			\neg	8	5	\neg	2		$\overline{}$	6
Case Number									9.0	1.0		4.0			7.3
Phase Duration, s					\neg			\neg	25.5	12.5	5	46.2		$\overline{}$	33.7
Change Period, (Y+R c), s									6.6	6.8		6.0			6.0
Max Allow Hea		\top			\neg	5.2	4.6		5.1		\neg	5.1			
Queue Clearan							15.3	5.2		8.1			12.7		
Green Extension					\neg	3.5	0.5	_	15.4		_	15.0			
Phase Call Pro						1.00	0.94		1.00			1.00			
Max Out Proba		\top			\neg	0.16	0.00		0.00		\neg	0.03			
Movement Gro	<u> </u>	sults		<u> </u>	EB			W			NB		_	SB	
Approach Move				ㄴ	Т	R	ㄴ	Т		L	T	R	L	T	R
Assigned Move							3		18	5	2		_	6	16
Adjusted Flow		,,					359		298	144	576			680	292
		ow Rate (s), veh/h/l	ln				1781		1572	1781	1766			1738	159
Queue Service		- /:					13.3		12.3	3.2	6.1			10.7	9.8
Cycle Queue C		e Time (g c), s					13.3		12.3	3.2	6.1			10.7	9.8
Green Ratio (g							0.26		0.26	0.49	0.56			0.39	0.3
Capacity (c), v							469		414	422	1981			1345	618
Volume-to-Cap							0.765		0.719	0.340	0.291			0.505	0.47
	, .	t/ln (90 th percentile	,												
		eh/In (90 th percent					8.7		7.4	2.1	3.5			5.9	5.2
		RQ) (90 th percen	tile)				0.00		0.00	0.17	0.00			0.00	0.0
Uniform Delay	` ''						24.3		24.0	11.4	8.3			16.7	16.
Incremental De		**					3.7		3.3	0.5	0.1			0.3	0.5
Initial Queue Delay (d 3), s/veh							0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/veh							28.1		27.3	11.9	8.4			17.0	17.
Level of Service (LOS)							С		С	В	A			В	В
Approach Dela	•			0.0			27.7		С	9.1		Α	17.)	В
Intersection De	lay, s/ve	eh / LOS				17	'.6						В		
	sults				EB			W			NB			SB	
Multimodal Re	Pedestrian LOS Score / LOS														
				2.30	_	В	2.30		B F	1.65	_	B A	1.3	-	A

		HCS	S Sigi	nalized	Inte	rsect	ion Re	esu	Its Sun	nmary					
0									14	41 1 6	41			I do J. do I.	N/III
General Inforn	nation	D: D 7:	T 66						Intersec				- i	ĴŢŢ	
Agency		Diane B. Zimmerm	an Traff	4		I			Duration		0.250		- 2		
Analyst		DBZ				Aug 11			Area Typ	ре	Other		- 6		
Jurisdiction				Time P		PM Pe			PHF		0.95		4		
Urban Street		Smyrna Parkway		Analys		-			Analysis	Period	1> 4:4	15			
Intersection		I 265 WB		File Na	me	PM 24	B.xus						- 1	<u>ጎተተ</u>	
Project Descrip	tion	Smyrna Village						_						* T * Y	PILIT
Demand Inform	mation				EB			V	/B		NB			SB	
Approach Move				L	T	R	L	_	T R	1	T	R	L	T	F
Demand (v), veh/h					1	341		296	_	551	+		640	27	
Signal Informa	T .	T=				24	8	Ⅎ					-+	_	
Cycle, s	73.5	Reference Phase	2		51	1:7	"					1	2	3	
Offset, s	0	Reference Point	End	Green	5.7	29.1	19.3	0.	0.0	0.0					_
Uncoordinated		Simult. Gap E/W	On	Yellow		3.5	4.0	0.		0.0		\ 4	L		~
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.8	2.5	2.6	0.	0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBL		WBT	NB		NBT	SBI		SBT
Assigned Phas	ρ			EDL		EDI	WDL	+	8	5	-	2	301	-	6
Case Number								\dashv	9.0	1.0		4.0		+	7.3
Phase Duration, s								7	25.9	12.5	-	47.6		\neg	35.1
Change Period, (Y+R c), s								\dashv	6.6	6.8		6.0			6.0
Max Allow Headway (<i>MAH</i>), s								_	5.2	4.6	_	5.1		$\overline{}$	5.1
Queue Clearance Time (g s), s								\dashv	15.7	5.2	-	8.6			13.2
Green Extension					7	3.6	0.5	_	16.5		-	15.9			
Phase Call Pro					\dashv	1.00	0.98	$\overline{}$	1.00		-	1.00			
Max Out Probability								\neg	0.18	0.00		0.01		\top	0.04
Movement Gro		sults			EB			WI	_		NB T		<u> </u>	SB T	
Approach Move				L	Т	R	L 3		R	L	_	R	L	_	R
Assigned Move		·					_		18	5	2		_	6	10
Adjusted Flow		,,	1			-	359		312	144	605			699	30
		ow Rate (s), veh/h/	ın				1781		1572	1781	1766			1738	159
Queue Service		<u> </u>					13.7		13.4	3.2	6.6			11.2	10
-		e Time (g c), s					13.7		13.4	3.2	6.6			11.2	10
Green Ratio (g							0.26		0.26	0.50	0.57			0.40	0.4
Capacity (c), \		atio (V)					468		413	419	2000			1378	63
Volume-to-Cap		. ,	. \				0.768		0.755	0.343	0.302			0.507	0.4
		t/In (90 th percentile					0.0		0.0	2.4	2.0			0.4	- E
	· · · · ·	eh/ln (90 th percent					9.0		8.0	2.1	3.8			6.1	5.
		RQ) (90 th percen	uie)				0.00		0.00	0.18	0.00			0.00	0.0
Uniform Delay	, ,.						25.0		24.9	11.4 0.5	8.3			16.8	0.
Incremental Delay (d 2), s/veh							3.8		4.0	_	0.1				-
Initial Queue Delay (d 3), s/veh Control Delay (d), s/veh							0.0		0.0	0.0	0.0			0.0	17
							28.8		28.9	11.9	8.4			17.0 B	17.
Level of Service				0.0		4	C		C	B 0.1	A	_	477		B
Approach Dela				0.0		17	28.9		С	9.1		Α	17.0 B	,	В
Intersection De	ay, S/V	EII / LUS				17	. 8						D		
	sults				EB			WI	3		NB			SB	
Multimodal Re	Multimodal Results			2.30		_		_				-			_
	S Score	Pedestrian LOS Score / LOS				В	2.30		В	1.6	5	В	1.38	3	Α

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esu	lts Sun	ımary					
General Inforn	nation								Intersec	tion Inf	ormotic	n		14144	a U
	nation	Diana B. Zimmarm	on Troffi	io Engin	ooring					- 1	111				
Agency		Diane B. Zimmerm	an Iraii			Aug 1	1 2022		Duration.	2					
Analyst Jurisdiction		DBZ		Time F		PM P	1, 2022		Area Typ	е	Other 0.95				~_
Urban Street		Smyrna Parkway			is Year		No Build		Analysis	Doriod	1> 4:4	15	- 3		•
	ntersection I 265 WB					-	4 NB.xus		Allalysis	renou	17 4.4	+0	-		
	Project Description Smyrna Village					LIM 9	+ ND.Xu						- 4	111	2.0
Project Descrip	MOH	Sillyilla village													
Demand Inform	Demand Information						$\overline{}$	٧	VB		NB			SB	
Approach Movement				L	Т	R	L	Τ.	TR	L	Т	R	L	T	R
Demand (v), veh/h							377	†	313	145	580			689	29
Signal Informa	1	T = -				21	8	\exists					-4	_	
Cycle, s	78.9	Reference Phase	2	-	51	1:7	"					1	2	3	
Offset, s	0	Reference Point	End	Green		31.3	21.9	0.	0.0	0.0					Τ,
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.5	4.0	0.		0.0		\ 4	ļ		~
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.8	2.5	2.6	0.	0 0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SB		SBT
Assigned Phas				EDI	-	EDI	VVDI	-	8	5	-	2	30	-	6
Case Number								-	9.0	1.0		4.0			7.3
Phase Duration, s					_		_	-	28.5	13.0	_	50.4		-	37.3
Change Period, (Y+R c), s								\dashv	6.6	6.8	_	6.0			6.0
Max Allow Headway (MAH), s					_			\rightarrow	5.2	4.6	_	5.1		-	5.1
				_				_	18.3	5.9		9.6			14.4
Queue Clearance Time ($g s$), s Green Extension Time ($g e$), s					_			_	3.5	0.6	_	17.6		-	16.9
Phase Call Probability									1.00	0.97	-	1.00			1.00
Max Out Probability								7	0.33	0.00	_	0.01		\neg	0.05
Movement Gro	_	sults			EB		_	W	_		NB			SB	
Approach Move				L	T	R	L	Т	_	L	Т	R	L	T	R
Assigned Move							3		18	5	2			6	16
Adjusted Flow				\vdash			397		329	159	636		<u> </u>	719	309
		ow Rate (s), veh/h/	In				1781		1572	1781	1766			1738	159
Queue Service				$\overline{}$			16.3		15.1	3.9	7.6			12.4	11.4
		e Time (g c), s					16.3		15.1	3.9	7.6			12.4	11.4
Green Ratio (g							0.28		0.28	0.50	0.56		_	0.40	0.4
Capacity (c), v							495		437	409	1988			1381	638
Volume-to-Cap		· ,	. \				0.802		0.755	0.389	0.320			0.521	0.48
	, , ,	t/ln (90 th percentile	,	_			10.0		-					 	-
	· /-	eh/ln (90 th percent					10.8		9.0	2.6	4.4			6.7	5.9
		RQ) (90 th percen	uie)				0.00		0.00	0.22	0.00		_	0.00	0.0
Uniform Delay							26.5		26.1	12.4	9.2			18.1	17.
Incremental Delay (d 2), s/veh							5.9		4.6	0.6	0.1			0.3	0.5
Initial Queue Delay (d 3), s/veh							0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/veh Level of Service (LOS)							32.4		30.7	13.0	9.3			18.3	18.3 B
				0.0			C 31.6		C	B	A	D	40	B 2	
Approach Delay, s/veh / LOS				0.0		10	31.6 9.5)	С	10.1		В	18.3 B	3	В
	iay, 5/VE	an / LOS				13	0.0						J		
											NID				
Intersection De	sults				EB			W	В		NB			SB	
Intersection De		/LOS		2.30	_	В	2.30	_	ВВ	1.65		В	1.39		Α

		нся	Sigr	nalize	d Inte	rsec	tion R	esu	Its Sun	ımary					
0									lata a	· · · · · · · · · · · ·	41			الطياراة إ	K TI
General Inform	nation	Diana B. Zimana maa	T	. Familia					Intersec		1		- 1	Ĵij	2 4
Agency		Diane B. Zimmerma	an Iraff			I A	14 0000		Duration,		0.250		-		
Analyst		DBZ		-			11, 2022		Area Typ	е	Other		→ 4		
Jurisdiction		O		Time F		PM P			PHF	Davisal	0.95	45	- 1		, _
Urban Street		Smyrna Parkway		-	is Year	-			Analysis	Period	1> 4:4	15	-		
Intersection	tion.	I 265 WB		File Na	ame	PM 3	4 B.xus						- 4	111	4.6
Project Descrip	uon	Smyrna Village												14141	rijii
Demand Inform	mation				EB			٧	/B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	T R	L	Т	R	L	Т	R
Demand (v), v	/eh/h						377		326	145	606			705	304
01	41														
Signal Informa	1	Deference Dhase		-		2	"	\exists					κŤ	_	
Cycle, s	80.9	Reference Phase	2	1	51	1:2	`					1	2	3	
Offset, s	0	Reference Point	End	Green		32.8	22.3	0.		0.0					5
Uncoordinated		Simult. Gap E/W	On	Yellow	2.8	3.5 2.5	2.6	0.		0.0		_\	t i	-	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.5	2.0	0.	0.0	10.0		5	ь		
Timer Results				EBI		EBT	WB	L	WBT	NBL	.	NBT	SB	L	SBT
Assigned Phas	signed Phase se Number				\top			\neg	8	5		2		-	6
Case Number	e Number se Duration, s								9.0	1.0		4.0			7.3
Phase Duration	se Number							\neg	28.9	13.1		51.9		\neg	38.8
Change Period	se Duration, s nge Period, (Y+R c), s								6.6	6.8		6.0			6.0
Max Allow Hea	e Duration, s Ige Period, (Y+R c), s Allow Headway (MAH), s							\neg	5.2	4.6		5.1			5.1
Queue Clearan	e Period, (Y+R c), s								18.8	5.9		10.1			14.9
Green Extension	n Time	(g e), s							3.5	0.6		18.8			17.9
Phase Call Pro	bability								1.00	0.97		1.00			1.00
Max Out Proba	bility								0.37	0.00		0.01			0.06
Movement Cre	un Ba	ulto.			EB			W	D		NB			SB	
Approach Move		suits		L	T	R	L	T		L	Т	R	L	T	R
Assigned Move				-	<u>'</u>	K	3	H	18	5	2		-	6	16
Adjusted Flow) veh/h					397	_	343	159	664			738	318
		ow Rate (s), veh/h/l	n				1781	-	1572	1781	1766			1738	1598
Queue Service		, ,,	"				16.8		16.4	3.9	8.1		_	12.9	12.0
Cycle Queue C		- ,.					16.8		16.4	3.9	8.1		_	12.9	12.0
Green Ratio (g		c IIIIc (g c), 3					0.28		0.28	0.51	0.57		_	0.41	0.41
Capacity (c), v							492		434	405	2007			1411	649
Volume-to-Cap		atio (X)					0.806		0.790	0.392				0.523	0.49
		t/In (90 th percentile	:)				5.555		5.7.00	5.502	2.307			5.525	50
		eh/ln (90 th percenti					11.1		9.8	2.6	4.7			7.0	6.1
	, ,	RQ) (90 th percent					0.00		0.00	0.22	0.00			0.00	0.00
Uniform Delay		.,,,					27.3		27.1	12.5	9.3			18.1	17.8
Incremental De	` ''						6.4		6.3	0.6	0.1			0.2	0.5
Initial Queue D		1.					0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (,.					33.6		33.4	13.1	9.4			18.4	18.3
Level of Service							С		С	В	A			В	В
Approach Dela				0.0			33.5	5	С	10.1	_	В	18.		В
Intersection De						2	0.1						C		
					EB			W	В		NB			SB	
Multimodal Re				_	_		-	_					_		
Multimodal Re		/ LOS		2.31	_	В	2.31	_	B	1.65		В	1.3		Α

		ŀ	HCS T	Two-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						_
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimn	nerman T	Fraffic En	gineerin	g	Jurisd	liction								
Date Performed	8/11/						East/	West Str	eet		Front	age Rd				
Analysis Year	2022						North	n/South :	Street		Smyrr	na Parkw	ay			
Time Analyzed	AM P	eak					Peak	Hour Fac	tor		0.88					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyr	na Villag	e													
Lanes																
				7447777	្ត Maior	1 1 1	† † ř	74476								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				Т	TF
Volume (veh/h)		0		0					0	1	575				608	2
Percent Heavy Vehicles (%)	_	0		0					3	0						
Proportion Time Blocked	_															
Percent Grade (%)	_		0													
Right Turn Channelized	-															
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.80		6.90						4.10						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.50		3.30						2.20						
Delay, Queue Length, an	d Leve	l of S	_													
Flow Rate, v (veh/h)	1		0							1						
Capacity, c (veh/h)			0							912						
v/c Ratio	1									0.00						
95% Queue Length, Q ₉₅ (veh)										0.0						
Control Delay (s/veh)										9.0						
Level of Service (LOS)										А						
									I	0	.0		I			
Approach Delay (s/veh) Approach LOS	_										Α					

		ŀ	ICS 1	Two-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						_
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimn	nerman T	Traffic En	gineerin	g	Juriso	liction								
Date Performed	8/11/	2022					East/	West Str	eet		Front	age Rd				
Analysis Year	2024						North	/South	Street		Smyri	na Parkw	ay			
Time Analyzed	AM P	eak No I	Build				Peak	Hour Fac	tor		0.88					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyri	na Villag	e													
Lanes																
				1447177	្សាក្ Maio	ን ተ ተ ተ ፖ r Street: Nor	1 1 1	74474								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				Т	TF
Volume (veh/h)	_	0		0					0	1	587				620	2
Percent Heavy Vehicles (%)		0		0					3	0						
Proportion Time Blocked	-															
Percent Grade (%)	+		0													
Right Turn Channelized	+															
Median Type Storage				Left	Only								1			_
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.80		6.90						4.10						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.50		3.30						2.20						<u> </u>
Delay, Queue Length, an	d Leve	l of S	ervice	1												
Flow Rate, v (veh/h)			0							1						
Capacity, c (veh/h)			0							901						
v/c Ratio										0.00						
95% Queue Length, Q ₉₅ (veh)										0.0						
Control Delay (s/veh)										9.0						
Level of Service (LOS)										А						
Ecver or service (Eos)											0		I			
Approach Delay (s/veh)	_										.0 A					

				Two-			_		ПСРС	,,,,						
General Information							Site	Inforr	natio	1						
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimn	nerman 1	raffic En	gineerin	g	Jurisd	iction								
Date Performed	8/11/	2022					East/\	Nest Stre	eet		Front	age Rd				
Analysis Year	2024						North	/South :	Street		Smyri	na Parkw	ay			
Time Analyzed	AM P	eak Buil	d				Peak	Hour Fac	tor		0.88					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyri	na Villag	е													
Lanes																
				1447477		ን † 1 ተ ቀ ሃ r Street: Nor		4 + 4 4 4 4								
Vehicle Volumes and Adj	justme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	_
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	_	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes	+	0	1	0		0	0	0	0	1	2	0	0	0	2	С
Configuration	-	25	LR							L	T				T	TI
Volume (veh/h)	+	25		37					0	13	587				620	10
		0	ı	0					3	0						L
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Proportion Time Blocked Percent Grade (%)			0													
Proportion Time Blocked Percent Grade (%) Right Turn Channelized			0	Left	Only								1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	laadwa		0	Left	Only								1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H	leadwa	ys	0		Only								1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	leadwa	ys 7.5	0	6.9	Only					4.1			1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	ys 7.5 6.80	0	6.9 6.90	Only					4.10			1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	leadwa	7.5 6.80 3.5	0	6.9 6.90 3.3	Only					4.10 2.2			1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50		6.9 6.90 3.3 3.30	Only					4.10						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.80 3.5 3.50	ervice	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)		7.5 6.80 3.5 3.50	ervice	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.80 3.5 3.50	70 473	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 15 894						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.80 3.5 3.50	70 473 0.15	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 15 894 0.02						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.80 3.5 3.50	70 473 0.15 0.5	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 15 894 0.02 0.1						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.80 3.5 3.50	70 473 0.15 0.5 13.9	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 15 894 0.02 0.1 9.1						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.80 3.5 3.50	70 473 0.15 0.5	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 15 894 0.02 0.1 9.1 A	.2					

		,	105	iwo-	vvay	Stop	-Cor	itrol	керс	ort						
General Information							Site	Inforr	natio	ı						
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimm	erman 1	raffic En	gineerin	g	Jurisd	liction								
Date Performed	8/11/	2022					East/\	Nest Str	eet		Front	age Rd				
Analysis Year	2034						North	/South :	Street		Smyri	na Parkw	<i>r</i> ay			
Time Analyzed	AM P	eak No l	Build				Peak	Hour Fac	tor		0.88					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyri	na Villag	e													
Lanes																
				1447177		ን ተ ተ ቍ ጕ r Street: Nor		14474								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	_
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	F
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	-
Number of Lanes	_	0	1	0		0	0	0	0	1	2	0	0	0	2	(
Configuration	_		LR							L	T				T	T
Volume (veh/h)	+	0		0					0	1	648				685	2
Percent Heavy Vehicles (%)	_	0		0					3	0						L
Proportion Time Blocked	+															
Percent Grade (%)	+-		0													
Right Turn Channelized	+															
Median Type Storage				Left	Only								1			
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						L
Critical Headway (sec)		6.80		6.90						4.10						L
Base Follow-Up Headway (sec)	_	3.5		3.3						2.2					_	L
Follow-Up Headway (sec)		3.50		3.30						2.20						L
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			0							1						
Capacity, c (veh/h)			0							846						
v/c Ratio										0.00						
95% Queue Length, Q ₉₅ (veh)										0.0						
Control Delay (s/veh)										9.3						
Level of Service (LOS)										А						
	1				I				l	0	.0		I			
Approach Delay (s/veh)	+								_							_

		ŀ	ICS T	wo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimn	erman 1	raffic En	gineerin	g	Jurisc	liction								
Date Performed	8/11/	2022					East/	Nest Stre	eet		Front	age Rd				
Analysis Year	2034						North	/South :	Street		Smyr	na Parkw	/ay			
Time Analyzed	AM P	eak Build	i				Peak	Hour Fac	tor		0.88					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyri	na Villag	e													
Lanes																
				74 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4	คุำ	111	1 1 1	74474								
Vehicle Volumes and Ad	ljustme	nts			iviajoi	Jueen Noi	u1-300ti1									
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
		0	1	0	l .	0		0		1		0	0	0	2	0
Number of Lanes		U	<u>'</u>	L ů		0	0	U U	0	'	2		Ů	_	-	-
Number of Lanes Configuration			LR			0	0		0	L	T T				T	TF
		25	-	37		0	0	0	0	_		0	Ů		T 685	\vdash
Configuration			-				0			L	Т		Ů		-	\vdash
Configuration Volume (veh/h)		25 0	LR	37			0		0	L 13	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)		25 0	-	37			0		0	L 13	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized		25 0	LR	37					0	L 13	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage		25	LR	37	Only				0	L 13	Т		1		-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	leadwa	25	LR	37	Only				0	L 13	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	leadwa	25	LR	37	Only				0	L 13	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H	leadwa	25 0	LR	37 0	Only				0	L 13 0	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	leadwa	25 0 ys	LR	37 0 Left	Only				0	L 13 0	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	Headwa	25 0 ys 7.5 6.80	LR	37 0 Left 6.9 6.90	Only				0	L 13 0	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)		25 0 7.5 6.80 3.5 3.50	LR	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2	Т				-	-
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		25 0 7.5 6.80 3.5 3.50	LR	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, ar		25 0 7.5 6.80 3.5 3.50	LR	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, ar Flow Rate, v (veh/h)		25 0 7.5 6.80 3.5 3.50	LR D O Price 70	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)		25 0 7.5 6.80 3.5 3.50	1 LR	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, ar Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		25 0 7.5 6.80 3.5 3.50	100 100 100 100 100 100 100 100 100 100	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20 15 839 0.02	Т				-	\vdash
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, ar Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q95 (veh)		25 0 7.5 6.80 3.5 3.50	Pervice 70 437 0.16 0.6	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20 15 839 0.02 0.1	Т				-	TF
Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, ar Flow Rate, v (veh/h) V/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		25 0 7.5 6.80 3.5 3.50	70 437 0.16 0.6 14.8	37 0 Left 6.9 6.90 3.3 3.30	Only				0	L 13 0 4.1 4.10 2.2 2.20 15 839 0.02 0.1 9.4 A	Т				-	-

		ŀ	HCS -	Two-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						_
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	e B Zimn	nerman 1	Fraffic En	gineerin	g	Jurisc	liction				_				
Date Performed	8/11/	2022					East/	West Str	eet		Front	age Rd				
Analysis Year	2022						North	n/South :	Street		Smyri	na Parkw	/ay			
Time Analyzed	PM P	eak					Peak	Hour Fac	tor		0.96					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyr	na Villag	e													
Lanes																
				74 47 1 7 C	<mark>គ</mark> ា _{Majol}	ን ተ ተ ቀ ሦ r Street: No	↑ ↑ ↑	7 4 4 4								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	_
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	_	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes	+	0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration	+-		LR							L	T				T	TF
Volume (veh/h)	+	0		3					0	2	794				865	1
Percent Heavy Vehicles (%)	+	0		0					3	0						⊢
Proportion Time Blocked	+															
Percent Grade (%)	+-		0													
Right Turn Channelized	+			Loft	Only								1			
Median Type Storage				Leit	Only								1			
Critical and Follow-up H	leadwa	_														_
Base Critical Headway (sec)	_	7.5		6.9						4.1					_	╙
Critical Headway (sec)	+	6.80		6.90						4.10						-
Base Follow-Up Headway (sec)	+	3.5		3.3						2.2						⊢
Follow-Up Headway (sec)		3.50		3.30						2.20						_
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)			3							2						╙
C			561							762						
Capacity, c (veh/h)			0.01							0.00						
v/c Ratio			0.0							0.0						
v/c Ratio 95% Queue Length, Q ₉₅ (veh)							1	l .	I	9.7	I	I	I	ı	1	1
v/c Ratio 95% Queue Length, Q _{os} (veh) Control Delay (s/veh)			11.5													
v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh) Level of Service (LOS)			В							А						
v/c Ratio 95% Queue Length, Q _{os} (veh) Control Delay (s/veh)			-							0	.0 A					

		ŀ	ICS T	آwo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	1						
Analyst	Diane	Zimme	rman				Inters	ection			Fronta	age Road	d			
Agency/Co.	Diane	B Zimm	erman 1	raffic En	gineerin	q		liction								
Date Performed	8/11/				-		East/\	Nest Stre	eet		Fronta	age Rd				
Analysis Year	2024						North	/South :	Street		Smyrr	na Parkw	ay			
Time Analyzed	PM P	eak No E	Build					Hour Fac			0.96					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyri	na Villag	e													
Lanes																
				144444	<mark>ត</mark> ា _{Maior}	1 1 1	† † r	7 4 4 4 4 4								
Vehicle Volumes and Ad	justme	nts														
Approach	\perp	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	\perp	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration	\bot		LR							L	T				T	TR
Volume (veh/h)		0		3					0	2	810				882	1
Percent Heavy Vehicles (%)		0		0					3	0						
Tercent rieavy venicles (70)																
Proportion Time Blocked													-			
Proportion Time Blocked Percent Grade (%)			0													
Proportion Time Blocked Percent Grade (%) Right Turn Channelized			0													
Proportion Time Blocked Percent Grade (%)			0	Left	Only								1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized	eadwa		0	Left	Only								1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	eadwa		0	Left	Only					4.1			1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H	eadwa	ys	0		Only					4.1 4.10			1			
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	ys 7.5	0	6.9	Only											
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	ys 7.5 6.80	0	6.9 6.90	Only					4.10						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)		7.5 6.80 3.5 3.50		6.9 6.90 3.3 3.30	Only					4.10 2.2						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50		6.9 6.90 3.3 3.30	Only					4.10 2.2						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.80 3.5 3.50	ervice	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)		7.5 6.80 3.5 3.50	ervice	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.80 3.5 3.50	ervice 3 554	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 2 750						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.80 3.5 3.50	3 554 0.01	6.9 6.90 3.3 3.30	Only					2.2 2.20 2 750 0.00						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.80 3.5 3.50	3 554 0.01 0.0	6.9 6.90 3.3 3.30	Only					2.20 2.20 2 750 0.00 0.0						
Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.80 3.5 3.50	3 554 0.01 0.0	6.9 6.90 3.3 3.30	Only					2.2 2.20 2 750 0.00 0.0 9.8 A	.0					

		ŀ	ICS T	wo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	1						
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimm	erman T	raffic En	gineerin	g	Jurisd	liction								
Date Performed	8/11/	2022					East/\	Nest Str	eet		Front	age Rd				
Analysis Year	2024						North	/South :	Street		Smyri	na Parkw	ray			
Time Analyzed	PM Pe	eak Build	i				Peak	Hour Fac	tor		0.96					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyrr	na Villag	e													
Lanes																
				1447477	្រ Maio	1 1 1	1 1 1	74474								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TF
Volume (veh/h)		14		27					0	41	810				882	27
Percent Heavy Vehicles (%)		0		0					3	0					_	
Proportion Time Blocked	\perp															
Percent Grade (%)	+		0													
Right Turn Channelized	+-															
	- 1			Left	Only								1			_
Median Type Storage																
	leadwa	ys														
Critical and Follow-up H Base Critical Headway (sec)	leadwa	ys 7.5		6.9						4.1					_	
Critical and Follow-up H	leadwa			6.9 6.90						4.1 4.10						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	leadwa	7.5 6.80 3.5		6.90 3.3						4.10 2.2						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50		6.90 3.3 3.30						4.10						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)		7.5 6.80 3.5 3.50	ervice	6.90 3.3 3.30						4.10 2.2						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50	ervice 43	6.90 3.3 3.30						4.10 2.2						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.80 3.5 3.50		6.90 3.3 3.30						4.10 2.2 2.20						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.80 3.5 3.50	43	6.90 3.3 3.30						4.10 2.2 2.20						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.80 3.5 3.50	43	6.90 3.3 3.30						4.10 2.2 2.20 43 733						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.80 3.5 3.50	43 383 0.11	6.90 3.3 3.30						4.10 2.2 2.20 43 733 0.06						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.80 3.5 3.50	43 383 0.11 0.4	6.90 3.3 3.30						4.10 2.2 2.20 43 733 0.06 0.2						
Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.80 3.5 3.50 l of Se	43 383 0.11 0.4 15.6	6.90 3.3 3.30						4.10 2.2 2.20 43 733 0.06 0.2 10.2 B	.5					

		ŀ	ICS T	[wo-	Way	σιομ	-001	itroi	Repo	ort						
General Information							Site	Inforr	natio	1						_
Analyst	Diane	Zimmei	rman				Inters	ection			Front	age Road	d			
Agency/Co.	Diane	e B Zimm	nerman T	raffic En	gineerin	g	Jurisd	iction								
Date Performed	8/11/	2022					East/\	Nest Stre	eet		Front	age Rd				
Analysis Year	2034						North	/South 5	Street		Smyrı	na Parkw	ray			
Time Analyzed	PM Pe	eak No E	Build				Peak	Hour Fac	tor		0.96					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyrı	na Villag	e													
Lanes																
				14444	<mark>ត</mark> ា Major	기 † 1 1 후 꾸 Street: Nor	↑ ↑ ↑	74474								
Vehicle Volumes and Ad	justme	nts														
Approach	\bot	Eastb	ound			Westl	oound			North	bound			South	bound	_
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes	+	0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration	+		LR							L	T				T	TF
Volume (veh/h)		0		3					0	2	895				974	1
Percent Heavy Vehicles (%)		0		0					3	0						
Proportion Time Blocked																
B . G . L . CO.			0		l				l							
Percent Grade (%)	+												l .			
Right Turn Channelized				Loft	Only								1			
Right Turn Channelized Median Type Storage				Left	Only								1			
Right Turn Channelized Median Type Storage	eadwa	ys			Only								1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	leadwa	ys 7.5		6.9	Only					4.1			1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	leadwa	ys 7.5 6.80		6.9 6.90	Only					4.10			1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	leadwa	7.5 6.80 3.5		6.9 6.90 3.3	Only					4.10 2.2			1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50		6.9 6.90 3.3 3.30	Only					4.10			1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50	ervice	6.9 6.90 3.3 3.30	Only					4.10 2.2						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.80 3.5 3.50	ervice 3	6.9 6.90 3.3 3.30	Only					4.10 2.2						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.80 3.5 3.50		6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)		7.5 6.80 3.5 3.50	3	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.80 3.5 3.50	3 516	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 2 691						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.80 3.5 3.50	3 516 0.01 0.0 12.0	6.9 6.90 3.3 3.30	Only					2.20 2.20 2 691 0.00 0.0						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pollow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.80 3.5 3.50	3 516 0.01 0.0 12.0 B	6.9 6.90 3.3 3.30	Only					2.20 2.20 2 691 0.00 0.0 10.2						
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.80 3.5 3.50 I of Se	3 516 0.01 0.0 12.0	6.9 6.90 3.3 3.30	Only					4.10 2.2 2.20 2 691 0.00 0.0 10.2 B	.0 A					

		ŀ	HCS T	Two-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	1						_
Analyst	Diane	Zimme	rman				Inters	ection			Front	age Roa	d			
Agency/Co.	Diane	B Zimn	nerman 1	Fraffic En	gineerin	g	Jurisc	liction								
Date Performed	8/11/	2022					East/	Nest Str	eet		Front	age Rd				
Analysis Year	2034						North	/South :	Street		Smyri	na Parkw	/ay			
Time Analyzed	PM P	eak Build	d				Peak	Hour Fac	tor		0.96					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Smyrr	na Villag	ie .													
Lanes																
				7447777	្សាក់ Major	ን ተ ተ ቀ ሃ r Street: No	1 1 1	744746								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	\perp	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration	\bot		LR							L	T				T	TF
Volume (veh/h)	+-	14		27					0	41	895				974	27
Percent Heavy Vehicles (%)	+	0		0					3	0						
Proportion Time Blocked	+															
Percent Grade (%)	_		0													
Right Turn Channelized	+-			1 - 61	0-1-											
Median Type Storage				Len	Only								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.5	_	6.9						4.1					_	
Critical Headway (sec)	-	6.80		6.90						4.10						
Base Follow-Up Headway (sec)	+	3.5		3.3		_	_			2.2					_	
Follow-Up Headway (sec)		3.50		3.30						2.20						_
	d Leve	l of S	ervice	•												
Delay, Queue Length, an			43							43						
Delay, Queue Length, an Flow Rate, v (veh/h)			347							675						
•			_							0.06						
Flow Rate, v (veh/h)			0.12												_	
Flow Rate, v (veh/h) Capacity, c (veh/h)			0.12							0.2						
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)			0.4 16.8							10.7						
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh) Level of Service (LOS)			0.4 16.8 C							10.7 B						
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)			0.4 16.8							10.7 B	.5 A					

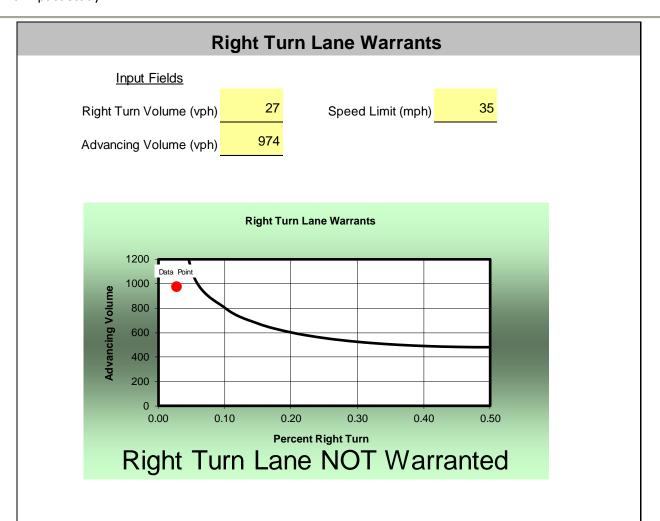
		нся	Sigi	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary					
General Inforr	nation							T	Intersec	tion Inf	ormati	on.	Į J	4 444	ЬĻ
Agency	iiutioii	Diane B. Zimmerma	an Traff	ic Engin	eering			\rightarrow	Duration		0.250			41	
Analyst		DBZ	an null		sis Date	Aug 1	1. 2022	\rightarrow	Area Typ		Other		- J		
Jurisdiction		1002		Time F		AM P		\rightarrow	PHF		0.91		→		
Urban Street		Smyrna Parkway			sis Year		Jun	\rightarrow	Analysis	Period	1> 8:	00	- 4		•
Intersection		Manslick		File Na		AM 22	2 XIIS		Analysis	Torroa	11- 0.				
Project Descrip	otion	Smyrna Village		1 110 111	41110	7 1111 22	inao							4 f 4 Y	2 (
r roject Becomp	1011	omyma villago													
Demand Infor	mation				EB			WI	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	F
Demand ($ u$), $ u$	/eh/h			23	14	61	136	15	5 23	49	451	74	19	414	2
Signal Informa	ation					1 11:	I	:			-				
Cycle, s	58.4	Reference Phase	2	1	7	215						<u> </u>	KD2		Z
Offset, s	0	Reference Point	End	<u> </u>	5	11:2						1	2	3	$\overline{\Delta}$
Uncoordinated		Simult. Gap E/W	On	Green		22.8	12.3	0.0		0.0					Ð
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.1	3.6	3.6 2.9	0.0		0.0		5	6	7	~
1 0100 111040	T IXCU	ominata cap iwo	0.11	1.100		1110		10.0	10.0	10.0					
Timer Results	ssigned Phase			EBI	.	EBT	WB	L	WBT	NBI	. T	NBT	SBI	-	SBT
Assigned Phas	signed Phase ase Number				\neg	4		\neg	8	5	\neg	2	1	\neg	6
Case Number	se Number					6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration	nase Duration, s				-	18.8		\neg	18.8	11.6	;	28.0	11.6	3	28.0
Change Period	hase Duration, s hange Period, (Y+R c), s					6.5			6.5	5.6		5.2	5.6		5.2
Max Allow Hea	dway (/	<i>MAH</i>), s				5.3			5.3	4.1		5.1	4.1		5.1
Queue Clearar	ice Time	e (g s), s				4.4			10.7	2.9		14.9	2.4		14.2
Green Extension	on Time	(g e), S				1.8			1.7	0.1		8.0	0.0		8.0
Phase Call Pro	bability				(0.99			0.99	1.00)	1.00	1.00)	1.00
Max Out Proba	bility				(0.00			0.00	0.00)	0.00	0.00)	0.00
Movement Gro	nun Res	culte			EB			WB			NB			SB	
Approach Move		Juits		L	Т	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow) veh/h		25	82		149	42	10	54	494	81	21	478	
		ow Rate (s), veh/h/l	n	1354	1644		1326	1687	7	1781	1856	1585	1739	1869	
Queue Service				0.9	2.4		6.2	1.2	_	0.9	12.9	1.9	0.4	12.2	
		e Time (g ε), s		2.1	2.4		8.7	1.2		0.9	12.9	1.9	0.4	12.2	
Green Ratio (· · · · · · · · · · · · · · · · · · ·		0.21	0.21		0.21	0.21	_	0.49	0.39	0.39	0.49	0.39	
Capacity (c),				380	346		346	355	_	473	725	619	422	730	
Volume-to-Cap		atio (X)		0.067	0.238		0.432	_		0.113	0.681	0.131	0.049	0.655	
		t/In (90 th percentile	:)												
		eh/ln (90 th percenti		0.5	1.6		3.4	0.8		0.5	7.6	1.1	0.2	7.4	
		RQ) (90 th percent		0.17	0.00		0.85	0.00		0.06	0.00	0.07	0.04	0.00	
Queue Storage	(d 1), s	/veh		19.6	19.2		22.8	18.7		9.1	14.8	11.4	9.5	14.6	
Uniform Delay	elay (d 2), s/veh		0.1	0.5		1.2	0.2		0.1	1.5	0.1	0.0	1.4	
Uniform Delay	elay (d	3), s/veh		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Uniform Delay Incremental De		eh		19.7	19.7		24.0	18.9		9.2	16.3	11.6	9.6	16.0	
Uniform Delay Incremental De				В	В		С	В		Α	В	В	Α	В	
Uniform Delay Incremental De Initial Queue D	d), s/v					_	22.9	9	С	15.1		В	15.7	7	В
Uniform Delay Incremental De Initial Queue D Control Delay (d), s/ve e (LOS)			19.7	7	В									
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	d), s/ve e (LOS) y, s/veh	/LOS		19.7	7		6.7						В		
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	d), s/ve e (LOS) y, s/veh lay, s/ve	/LOS		19.7							NID		В	Ç.D	
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	d), s/ve e (LOS) y, s/veh elay, s/ve	/LOS eh/LOS		2.10	EB			WB	В	1.89	NB	В	B 1.89	SB	В

General Inform Agency Analyst Jurisdiction Urban Street Intersection	ation														
Agency Analyst Jurisdiction Urban Street	iution								Intersec	tion Inf	ormatio	nn .		I d J, de L i	a U
Analyst Jurisdiction Urban Street		Diane B. Zimmerma	an Traff	ic Engin	eering			\rightarrow	Duration		0.250			47	
Jurisdiction Urban Street		DBZ	all IIali	_	sis Date	Aug 1	1 2022	$\overline{}$	Area Tyr		Other				
Urban Street		DUZ		Time F		AM Pe		_	PHF		0.91				*7
		Smyrna Parkway			sis Year	_	No Build	_	Analysis	Pariod	1> 8:0	20	===		•
		Manslick		File Na		-	NB.xu	_	Allalysis	renou	1 0.0	JU	-		
	tion			File IV	anne	AIVI Z	FIND.XU	>					- 4	111	2. 6
Project Descript	lion	Smyrna Village	-	_	-	-	-	-	_	_	-	_			A
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move				L	T	R	L	T	_	L	T	R	L	T	TR
Demand (v), ve				23	14	62	139	15	_	50	460	$\overline{}$	19	422	2
Bernana (V), V	CIIII			20	17	02	100		20	00	100	10	10	722	
Signal Informa	tion				T,	IJĘ,	- 5	J							
Cycle, s	59.6	Reference Phase	2	1	16.	E-4-3	, 🔄 🖁	-			•	Y	Φ		
Offset, s	0	Reference Point	End		100	100.0	40.7	100		-		1	2	3	Y
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		3.6	12.7 3.6	0.0		0.0					0
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.1	1.6	2.9	0.0		0.0		5	6	7	
		,													
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phase						4			8	5		2	1	\neg	6
Case Number						6.0		\rightarrow	6.0	1.1		3.0	1.1		4.0
Phase Duration	. S				-	19.2		-	19.2	11.6	3	28.8	11.6	-	28.8
		_	6.5			6.5	5.6	\rightarrow	5.2	5.6	-	5.2			
	Change Period, (Y+Rc), s					5.3		-	5.3	4.1		5.1	4.1	_	5.1
	Max Allow Headway (<i>MAH</i>), s Queue Clearance Time (<i>g</i> s), s					4.5		-	11.0	3.0		15.4	2.4	-	14.7
Green Extension		, = ,:			_	1.8			1.7	0.1		8.2	0.0	_	8.2
Phase Call Prob		(y e), s			-	0.99		-	0.99	1.00		1.00	1.00	-	1.00
Max Out Probat					-	0.00			0.00	0.00	-	0.00	0.00	-	0.00
wax Out Flobat	Jilly					0.00			0.00	0.00		0.00	0.00		0.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	•			L	T	R	L	Т	R	L	Т	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F), veh/h		25	84		153	42	1.0	55	504	82	21	487	
		ow Rate (s), veh/h/l	n	1354	1644		1325	1687		1781	1856	1585	1739	1869	
Queue Service		, ,,		0.9	2.5		6.4	1.2		1.0	13.4	2.0	0.4	12.7	
Cycle Queue Cl		- ,.		2.2	2.5		9.0	1.2		1.0	13.4	2.0	0.4	12.7	
Green Ratio (g/		c fille (gc), s		0.21	0.21		0.21	0.21		0.50	0.40	0.40	0.50	0.40	
Capacity (c), v				381	350		346	359		468	735	628	416	740	
Volume-to-Capa		atio (X)		0.066	0.239		0.442	_	_	0.117	0.686	0.131	0.050	0.658	
		t/ln (90 th percentile	.)	0.000	0.238		0.442	0.110	'	0.117	0.000	0.131	0.000	0.000	
				0.5	17		3.5	0.0		0.6	7.0	1.1	0.2	7.0	
		eh/ln (90 th percenti		0.5	1.7		3.5	0.8		0.6	7.9	1.1	0.2	7.6	
		RQ) (90 th percent	uie)	0.17	0.00		0.89	0.00		0.06	0.00	0.07	0.04	0.00	
, ,	niform Delay (d 1), s/veh			19.8	19.4		23.2	18.9		9.2	14.9	11.5	9.7	14.7	
	, ,	,,		0.1	0.5		1.3	0.2		0.1	1.5	0.1	0.0	1.4	
Initial Queue De		,,		0.0	0.0		0.0	0.0	+	0.0	0.0	0.0	0.0	0.0	
Control Delay (19.9	19.9		24.5	19.1		9.3	16.5	11.6	9.7	16.1	-
Level of Service				В	В		С	В		Α	В	_ B	A	В	_
Approach Delay				19.9)	В	23.3	3	С	15.2	2	В	15.9)	В
Intersection Del	ay, s/ve	eh / LOS				16	3.9						В		
Maritima1-1 F	l#-				ED.)A/D			NID			0.0	
Multimodal Res		// 00		0.44	EB	D	4.0	WB		4.00	NB	n	4.00	SB	
Pedestrian LOS Bicycle LOS So				2.11 0.67	$\overline{}$	B A	1.91 0.81	-	B A	1.89	-	В	1.89	-	B A

		нся	Sigr	nalize	d Inte	rsect	ion R	esul	ts Sur	nmary					
Conoral Inform	nation							T	Intoroo	tion Inf	ormati	nn.		I de Julie I	БU
General Inform	nation	Diana B. Zimmarm	on Troff	io Engin	ooring			\rightarrow	Intersed		_		- I	47	
Agency		Diane B. Zimmerma	an nan	_		Δ	1 0000	$\overline{}$	Duration	•	0.250		3		
Analyst		DBZ		-		ANA Da		_	Area Typ	Эе	Other		_ _	N	**
Jurisdiction				Time F		AM Pe		_	PHF		0.91				*
Urban Street		Smyrna Parkway		_		2024 E			Analysis	Period	1> 8:	00			
Intersection		Manslick		File Na	ame	AM 24	B.xus							ጎተሰ	
Project Descrip	tion	Smyrna Village	_	_	_	_	_	_		_	_	_		1144	14 (
Demand Infor	mation				EB			WE	3		NB			SB	
Approach Move				L	T	R	L	T	_	1	T	R	1	T	T R
Demand (v), v				23	14	63	142	_	_	53	473	-	19	426	21
Demand (v), v	011/11			20		00	112	10	, 20	00	170	01	10	120	
Signal Informa	ation				7	213	7 5	<u> </u>		\top	_ l				
Cycle, s	60.3	Reference Phase	2		7	502		-				7	Ψ		4
Offset, s	0	Reference Point	End	Green	6.0	24.0	13.0	0.0	0.0	0.0		1	2	3	Y K
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.6	3.6	0.0		0.0					\rightarrow
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.1	1.6	2.9	0.0	_	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NB	-	NBT	SB		SBT
Assigned Phas	е			_		4		_	8	5		2	1	\perp	6
Case Number						6.0			6.0	1.1		3.0	1.1	-	4.0
Phase Duration	Phase Duration, s Change Period, (<i>Y+R c</i>), s					19.5			19.5			29.2	11.6	\rightarrow	29.2
				6.5			6.5			5.2	5.6		5.2		
Max Allow Hea				5.3			5.3	4.1		5.1	4.1		5.1		
Queue Clearan				4.6			11.3	3.0		15.7	2.4		14.9		
Green Extension	n Time	(g e), S				1.8			1.7	0.1		8.4	0.0		8.4
Phase Call Pro	bability					0.99			0.99	1.00)	1.00	1.00)	1.00
Max Out Proba	bility					0.00			0.00	0.00)	0.00	0.00)	0.00
Movement Co	NUE P	oulte.			ED			1A/ID			ND			CD.	
Movement Gro Approach Move		ouits		L	EB T	R	L	WB T	R	L	NB T	R		SB T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
		v) veh/h		25	85	14		42	10	57	508	90		491	16
Adjusted Flow		··	'n				156			-	-	_	21	_	
•		ow Rate (s), veh/h/l	11	1354	1643		1324	1687		1781	1856	1585	1739	1869	
Queue Service				0.9	2.6		6.7	1.2		1.0	13.7	2.2	0.4	12.9	
•		e Time (g c), s		2.2	2.6		9.3	1.2	-	1.0	13.7	2.2	0.4	12.9	
Green Ratio (g				0.22	0.22		0.22	0.22	_	0.50	0.40	0.40	0.50	0.40	
Capacity (c), v		-41- / X/)		383	354		347			463	739	631	413	744	
Volume-to-Cap			,	0.066	0.239		0.450	υ.115		0.123	0.687	0.143	0.051	0.660	
	, ,	t/In (90 th percentile	,	0.5			0.7	2.2		2.2	0.0	4.0	2.2	7.0	
		eh/ln (90 th percent		0.5	1.7		3.7	0.8		0.6	8.0	1.2	0.2	7.8	
		RQ) (90 th percent	tile)	0.17	0.00		0.92	0.00	_	0.07	0.00	0.08	0.04	0.00	
Uniform Delay	<u> </u>			19.9	19.6		23.4	19.0	-	9.3	15.0	11.6	9.8	14.8	
Incremental De		,.		0.1	0.5		1.3	0.2		0.1	1.5	0.1	0.1	1.4	
Initial Queue D				0.0	0.0		0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	
Control Delay (20.0	20.0		24.7	19.2		9.4	16.6	11.7	9.8	16.3	
Level of Service				С	С		С	В		Α	В	В	Α	В	
				20.0)	С	23.6	3	С	15.3	3	В	16.0)	В
Approach Dela	lav. s/ve	eh / LOS				17	'.0						В		
	ay, or re														
Approach Dela Intersection De															
Approach Dela	sults	41.00		2.11	EB	В	1.91	WB	В	1.89	NB	В	1.89	SB	В

Offset, s	on ation ment h/h ion 66.2	Diane B. Zimmerma DBZ Smyrna Parkway Manslick Smyrna Village	an Traffi	Analys Time F Analys File Na	sis Date Period sis Year	AM Pe	1, 2022 eak No Build I NB.xu:	i	Intersection, Duration, Area Typ PHF Analysis	h e	0.250 Other 0.91		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 A 44 1 1 1	Ja (L.
Agency Analyst Jurisdiction Urban Street Intersection Project Description Demand Informat Approach Movem Demand (v), vel Signal Informati Cycle, s Offset, s	on ation ment h/h ion 66.2	DBZ Smyrna Parkway Manslick Smyrna Village	an Traffi	Analys Time F Analys File Na	sis Date Period sis Year ame	AM Pe	eak No Build	i	Duration, Area Typ PHF	h e	0.250 Other 0.91		7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	4L	**
Analyst Jurisdiction Urban Street Intersection Project Description Demand Informat Approach Moven Demand (v), vel Signal Informati Cycle, s Offset, s	on ation ment h/h ion 66.2	DBZ Smyrna Parkway Manslick Smyrna Village	ari mani	Analys Time F Analys File Na	sis Date Period sis Year ame	AM Pe	eak No Build	j	Area Typ PHF	е	Other 0.91		7 P		Α.
Jurisdiction Urban Street Intersection Project Description Demand Informat Approach Moven Demand (v), vel Signal Informati Cycle, s Offset, s	on ation ment th/h ion 66.2	Smyrna Parkway Manslick Smyrna Village		Time F Analys File Na	Period sis Year ame	AM Pe	eak No Build	i	PHF		0.91				**
Urban Street Intersection Project Description Demand Information Approach Movem Demand (v), vel Signal Information Cycle, s Offset, s	ation ment h/h ion 66.2	Manslick Smyrna Village		Analys File Na	sis Year ame	2034	No Build	Ŀ		Period	-	20	-		-
Intersection Project Description Demand Information Approach Movem Demand (v), vel Signal Information Cycle, s Offset, s	ation ment h/h ion 66.2	Manslick Smyrna Village		File Na	ame	-		_	7 111011 9 010				12		
Project Description Demand Information Approach Movem Demand (v), vel Signal Information Cycle, s Offset, s	ation ment h/h ion 66.2	Smyrna Village		L		7	T T D I T C			· oneu	11 010			547	
Demand Informati Approach Movem Demand (v), vel Signal Informati Cycle, s Offset, s	ation ment h/h ion 66.2			_	EB								7	MINY	1- (*
Approach Movem Demand (v), vel Signal Informati Cycle, s Offset, s	ion 66.2			_	EB										
Demand (v), vel Signal Informati Cycle, s Offset, s	ion 66.2			_				WI	В		NB			SB	
Signal Informati Cycle, s Offset, s	ion 66.2 0				Т	R	L	Т	R	L	T	R	L	T	R
Cycle, s Offset, s	66.2 0			25	15	68	154	17	7 25	55	508	83	21	466	23
Cycle, s Offset, s	66.2 0	D. ()				1 11:					-				
Offset, s	0	Reference Phase	2	1	2	215		∄					KÎZ.		A
	$\overline{}$	Reference Point	End		1	<u>":11</u>						1	2	3	Z
	Yes	Simult. Gap E/W	On	Green	-	27.9	14.9	0.0	_	0.0					A
	Fixed	Simult. Gap N/S	On	Yellow Red	2.1	3.6 1.6	3.6 2.9	0.0		0.0		5	6	7	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. mou	Cidit. Oup 14/0	311			1		0.0	0.0	0.0					
Timer Results				EBI		EBT	WB	L	WBT	NBL		NBT	SBI	L	SBT
Assigned Phase						4			8	5		2	1		6
Case Number						6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration, s						21.4		\neg	21.4	11.6		33.1	11.6	3	33.1
Change Period, (Y+R c), s						6.5		\neg	6.5	5.6		5.2	5.6		5.2
Max Allow Headway (<i>MAH</i>), s					\neg	5.3		\neg	5.3	4.1	\neg	5.1	4.1	\neg	5.1
Queue Clearance Time (g s), s						5.0			13.1	3.1		18.4	2.4		17.4
Green Extension Time ($g \in \mathcal{F}_{0}$), s						2.0		\neg	1.9	0.1		9.6	0.0		9.6
Phase Call Proba	Phase Call Probability					1.00			1.00	1.00		1.00	1.00		1.00
Max Out Probabi	ility				(0.00			0.00	0.00		0.01	0.00)	0.01
Manager and Onco					ED			\A/D			NID			0.0	
Movement Grou	-	uits			EB	D		WB T	_		NB T	В	.	SB	ТВ
Approach Movem				7	T 4	R 14	L 3	8	18	5	2	12	1	6	16
Adjusted Flow Ra		\ voh/h		27	91	14	169	46	10	60	557	91	23	537	10
		w Rate (s), veh/h/l	n	1349	1643		1316	1689)	1781	1856	1585	1739	1869	\vdash
Queue Service T			11	1.1	3.0		8.0	1.4	_	1.1	16.4	2.3	0.4	15.4	-
Cycle Queue Cle				2.6	3.0		11.1	1.4		1.1	16.4	2.3	0.4	15.4	
Green Ratio (g/0		Time (ge), s		0.23	0.23		0.23	0.23		0.51	0.42	0.42	0.4	0.42	
Capacity (c), ve				383	371		345	381	_	435	783	669	387	789	
Volume-to-Capac		tio (X)		0.072	0.246		0.491	0.12	_	0.139	0.711	0.136	0.060	0.681	1
<u> </u>		/In (90 th percentile	:)	5.572	5.2.10		5.101	5.12		5.100	5.7 11	5.150	5.555	0.001	
		h/ln (90 th percenti	,	0.6	2.0		4.4	1.0		0.7	9.4	1.3	0.3	9.1	
· · · · · · · · · · · · · · · · · · ·		RQ) (90 th percent		0.21	0.00		1.12	0.00	_	0.08	0.00	0.09	0.04	0.00	
Uniform Delay (, , ,		21.4	21.0		25.6	20.4	_	10.0	15.8	11.7	10.6	15.5	
Incremental Dela				0.1	0.5		1.5	0.2	_	0.1	1.6	0.1	0.1	1.5	
Initial Queue Dela	• •			0.0	0.0		0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	
Control Delay (d		,.		21.5	21.5		27.1	20.6	_	10.2	17.4	11.8	10.6	17.0	
Level of Service	, .			С	С		С	С		В	В	В	В	В	
Approach Delay,	<u> </u>	/LOS		21.5		С	25.7		С	16.1		В	16.7		В
Intersection Dela						18	3.0						В		
Multimodal Res					EB			WB			NB			SB	_
Pedestrian LOS S				2.11 0.68	-	B A	1.92 0.84	-	B A	1.89 1.66	-	В	1.89	-	B A

		нся	Sign	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary					
General Inforr	nation								Intersec	tion Info	ormatic	nn	J	4 44 4	b L
Agency	iiatioii	Diane B. Zimmerma	n Traff	ic Engin	eering			\rightarrow	Duration		0.250			11	
Analyst		DBZ	all IIali		sis Date	Δυα 1	1 2022	$\overline{}$	Area Typ		Other				
Jurisdiction		J J J J J J J J J J J J J J J J J J J		Time F		AM Pe	·	\rightarrow	PHF		0.91				**
Urban Street		Smyrna Parkway		_	sis Year	_		\rightarrow	Analysis	Period	1> 8:0	00	4		•
Intersection		Manslick		File Na		-	B.xus		raidiyolo	- Crica	11 0.0				
Project Descrip	otion	Smyrna Village		1 110 14	41110	, and	D.AGO						7	MINY	1- (*
		jomy, mar i mage													
Demand Infor	mation				EB			W	3		NB			SB	
Approach Mov	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	F
Demand (v), v	/eh/h			25	15	69	157	17	25	58	521	92	21	470	2
Cianal Inform	ntion					T III:	1 5	.							
Signal Informa		Deference Phone	2	1	6	215		<u> </u>			Į		KŤ2		7
Cycle, s Offset, s	67.0	Reference Phase	2 End		5	11:2	_					1	2	3	Ż
Uncoordinated		Simult. Gap E/W	On	Green		28.4	15.3	0.0	_	0.0					4
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.1	3.6 1.6	3.6 2.9	0.0		0.0			6	7	V
T OF OC TWO GC	Tixed	Olinaic. Gap 14/G	OII	Ttou	2.1	1.0	2.0	10.0	10.0	10.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	.	NBT	SBI		SBT
Assigned Phas	e					4		\neg	8	5	\neg	2	1	\neg	6
Case Number						6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration	Phase Duration, s					21.8			21.8	11.6		33.6	11.6	3	33.6
Change Period	, (Y+R	c), S				6.5			6.5	5.6		5.2	5.6		5.2
Max Allow Hea				5.3			5.3	4.1		5.1	4.1		5.1		
Queue Clearar			5.1			13.4	3.2		18.7	2.4		17.7			
Green Extension				2.0			1.9	0.1		9.8	0.0		9.8		
Phase Call Pro	Phase Call Probability					1.00			1.00	1.00		1.00	1.00)	1.00
Max Out Proba	bility					0.00			0.00	0.00		0.01	0.00)	0.01
Movement Gr	oun Bos	sulte			EB			WB			NB			SB	
Approach Mov	_	suits		L	Т	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow) veh/h		27	92	17	173	46	10	62	560	99	23	542	H 10
		ow Rate (s), veh/h/l	n	1349	1642		1314	1689	,	1781	1856	1585	1739	1869	
Queue Service				1.1	3.1		8.3	1.5		1.2	16.7	2.6	0.4	15.7	
		e Time (g ε), s		2.6	3.1		11.4	1.5		1.2	16.7	2.6	0.4	15.7	
Green Ratio (· ······ (y ·), ·		0.23	0.23		0.23	0.23	1	0.51	0.42	0.42	0.51	0.42	
Capacity (c),				385	375		346	386	_	431	786	672	384	792	
Volume-to-Cap		atio (X)		0.071	0.246		0.499			0.145	0.712		0.060	0.684	
		t/ln (90 th percentile	:)												
		eh/ln (90 th percent		0.6	2.1		4.6	1.0		0.7	9.6	1.5	0.3	9.3	
	,,,	RQ) (90 th percent		0.21	0.00		1.16	0.00		0.08	0.00	0.09	0.05	0.00	
Uniform Delay	(d 1), s	/veh		21.6	21.1		25.8	20.5		10.2	15.9	11.9	10.7	15.7	
Official Delay	elay (d 2), s/veh		0.1	0.5		1.6	0.2		0.1	1.6	0.1	0.1	1.5	
Incremental De	elay (d	3), s/veh		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	d), s/v	eh		21.7	21.6		27.4	20.7		10.3	17.5	12.0	10.8	17.2	
Incremental De Initial Queue D Control Delay				С	С		С	С		В	В	В	В	В	
Incremental De Initial Queue D Control Delay (Level of Service	/			21.6	3	С	26.0)	С	16.1		В	16.9	9	В
Incremental De Initial Queue D Control Delay	/	/ LOS		21.6 C 2									_		
Incremental De Initial Queue D Control Delay (Level of Service	y, s/veh			21.0		18	3.1						В		
Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	y, s/veh lay, s/ve			21.0		18	3.1	MD			ND		В	OD.	
Incremental De Initial Queue D Control Delay (Level of Service Approach Dela	y, s/veh elay, s/ve	eh / LOS		2.11	EB	18 B	1.92	WB	В	1.89	NB	В	1.89	SB	В


		нся	Sign	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary					
General Inforr	nation								Intersec	tion Info	ormatic	nn .		المطياماة	la U
Agency	iiatioii	Diane B. Zimmerma	an Traff	ic Engin	eering			\rightarrow	Duration		0.250			41	
Analyst		DBZ	all IIali		is Date	Aug 1	1 2022	$\overline{}$	Area Typ		Other				
Jurisdiction		BBZ		Time F		PM Pe		$\overline{}$	PHF		0.95		→ -		44
Urban Street		Smyrna Parkway		_	is Year	_	Juli	\rightarrow	Analysis	Period	1> 4:4	45			
Intersection		Manslick		File Na		PM 22	XIIS		raidiyolo	Toniou	11 11	10		5.4.7	
Project Descrip	otion	Smyrna Village		1 110 110	41110	1 111 22	inao							1144	1- 1
, reject Becomp		omyrna rmago													
Demand Infor	mation				EB			WE	3		NB			SB	
Approach Mov	ement			L	Т	R	L	Т	R	L	Т	R	L	T	F
Demand (v), v	/eh/h			23	68	72	127	43	33	68	589	140	37	668	2
Cianal Inform	ntion.					T II:		. 1		_					
Signal Information Cycle, s	85.3	Reference Phase	2	1	2	21/2	3	Ħ			ļ		KŤ2		7
Offset, s	00.0	Reference Point	End		5	11:2						1	2	3	\overrightarrow{A}
Uncoordinated		Simult. Gap E/W	On	Green		43.0	18.9	0.0	_	0.0	_				4
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.1	3.6	3.6 2.9	0.0		0.0) 2 K1	6	7	V
T OF OC TWO GC	Tixed	Olinaic. Gap 14/G	OII	Itted	2.1	1.0	12.0	10.0	10.0	10.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	e				\neg	4			8	5		2	1	\neg	6
Case Number						6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration	Phase Duration, s					25.4			25.4	11.6	;	48.2	11.6	3	48.2
Change Period				6.5			6.5	5.6		5.2	5.6		5.2		
Max Allow Hea				5.3			5.3	4.1		5.1	4.1		5.1		
Queue Clearar			8.2			16.9	3.6		23.9	2.8		29.0			
Green Extension				2.3			2.1	0.2		14.4	0.1		14.1		
Phase Call Pro	Phase Call Probability				•	1.00			1.00	1.00)	1.00	1.00)	1.00
Max Out Proba	bility				(0.00			0.02	0.00		80.0	0.00)	0.11
Movement Gr	oun Bos	sulte			EB			WB			NB			SB	
Approach Mov	_	suits		L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow) veh/h		24	147	- 1 -	134	80	10	73	633	150	39	729	H '`
		ow Rate (s), veh/h/l	n	1308	1725		1250	1735		1781	1856	1585	1739	1873	
Queue Service				1.3	6.2		8.7	3.2		1.6	21.9	4.4	0.8	27.0	
		e Time (g ∘), s		4.5	6.2		14.9	3.2		1.6	21.9	4.4	0.8	27.0	
Green Ratio ((30),0		0.22	0.22		0.22	0.22		0.58	0.50	0.50	0.58	0.50	
Capacity (c),				326	383		271	385	_	347	937	800	382	945	
Volume-to-Cap		atio (X)		0.074	0.384		0.493	_	_	0.210		0.188	0.102	0.772	
		t/In (90 th percentile	:)												
Back of Queue		eh/ln (90 th percent		0.7	4.6		4.8	2.4		1.0	12.0	2.6	0.5	15.0	
	,,,	RQ) (90 th percent		0.25	0.00		1.21	0.00	1	0.11	0.00	0.17	0.09	0.00	
Back of Queue				28.9	28.2		34.6	27.1		12.7	15.9	11.6	11.4	17.1	
Back of Queue	(d ₁), s			0.1	0.9		2.0	0.4		0.3	1.0	0.1	0.1	1.9	
Back of Queue Queue Storage), s/veh		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Back of Queue Queue Storage Uniform Delay	elay (d 2	7.		0.0			36.5	27.4		13.0	16.9	11.7	11.5	19.1	
Back of Queue Queue Storage Uniform Delay Incremental De	elay(d a elay(d	3), s/veh		29.0	29.1		00.0								
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay Level of Service	elay (d 2 elay (d (d), s/v e (LOS)	3), s/veh eh			29.1 C		D	С		В	В	В	В	В	
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay	elay (d 2 elay (d (d), s/v e (LOS)	3), s/veh eh		29.0	С	С			С	15.7		В	B 18.7		В
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay Level of Service	elay (d 2 elay (d d), s/ve e (LOS) y, s/veh	3), s/veh eh / LOS		29.0 C	С		D		С			В			В
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay Level of Servic Approach Dela Intersection De	elay (d 2 elay (d d), s/ve e (LOS) y, s/veh elay, s/ve	3), s/veh eh / LOS		29.0 C	С		D 33.1					В	18.7		В
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay Level of Servic Approach Dela	elay (d z elay (d elay (d), s/ve e (LOS) y, s/veh elay, s/ve	3), s/veh eh / LOS eh / LOS		29.0 C	C EB		D 33.1	WB			NB	В	18.7	SB	В

		нся	Sign	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary					
General Inforr	nation								Intersec	tion Inf	ormotic	. n		14741	ьU
Agency	iiatioii	Diane B. Zimmerma	n Troff	ic Engin	ooring				Duration		0.250			47	
Analyst		DBZ	all IIali		is Date	Λυα 1	1 2022	\dashv	Area Typ		Other				
Jurisdiction		DUZ		Time F		PM P		\rightarrow	PHF		0.95		→ +		4.
Urban Street		Smyrna Parkway			sis Year			_	Analysis	Period	1> 4:4	15			•
Intersection		Manslick		File Na		$\overline{}$	1 NB.xu		Analysis	T CHOC	12 4.	10			
Project Descrip	ntion	Smyrna Village		1111014	XIIIC	I IVI Z	T TVD.Xu.						7 7	14147	2- (
1 Toject Besonp	, tion	Cinyma village													
Demand Infor	mation				EB		\top	W	В	Т	NB		\top	SB	
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	T	R
Demand (v), v	/eh/h			23	69	73	130	44	4 34	69	601	143	38	681	25
Signal Informa	otion					1 11:					-				
Cycle, s	87.8	Reference Phase	2	1	2	1215		Ħ			ļ		SÎZ		7
Offset, s	07.0	Reference Point	End		5	11:2						1	2	3	Ż
Uncoordinated		Simult. Gap E/W	On	Green		44.8	19.7	0.0		0.0					A
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.1	3.6 1.6	2.9	0.0		0.0) 5 K	6	7	~
, 3100 Mode	1 IXCU	Simula Sup 14/5	511	1.50		1		0.0	. , 0.0	0.0					
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phas						4		\top	8	5		2	1		6
Case Number						6.0		\dashv	6.0	1.1		3.0	1.1		4.0
	Phase Duration, s				_	26.2		\top	26.2	11.6		50.0	11.6	-	50.0
Change Period, (Y+R c), s					-	6.5		\neg	6.5	5.6		5.2	5.6	-	5.2
Max Allow Hea			5.3		\top	5.3	4.1		5.1	4.1	-	5.1			
Queue Clearance Time (g s), s						8.5		\neg	17.6	3.6		25.0	2.9	,	30.3
Green Extension Time (g_e), s						2.3			2.1	0.2		14.9	0.1		14.5
	Phase Call Probability				1	1.00			1.00	1.00		1.00	1.00	0	1.00
Max Out Proba	bility				(0.00			0.02	0.00		0.10	0.00	0	0.13
Movement Cr	oup Per	ulte			EB			WB			NB			SB	
		ouito		L	T	R	L	T	R	L	T	R	L	T	R
Movement Group Results Approach Movement					_	14	3	8	18	5	2	12	1	6	16
Approach Movement Assigned Movement			7	4 .			_	10				_	0	10	
Assigned Move	ement) veh/h		7 24	149		_	82		74	646	154	40	743	
Assigned Move Adjusted Flow	ement Rate(<i>v</i>	**	n	24	149		137	173 ⁴	1	74 1781	646 1856	154 1585	40 1739	743 1873	
Assigned Move Adjusted Flow Adjusted Satur	ement Rate (<i>v</i> ation Flo	ow Rate (s), veh/h/l	n	24 1306	149 1726		137 1248	1734	_	1781	1856	1585	1739	1873	
Assigned Move Adjusted Flow Adjusted Satur Queue Service	ement Rate (<i>v</i> ation Flo Time (g	ow Rate (s), veh/h/lg s), s	n	24 1306 1.4	149 1726 6.5		137 1248 9.2	173 ² 3.4		1781 1.6	1856 23.0	1585 4.6	1739 0.9	1873 28.3	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C	ement Rate (<i>v</i> ation Flo Time (g Clearanc	ow Rate (s), veh/h/l	n	24 1306 1.4 4.7	149 1726		137 1248	1734		1781	1856	1585	1739	1873	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (g	ement Rate (v ation Flo Time (g Elearance	ow Rate (s), veh/h/lg s), s	n	24 1306 1.4 4.7 0.22	149 1726 6.5 6.5 0.22		137 1248 9.2 15.6 0.22	173 ² 3.4 3.4 0.22	2	1781 1.6 1.6 0.58	1856 23.0 23.0 0.51	1585 4.6 4.6	1739 0.9 0.9 0.58	1873 28.3 28.3	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (g Capacity (c),	ement Rate (v ation Flo Time (g Clearanc g/C) veh/h	ow Rate (s), veh/h/l g s), s e Time (g c), s	n	24 1306 1.4 4.7	149 1726 6.5 6.5		137 1248 9.2 15.6	173 ² 3.4 3.4 0.22 389	2	1781 1.6 1.6	1856 23.0 23.0	1585 4.6 4.6 0.51	1739 0.9 0.9	1873 28.3 28.3 0.51	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap	ement Rate (v ation Flo Time (g Elearance g/C) veh/h acity Ra	ow Rate (s), veh/h/l g s), s e Time (g c), s atio (X)		24 1306 1.4 4.7 0.22 325	149 1726 6.5 6.5 0.22 387		137 1248 9.2 15.6 0.22 270	173 ² 3.4 3.4 0.22 389	2	1781 1.6 1.6 0.58 339	1856 23.0 23.0 0.51 947	1585 4.6 4.6 0.51 809	1739 0.9 0.9 0.58 374	1873 28.3 28.3 0.51 956	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap Back of Queue	ement Rate (v ation Flo Time (g clearance g/C) veh/h acity Ra (Q), f	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X)	·)	24 1306 1.4 4.7 0.22 325	149 1726 6.5 6.5 0.22 387		137 1248 9.2 15.6 0.22 270	173 ² 3.4 3.4 0.22 389	1	1781 1.6 1.6 0.58 339	1856 23.0 23.0 0.51 947	1585 4.6 4.6 0.51 809	1739 0.9 0.9 0.58 374	1873 28.3 28.3 0.51 956	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap Back of Queue Back of Queue	ement Rate (v ation Flo Time (g Clearanc g/C) veh/h acity Ra (Q), f (Q), v	ow Rate (s), veh/h/l g s), s e Time (g c), s atio (X)	·) ile)	24 1306 1.4 4.7 0.22 325 0.075	149 1726 6.5 6.5 0.22 387 0.386		137 1248 9.2 15.6 0.22 270 0.506	173 ² 3.4 3.4 0.22 389 0.21	1	1781 1.6 1.6 0.58 339 0.219	1856 23.0 23.0 0.51 947 0.683	1585 4.6 4.6 0.51 809 0.190	1739 0.9 0.9 0.58 374 0.107	1873 28.3 28.3 0.51 956 0.778	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap Back of Queue Back of Queue	ement Rate (v ation Flo Time (g Elearance p/C) veh/h acity Ra (Q), f (Q), ve Ratio (bw Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile RQ) (90 th percent	·) ile)	24 1306 1.4 4.7 0.22 325 0.075	149 1726 6.5 6.5 0.22 387 0.386		137 1248 9.2 15.6 0.22 270 0.506	1734 3.4 0.22 389 0.21	1	1781 1.6 1.6 0.58 339 0.219	1856 23.0 23.0 0.51 947 0.683	1585 4.6 4.6 0.51 809 0.190	1739 0.9 0.9 0.58 374 0.107	1873 28.3 28.3 0.51 956 0.778	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage	ement Rate (v ation Flo Time (g Elearance p/C) veh/h acity Ra (Q), f (Q), ve Ratio ((d 1), s	by Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile RQ) (90 th percentile	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26	149 1726 6.5 6.5 0.22 387 0.386 4.8		137 1248 9.2 15.6 0.22 270 0.506 5.0	1734 3.4 0.22 389 0.21 2.5 0.00	1	1781 1.6 1.6 0.58 339 0.219 1.0 0.12	1856 23.0 23.0 0.51 947 0.683 12.6 0.00	1585 4.6 4.6 0.51 809 0.190 2.8 0.18	1739 0.9 0.9 0.58 374 0.107	1873 28.3 28.3 0.51 956 0.778 15.8 0.00	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (g Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	ement Rate (v ation Flo Time (s clearance g/C) veh/h acity Ra (Q), f (Q), ve Ratio ((d 1), s elay (d z	ow Rate (s), veh/h/l g s), s e Time (g c), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile RQ) (90 th percent /veh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9		137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6	1734 3.4 0.22 389 0.21 2.5 0.00 27.7	1	1781 1.6 1.6 0.58 339 0.219 1.0 0.12 13.2	1856 23.0 23.0 0.51 947 0.683 12.6 0.00 16.2	1585 4.6 4.6 0.51 809 0.190 2.8 0.18 11.7	1739 0.9 0.58 374 0.107 0.6 0.10 11.7	1873 28.3 28.3 0.51 956 0.778 15.8 0.00 17.5	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (g Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	ement Rate (v ation Flo Time (g Clearanc g/C) veh/h acity Ra (Q), ve e Ratio ((d 1), s elay (d z elay (d z elay (d	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile eh/ln (90 th percentile eh/ln (s), s/veh s), s/veh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9		137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1	173 ⁴ 3.4 0.22 389 0.21 2.5 0.00 27.7 0.4	1	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3	1856 23.0 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1	1585 4.6 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1	1739 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1	1873 28.3 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (g Capacity (c), Volume-to-Cap Back of Queue Back of Queue Gueue Storage Uniform Delay Incremental De Initial Queue D	ement Rate (v ation Flo Time (g Clearanc g/C) weh/h acity Ra (Q), f (Q), v e Ratio ((d 1), s elay (d z elay (d d), s/v e	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentil RQ) (90 th percent /veh s), s/veh eh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6 0.1	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9 0.9		137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1	173 ⁴ 3.4 3.4 0.22 389 0.21 2.5 0.00 27.7 0.4 0.0	1	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3	1856 23.0 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1	1585 4.6 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1	1739 0.9 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1	1873 28.3 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (c Capacity (c), Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (ement Rate (v ation Flo Time (g Clearanc g/C) weh/h acity Ra (Q), f (Q), v e Ratio ((d 1), s elay (d 2 elay (d , s/v e (LOS)	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percenti RQ) (90 th percent yveh s), s/veh eh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6 0.1 0.0 29.8	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9 0.9 0.0 29.8 C	C	137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1 0.0	173 ⁴ 3.4 3.4 0.22 389 0.21 2.5 0.00 27.7 0.4 0.0 28.1	1	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3 0.0 13.5	1856 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1 0.0 17.2	1585 4.6 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1 0.0	1739 0.9 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1 0.0	1873 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0 0.0 19.5	В
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (c Capacity (c), Volume-to-Cap Back of Queue Back of Queue Storage Uniform Delay Incremental Delay Intial Queue D Control Delay (Level of Service)	ement Rate (v ation Fic Time (g Clearanc g/C) weh/h acity Ra (Q), f (Q), v e Ratio ((d 1), s elay (d 2 elay (d d d), s/v e (LOS) y, s/veh	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile eh/ln (90 th percentile eh/ln (90 th percentile xQ) (90 th percentile y), s/veh s), s/veh eh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6 0.1 0.0 29.8 C	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9 0.9 0.0 29.8 C	C	137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1 0.0 37.6	173 ⁴ 3.4 3.4 0.22 389 0.21 2.5 0.00 27.7 0.4 0.0 28.1	11	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3 0.0 13.5 B	1856 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1 0.0 17.2	1585 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1 0.0 11.8 B	1739 0.9 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1 0.0 11.8	1873 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0 0.0 19.5	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (¿ Capacity (c), Volume-to-Cap Back of Queue Back of Queue Storage Uniform Delay Incremental Delay Incremental Delay (Level of Servic Approach Dela Intersection Delay (control Delay	ement Rate (v ation Fix Time (g Elearanc g/C) weh/h acity Ra (Q), f (Q), ve e Ratio ((d 1), s elay (d 2 elay (d 3 elay (d 3 elay, s/ve elay, s/ve elay, s/ve	ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/ln (90 th percentile eh/ln (90 th percentile eh/ln (90 th percentile eh/ln (90 th percentile xQ) (90 th percentile y), s/veh s), s/veh eh	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6 0.1 0.0 29.8 C	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9 0.9 0.0 29.8 C	C	137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1 0.0 37.6 D	173 ⁴ 3.4 0.22 3899 0.21 2.5 0.00 27.7 0.4 0.0 28.1	22	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3 0.0 13.5 B	1856 23.0 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1 0.0 17.2 B	1585 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1 0.0 11.8 B	1739 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1 0.0 11.8 B	1873 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0 0.0 19.5 B	
Assigned Move Adjusted Flow Adjusted Satur Queue Service Cycle Queue C Green Ratio (c Capacity (c), Volume-to-Cap Back of Queue Back of Queue Storage Uniform Delay Incremental Delay Incremental Delay (c), Control Delay (Level of Servic Approach Delay	ement Rate (v ation Fix Time (g Elearanc g/C) weh/h acity Ra (Q), f (Q), ve Ratio ((d r), s elay (d z elay (d z elay (d s), s el	by Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/In (90 th percentile eh/In (90 th percentile eh/In (90 th percentile e), s/veh s), s/veh eh / LOS eh / LOS	·) ile)	24 1306 1.4 4.7 0.22 325 0.075 0.8 0.26 29.6 0.1 0.0 29.8 C	149 1726 6.5 6.5 0.22 387 0.386 4.8 0.00 28.9 0.9 0.0 29.8 C	C	137 1248 9.2 15.6 0.22 270 0.506 5.0 1.27 35.6 2.1 0.0 37.6 D	173 ⁴ 3.4 0.22 389 0.21 2.5 0.00 27.7 0.4 0.0 28.1	22	1781 1.6 0.58 339 0.219 1.0 0.12 13.2 0.3 0.0 13.5 B	1856 23.0 23.0 0.51 947 0.683 12.6 0.00 16.2 1.1 0.0 17.2 B	1585 4.6 0.51 809 0.190 2.8 0.18 11.7 0.1 0.0 11.8 B	1739 0.9 0.58 374 0.107 0.6 0.10 11.7 0.1 0.0 11.8 B	1873 28.3 28.3 0.51 956 0.778 15.8 0.00 17.5 2.0 0.0 19.5 B	

		нся	Sign	nalize	d Inte	rsect	ion R	esul	ts Sun	nmary					
Canaval Inform	4:								lmán va a a	diam lud	4: .			المالما	la U
General Inform	ation	Diana B. Zimana ana	T6	a Faria				\rightarrow	Intersec		_		ı i	41	
Agency		Diane B. Zimmerma	an Iraii	7		A 4	4 0000	$\overline{}$	Duration		0.250		7		
Analyst		DBZ				Aug 1		\rightarrow	Area Typ	e	Other				
Jurisdiction		0 0		Time F		PM Pe		\rightarrow	PHF	D : 1	0.95	15	-		*
Urban Street		Smyrna Parkway		<u> </u>	sis Year	-			Analysis	Perioa	1> 4:4	45	5		
Intersection		Manslick		File Na	ame	PM 24	B.xus						- 4	<u>ነተሰ</u>	
Project Descrip	tion	Smyrna Village												IN INT	F* [
Demand Inforr	nation				EB			WE	2		NB			SB	
Approach Move				L	T	R	L	T	_	L	T	R	1	T	F
				23	69	76	140	44		71	609	-	38	694	2
Demand (v), v	en/n		-	23	69	76	140	44	34	71	609	147	30	694	2
Signal Informa	tion				П		1 5				_				
Cycle, s	92.1	Reference Phase	2	1	27	EΨ2	2					<u> </u>	KŽZ.		Z
Offset, s	0	Reference Point	End	<u> </u>	1	11:2						1	2	3	Y
Uncoordinated	Yes	Simult. Gap E/W	On	Green		47.4	21.4	0.0		0.0					4
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.1	3.6	3.6	0.0		0.0			6	7	K
1 STOC WIDGE	1 IXCU	Official Gap 14/3	OII	INCU		1.0	2.0	0.0	0.0	10.0			-		
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	ρ			EDI	-	4	VVD	-	8	5	_	2	1	-	6
Case Number						6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration						27.9			27.9	11.6	-	52.6		-	52.6
	_	\ 0				_				_	\rightarrow		11.6	-	
Change Period,		**				6.5			6.5	5.6			5.6	_	5.2
Max Allow Head						5.3		+	5.3	4.1	$\overline{}$		4.1	-	5.1
Queue Clearan		, - ,.				8.9			19.3	3.8	-	27.5	2.9	_	32.3
Green Extensio		(g e), S			_	2.4		_	2.1	0.2	$\overline{}$	15.6	0.1	-	15.1
Phase Call Prol					\rightarrow	1.00			1.00	1.00	-	1.00	1.00	-	1.00
Max Out Proba	bility					0.00			0.04	0.00)	0.13	0.00)	0.16
Movement Gro	un Per	eulte			EB			WB			NB			SB	
Approach Move		Julia		L	Т	R	L	T	T R	L	T	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F		() veh/h		24	153	14	147	82	10	79	675	163	40	757	10
		,.	ln.	_	1723			1734	+	_			_	1873	
•		ow Rate (s), veh/h/l	111	1306			1244			1781	1856	1585	1739	_	
Queue Service		- ,:		1.4	6.9		10.4	3.5		1.8	25.5	5.1	0.9	30.3	
Cycle Queue C		e IIIIle (gc), S		4.9	6.9		17.3	3.5	-	1.8	25.5	5.1	0.9	30.3	-
Green Ratio (g				0.23	0.23		0.23	0.23	+	0.58	0.51	0.51	0.58	0.51	
Capacity (c), v		atio (V)		331	400		274	403		326	956	816	353	965	
Volume-to-Capa				0.073	0.382		0.538	0.204	1	0.241	0.706	0.200	0.113	0.784	
	, .	t/ln (90 th percentile	,	0.0	F 0		F.0	0.0	-	4.0	40.0	0.4	0.0	40.0	
	, .	eh/ln (90 th percent		0.8	5.0		5.6	2.6	+	1.2	13.9	3.1	0.6	16.9	
	,	RQ) (90 th percent	tile)	0.27	0.00		1.41	0.00		0.13	0.00	0.20	0.10	0.00	
	niform Delay (d 1), s/veh			30.5	29.8		37.1	28.5	+	14.1	17.0	12.1	12.6	18.2	
Incremental De				0.1	0.9		2.3	0.4		0.3	1.1	0.1	0.1	2.0	
Initial Queue De				0.0	0.0		0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	
Control Delay (30.6	30.7		39.4	28.9		14.4	18.2	12.2	12.8	20.2	
Level of Service				С	С		D	С		В	В	В	В	С	
Approach Delay				30.6	3	С	35.6	3	D	16.8	3	В	19.9	9	В
Intersection De	lay, s/ve	eh / LOS				21	l.1						С		
					EB			\A/D			NB			SB	
Multimedal De	lultimodal Results				EB			WB			IND			OD	
Multimodal Re		/1.08		2.12		В	1.93	,	В	1.89		В	1.89	_	В

		HCS	Sign	nalize	d Inte	rsect	ion R	esul	ts Sur	nmary	'				
General Inform	nation								Intersed	tion Info	ormatic	nn	J.	4444	b L
Agency	iiatioii	Diane B. Zimmerma	an Traff	ic Engin	eering				Duration		0.250			41	
Analyst		DBZ	an man			Aug 1	1, 2022	\neg	Area Typ		Other				
Jurisdiction		1002		Time F		PM Pe			PHF	-	0.95		₩		**
Urban Street		Smyrna Parkway		_	sis Year	_	No Build	t	Analysis	Period	1> 4:4	45	- 4		
Intersection		Manslick		File Na		-	1 NB.xus							5+2	
Project Descrip	otion	Smyrna Village											7	4 tey	1- 1
		, ,													
Demand Infor	mation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	Т	F
Demand (v), v	/eh/h			25	76	81	144	49	9 38	76	664	158	42	752	28
Signal Informa	ation				ΙŪ		5								
Cycle, s	102.9	Reference Phase	2	1	2			詞			\ \ \	_	₩.		
Offset, s	0	Reference Point	End		100	<u>":11</u>		1		1		1	2	3	Y
Uncoordinated		Simult. Gap E/W	On	Green Yellow		55.1 3.6	3.6	0.0	_	0.0					Ð
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.1	1.6	2.9	0.0		0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT
Assigned Phas	е					4			8	5		2	1		6
Case Number						6.0			6.0	1.1		3.0	1.1		4.0
Phase Duration			(31.0			31.0	11.6	;	60.3	11.6	3	60.3		
Change Period				6.5			6.5	5.6		5.2	5.6		5.2		
Max Allow Hea				5.3			5.3	4.1		5.1	4.1		5.1		
Queue Clearar			10.3			22.5	4.0		31.2	3.1		39.3			
Green Extension			\rightarrow	2.6	<u> </u>	\rightarrow	2.0	0.2	\rightarrow	17.0	0.1	\rightarrow	15.8		
Phase Call Pro	bability				\rightarrow	1.00		\perp	1.00	1.00)	1.00	1.00	$\overline{}$	1.00
Max Out Proba	bility				(0.00		_	0.12	0.00	,	0.20	0.00)	0.29
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	_			L	Т	R	L	Т	R	L	Т	R	L	Т	T R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow), veh/h		26	165		152	92	$\overline{}$	81	703	167	44	821	
		ow Rate (s), veh/h/l	n	1294	1725		1230	1734	1	1781	1856	1585	1739	1873	
Queue Service		, ,		1.7	8.3		12.2	4.4	_	2.0	29.2	5.6	1.1	37.3	
		e Time (<i>g</i> ε), s		6.1	8.3		20.5	4.4		2.0	29.2	5.6	1.1	37.3	
Green Ratio (g	g/C)			0.24	0.24		0.24	0.24	1	0.59	0.54	0.54	0.59	0.54	
Capacity (c),	veh/h			323	411		264	413		289	994	849	341	1003	
Volume-to-Cap	acity Ra	ntio (X)		0.081	0.402		0.575	0.22	2	0.278	0.708	0.197	0.130	0.819	
Back of Queue	(Q), f	t/In (90 th percentile)												
	, , .	eh/In (90 th percenti		1.0	5.9		6.3	3.3		1.3	15.7	3.5	0.7	21.0	
		RQ) (90 th percent	tile)	0.34	0.00		1.60	0.00	,	0.15	0.00	0.22	0.12	0.00	
Uniform Delay				34.0	33.0		41.7	31.5	_	16.6	17.9	12.4	13.7	19.8	
Incremental De		7.		0.2	0.9		2.8	0.4	_	0.4	1.1	0.1	0.2	3.5	
Initial Queue D		,·		0.0	0.0		0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	
Control Delay (, ,,			34.1	33.9		44.5	31.9	,	17.0	19.0	12.5	13.9	23.3	
Level of Service	_ ,			С	С		D	С		В	В	В	В	С	
Approach Dela				34.0)	С	39.7	7	D	17.7		В	22.8	3	С
Intersection De	lay, s/ve	eh / LOS				23	3.4						С		
					EB			WB			NB			SB	
Multimodal Pa	Multimodal Results						4	V V L	,		140		4	SD	
Multimodal Re		/LOS		2.12		В	1.93	3	В	1.89	,	В	1.89	_	В

General Inform															
Ochiciai illioill	ation								Interse	tion Infe	ormatio	nn .	1 1	14744	ьų
Agency	iation	Diane B. Zimmerma	n Traffi	ic Engin	eering			\rightarrow	Duration		0.250			47	
Analyst		DBZ	all IIalli			Δυα 1	1, 2022	$\overline{}$	Area Ty	•	Other				
Jurisdiction		002		Time F		PM P		\rightarrow	PHF	, , , , , , , , , , , , , , , , , , , 	0.95		→		*
Urban Street		Smyrna Parkway		-	sis Year	-		\rightarrow	Analysis	Period	1> 4:4	45	-4		
Intersection		Manslick		File Na		-	4 B.xus		, and y one					5 4 2	
Project Descript	tion	Smyrna Village		1 110 111	41110	1 111 0	Dixao						7	HATAY	17 17
r reject Beschipt		omyma viilago													
Demand Inforn	nation				EB		\top	WI	В	\top	NB		Т	SB	
Approach Move	ment			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			25	76	84	154	49	38	78	672	162	42	765	28
Signal Informa	tion					1 11:									
Cycle, s	107.4	Reference Phase	2	1	2	215		Ħ			ļ		SÎZ.		A
Offset, s	0	Reference Point	End		1	<u>"``</u>						1	2	3	Z
Uncoordinated	Yes	Simult. Gap E/W	On	Green	-	57.7	26.4	0.0	_	0.0					A
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	2.1	3.6 1.6	3.6 2.9	0.0		0.0		5	6	7	K
. Stoc Mode	, incu	5.mail 5ap 14/5	311			1		0.0	10.0	10.0					
Timer Results				EBI		EBT	WB	L	WBT	NBI	.	NBT	SBI		SBT
Assigned Phase	e					4			8	5		2	1		6
Case Number						6.0		\neg	6.0	1.1		3.0	1.1		4.0
Phase Duration	Phase Duration, s				- ;	32.9		\neg	32.9	11.6		62.9	11.6	3	62.9
Change Period, (Y+R c), s						6.5			6.5	5.6		5.2	5.6	;	5.2
Max Allow Head		\neg	5.3		\neg	5.3	4.1		5.1	4.1		5.1			
Queue Clearance Time (g s), s					-	10.8			24.5	4.2		33.6	3.1		41.9
Green Extensio	Green Extension Time (g e), s					2.7		\neg	1.9	0.2		17.3	0.1		15.8
Phase Call Prot	hase Call Probability					1.00			1.00	1.00		1.00	1.00	5	1.00
Max Out Probab	flase Call Probability flax Out Probability				(0.00			0.23	0.00		0.25	0.00	o	0.34
Manager Con-	D				ED			\A/D			NID			000	
Movement Gro		suits		-	EB	В		WB T	_		NB T	В		SB	Б
Approach Move Assigned Move				7	T 4	R 14	L 3	8	18	5	2	12	1	T 6	16
Adjusted Flow F		\ vob/b		26	168	14	162	92	10	84	722	174	44	835	10
		ow Rate (s), veh/h/l	n	1294	1722		1227	1734		1781	1856	1585	1739	1873	\vdash
Queue Service			II	1.8	8.8		13.7	4.5		2.2	31.6	6.1	1.1	39.9	-
Cycle Queue Cl		- , .		6.3	8.8		22.5	4.5		2.2	31.6	6.1	1.1	39.9	
Green Ratio (g		C IIIIC (9 c), 3		0.25	0.25		0.25	0.25		0.59	0.54	0.54	0.59	0.54	
Capacity (c), v				331	423		268	426	_	276	998	852	325	1007	
Volume-to-Capa		tio (X)		0.080	0.398		0.605	0.21		0.304	0.724	_	0.136	_	
<u> </u>		t/In (90 th percentile)	5.555	5.550		5,555	3.2 (5,507	5.72	5.207	51,00	5.525	
	` ''	eh/ln (90 th percent	,	1.0	6.2		7.0	3.5		1.5	17.1	3.8	0.8	22.6	
	, ,	RQ) (90 th percent		0.35	0.00		1.76	0.00		0.17	0.00	0.24	0.13	0.00	
Uniform Delay (, , ,		34.8	33.9		43.3	32.3		17.8	18.8	12.9	14.7	20.7	
Incremental Del				0.1	0.9		3.1	0.4		0.5	1.4	0.1	0.2	4.1	
Initial Queue De				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Control Delay (,.		34.9	34.8		46.4	32.6	_	18.3	20.2	13.0	14.9	24.8	
Level of Service	,,			С	С		D	С		В	С	В	В	С	
Approach Delay				34.8		С	41.4		D	18.8		В	24.3		С
Intersection Del						24	4.7						С		
	ultimodal Results														
Multimodal Res				2.13	EB	В	1.93	WB	В	1.90	NB	В	1.90	SB	В

Note: This spreadsheet is intended to supplement the guidance provided in the Auxiliary Turn Lane policy outlined in the KYTC Highway Design Manual. This policy should be fully reviewed and understood prior to using this application.