"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

May 20, 2022

Mr. Joseph Waldman Highgates Management 119 Park Glen Avenue Toronto, Ontario, Canada M6B2C6

Reference: **Preliminary Slope Evaluation & Karst Survey – Johnson Road Residential** 1614 Johnson Road Louisville, Jefferson County, Kentucky 40245 ECS Project No. 61-2735

Dear Mr. Waldman:

ECS Southeast, LLP (ECS) conducted a preliminary slope evaluation and karst survey for the referenced site in accordance with ECS Proposal No. 61-P2677, dated March 31, 2022. This evaluation included the following elements: a review of provided drawings; a review of soil survey information; a review of geologic maps; a review of topographic maps; a visual reconnaissance of site conditions for the karst geologic features defined in the Metro Louisville Land Development Code (LDC); a review of current and historical aerial photographs; a visual reconnaissance of indicated steeper slope areas that would be disturbed by new construction; and evaluate the reviewed information and prepare a report of our findings and recommendation.

Project Information

The proposed development on-site includes 124 single-family residential lots, 4 multi-family residential buildings, and associated roadways. There is approximately 100 feet of fall across the entire site, with up to approximately 22 feet of fall across a single proposed residential development lot. The existing topography generally sloped down from east to west and north to south towards the existing stream.

The existing site consisted approximately 61.09 acres of open rolling hills, densely wooded areas, several drainage swales and small streams, ponds, with relatively flat areas followed by steep slopes near the existing stream (Floyds Fork). Residential buildings (house, barn, and shed) were present in the northeast portion of the site at 1614 Johnson Road in Louisville, Kentucky. The "3622 - PREPLAN - 3-30-2022-with slopes" provided by Kathy Linares of Mindel Scott via email, dated March 30, 2022, identified existing 20-30% slopes and >30% slopes on the property. A reduced copy of this drawing is attached to this report.

The current LDC section 4.7.5 includes requirements for land disturbing activities on slopes greater than 20%. Item B.3 of section 4.7.5 states "Land disturbing activities on slopes greater than 20% and less than 30% shall be required to prepare a geotechnical survey report if the staff of the USDA Natural Resources Conservation Service (NRCS) determines such a study is warranted, given the site's soil and geologic characteristics. A geotechnical survey report shall be submitted for land disturbing activities on slopes greater than 30%." We understand that at present the NRCS is not making the determination of the need for a geotechnical survey report. Accordingly, ECS Southeast, LLP (ECS) was retained to conduct an initial slope evaluation of the site and to determine if additional geotechnical exploration/analyses would be required. Our evaluation consisted of the following tasks:

- Review the Plan
- Review USGS Geologic Quadrangle Map information
- Review USDA NRCS Soil Survey information
- Conduct a visual reconnaissance of indicated steeper slope areas that would be disturbed by new construction
- Evaluate the reviewed information and prepare a report of our findings and recommendations

Geology

The following geologic information is based on the review of: the Crestwood, 24K Quadrangle, Geologic Map, Kentucky, published by the United States Geological Survey (USGS); information (aerial photos, geologic maps, and topographic maps, etc.) obtained from the Kentucky Geological Survey (KGS) Geologic Information Service website; and Google Earth Satellite Imaging.

The Kentucky Geologic Map Information Service website indicated that the majority of the proposed development area was underlain Drakes Formation and was overlain by Alluvium deposits in the flatter/lower lying southwestern portion of the site. The majority of the steep slope areas were underlain directly by Drakes Formation (roughly above ~EL 610 to ~EL 620), with the remainder of the site underlain by Alluvium (roughly below ~EL 610 to ~EL 620).

Above	~EL 610 – 620	Drakes Formation
Below	~EL 610 – 620	Alluvium

Figure 1: Reported Site Geology

Alluvium (Floyds Fork Depositional Plain) Total Reported Thickness: 0 – 15 feet Karst Potential: Non-Karst

Primarily Silt and clay. Alluvium of flood plains is mainly brown to dark grayish brown silty sand and clayey silt, contains lenses, stringers, and a persistent basal layer of sand and gravel. Sand and granules are mostly limonite pellets derived from soil; coarser pebbles, cobbles, and slabby boulders are from local bedrock. Common thickness along Floyds Fork is 8 to 10 feet; less along smaller streams. Floyds Fork and Long Run flow mainly on bedrock, except for small point bars, even where bordered by alluvium. Older alluvium on terraces 30 to 45 feet above Floyds Fork.

Drakes Formation (Uplands and Most Slope Areas) Total Reported Thickness: ± 140 feet Karst Potential: Low Primary Lithology: Limestone, dolomite, and/or shale. Members: Hitz Limestone Bed; Saluda Dolomite Member; Bardstown Member; and Rowland Member.

<u>Hitz Limestone Bed</u>: Primarily limestone, dolomite, and shale. Limestone and dolomite are dark gray to olive gray, weather light gray to grayish orange, locally with reddish brown cast; very fine to medium grained, silty; laminated in part; sub-conchoidal to hackly fracture; inter-bedded and inter-graded. Shale, greenish-gray to brownish black, calcareous, in part carbonaceous, as partings or interbeds as much as 0.3 foot thick.

<u>Saluda Dolomite Member</u>: Primarily dolomite, dolomitic mudstone, with minor shale and limestone. Dolomite is greenish gray to olive gray, weathers same to yellowish gray and dark yellowish orange. Shale, light gray to olive black, locally carbonaceous; as persistent parting 0.1 to about 1 foot thick in lower part of laminated dolomite, generally 12 to 16 feet above base of unit. Limestone is bluish gray, weathers olive gray to brownish gray; dense, micritic; conchoidal fracture; commonly as a single bed immediately below or above shale marker bed and as one or two thin beds in lower part of unit.

<u>Bardstown Member</u>: Primarily limestone and shaly mudstone. Limestone, medium to olive gray, is of two main types: shaly limestone and coquinoidal limestone. Shaly limestone is fine to very fine grained, contains sparse to abundant coarse grains and fossil fragments, grades locally to calcareous shale. Coquinoidal limestone is characterized by fossils fragments in a sparry to muddy matrix; bluish cast common where fresh, weathers yellowish gray, dark yellowish orange, and light olive gray. Shaly mudstone, thin bedded, mainly calcareous, olive gray to greenish gray; locally dark brownish gray to olive black where carbonaceous.

<u>Rowland Member</u>: Primarily limestone and shale. Dominant limestone is medium and greenish gray to medium bluish gray calcisiltite; weathers pale olive to yellowish gray; dolomitic and argillaceous; streaked with irregular burrows filled with dusky yellowish-green glauconitic material which weathers out readily to form holes and pitted bed surfaces; thin to thick bedded in continuous but poorly defined planar beds. Dominant shale is olive gray, light olive gray, greenish gray, and dark greenish gray; weathers yellowish gray to light gray; calcareous; in beds as much as 3 feet thick near upper and basal contacts. Small ponds for livestock and recreation are common in areas underlain by the Waldron Shale and by shale of the Osgood Formation and the Bardstown and Rowland Members of the Drakes Formation

Karst Potential

According to the KGS Karst Potential Classification definitions, formations designated with a "Low" karst potential are where the development of karst features are poorly developed or absent with the formations described as "siliciclastic units with minor limestone beds or units primarily composed of dolomite". Formations designated with a "Non-Karst" karst potential are described as "Consolidated or unconsolidated siliclastic units. Karst features are rare or absent." The karst potential is based on the tendency for the site to develop or have karst features as shown on the Kentucky Geologic Map Information Service and is not necessarily indicative of the actual presence or absence of karst activity at the site.

No sinkholes were mapped on the site by the Kentucky Geologic Map Information Service. However, several sinkholes were reported approximately 1,000 to 1,500 feet north and west from the site. A water well was reported approximately 150 feet northeast of the existing barn in the north central portion of the site. No remaining information (e.g. depth to rock, static water level, etc.) was reported for the water well. Refer to attached **Karst Potential Map(s)** for approximate location of mapped features.

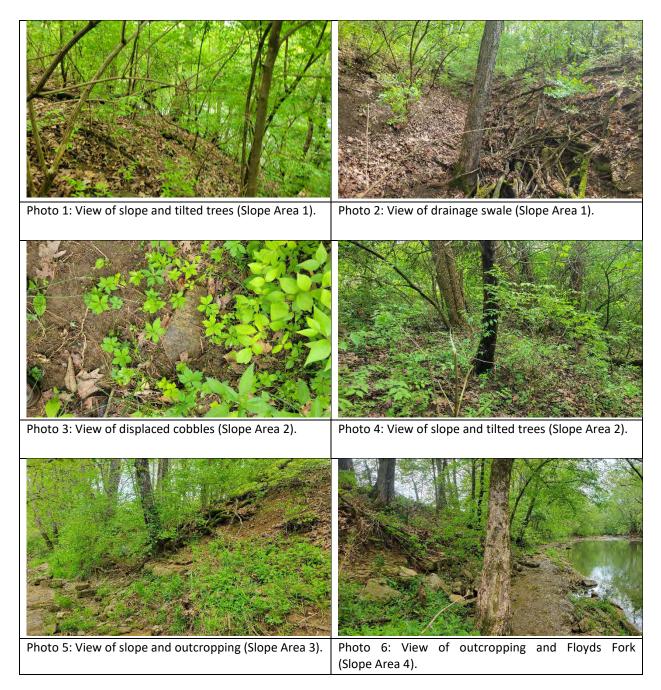
A site reconnaissance was conducted on May 4-5, 2022, by William "Grant" Hess, P.G. of ECS. Rock outcropping was encountered along the base of the north and east bank of Floyds Fork (~ EL 600 to ~EL 610). No definitive closed

depressions related to karst activity (several apparent animal burrows were encountered) were observed at the time of this evaluation. However, flowing water was observed near the reported well water and was labeled for the purposes of this report as an apparent spring. The apparent spring area consisted of a "collapsed" area where flowing water was observed at the base and continued along a drainage swale. Refer to the attached **Site Reconnaissance Plan** for the approximate locations.

Soil Conservation Service Soil Survey

The USDA Natural Resources Conservation Service "Web Soil Survey" website indicated 9 general soil types (excluding water unit "W") at the site as shown in **Figure 2**. Descriptions of these soil types are summarized below.

NRCS CUSTOM SOIL RESOURCE REPORT				
Map Unit Symbol	Map Unit Name	Parent Material	Acres in AOI (Approximate)	Percent of AOI (Approximate)
BeB	Beasley silt loam, 2 to 6 percent slopes.	Clayey residuum weathered from calcareous shale.	3.2	5.4%
BeC	Beasley silt loam, 6 to 12 percent slopes.	Clayey residuum weathered from calcareous shale and/or calcareous siltstone.	4.6	7.8%
EoB	Elk silt loam, 2 to 6 percent slopes, occasionally flooded.	Mixed fine-silty alluvium.	11.0	18.8%
FaD	Faywood silt loam, 12 to 25 percent slopes.	Clayey residuum weathered from limestone and shale.	19.6	33.5%
FsF	Faywood-Shrouts-Beasley complex, 25 to 50 percent slopes.	Clayey residuum weathered from limestone and shale.	0.1	0.1%
NhB	Nicholson silt loam, 2 to 6 percent slopes.	Fine-silty noncalcareous loess over clayey residuum weathered from limestone.	0.0	0.1%
No	Nolin silt loam, 0 to 2 percent slopes, occasionally flooded.	Mixed fine-silty alluvium.	15.5	26.5%
OwC	Otwood silt loam, 6 to 12 percent slopes, occasionally flooded.	Mixed fine-silty alluvium over mixed loamy alluvium.	2.4	4.1%
UkC	Urban land-Alfic Udarents-Beasley complex, 0 to 12 percent slopes	Clayey residuum weathered from calcareous shale and/or calcareous siltstone.	0.1	0.2%
w	Water.	Water.	2.0	3.5%


Figure 2: Reported Soil Data

Site Reconnaissance

Based on our review of the provided drawing, the north and east portions of the site included either 20-30% slopes or >30% slopes that may be disturbed during development. A site reconnaissance was conducted on May 4-5, 2022, by William "Grant" Hess, P.G. of ECS. Refer to the attached **Site Reconnaissance Plan** for the approximate locations. Steep slopes with numerous displaced gravel, cobbles, and/or and boulder-sized rock, eroded/mounded soil, and various indications of minor slope instability were observed along the northern and eastern portions of the site and typically became more prevalent within 100 feet of the existing drainage swales and streams. A relatively flat depositional plain was observed in the southwest portion of the site with steep slopes encountered along Floyds Fork.

Surface drainage generally was directed to the south and west across the site by the existing topography and drainage swales and small streams. An existing stream approximately 10 to 30 feet wide, located in the center of the site, and extended north to south for the length of the site to Floyds Fork. Several drainage swales were observed intersecting the central stream and/or Floyds Fork. Indications of erosion were observed primarily along the swales including occasional patches of bare soil and gullies. Three ponds with associated apparent man-made berms were observed in the northern portion of the site.

Some visual indications of minor slope instability and evidence of creep were observed in the north and east portions including: displaced rock fragments (gravel, cobbles, and/or boulders); unusual tilting, bowed, and fallen trees; minor eroded soil; and mounding of the eroded soil at the slope base and upslope of larger trees. No indications of large, wide-scale or deep seated slope movements were noted. However, minor slope movements (wedge, bowl, or disk shaped failures) were observed in isolated areas (typically at slope areas > 20%). For the remainder of the site (low lying portion), the slopes appeared to be stable (excluding stream and drainage swale banks). In general, signs of slope failure became rare or absent in areas south and west of the steep slopes. See below for photos at each area observed as shown on the attached **Site Reconnaissance Plan**.

Based on our review of the above reference observations and information, and on our past experience with site development for similar conditions in Jefferson County, our opinion is that most of the on-site slopes (excluding small, localized erosion features along swales and streams) in the observed areas were generally stable at the time of our reconnaissance. Evidence of minor instability was observed in isolated areas in the north and east portions of the site (Slope Areas).

The current, on-site localized slope instability observed likely is related to the following factors:

- Relatively thin depths of soil in slope areas
- Cohesive (clayey) soil matrix
- Rocky soil texture
- Limestone, dolomite, and or shale bedrock
- Numerous trees and other vegetation

Based on the conditions observed, our opinion is that additional geotechnical exploration/analyses including soil/rock test borings/coring, shear strength tests of soils, etc. are not required for most of the evaluated on-site slopes, provided that the planned subdivision is designed and constructed utilizing the guidelines included in this report.

The north and east portions of the site, as shown in the shaded ("Observed Slope Areas" and "Minor Failure Areas") where minor instability was observed should be further investigated during the construction phase of the project once the location and planned elevation of the proposed structures and related improvements are known.

The following guidelines should be used to help maintain the stability of the existing and planned slopes during the design and construction of the new subdivision, and over the life of the new homes. These guidelines include:

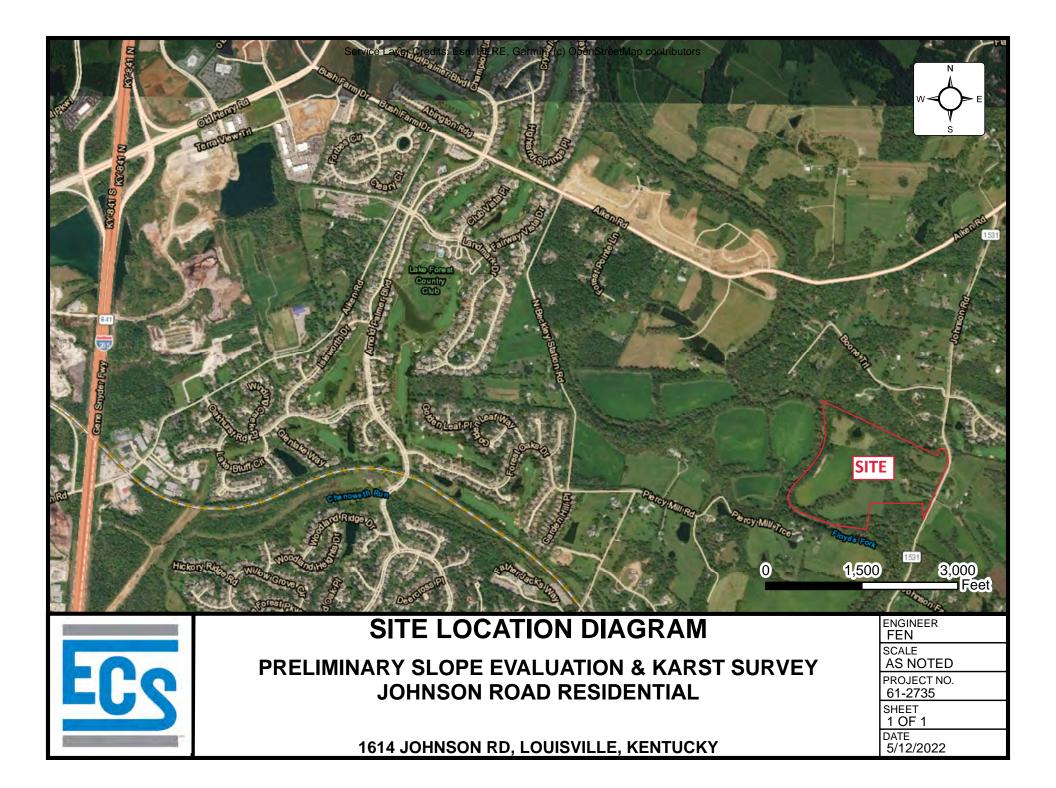
- Plan grading to minimize changes to existing topography along slopes.
- Minimize disturbance to slopes and vegetation outside new construction areas.
- Avoid significant transverse cuts along face or at the toe of existing slopes.
- Avoid significant embankments on the face, or along or at the crest of existing slopes.
- Avoid placing new construction at or within 10 feet of the crest of existing slopes.
- Maintain the following limits for new embankments without additional geotechnical exploration and analysis:
 - 3:1 (horizontal: vertical) or flatter slopes.
 - Properly strip all vegetation, topsoil, etc. where fill will be placed.
 - Construct embankments with controlled fill compacted to at least 98 percent of the Standard Proctor maximum dry density and within 2 percent of the optimum moisture content.
 - Maximum fill embankment height 5 feet.
 - Horizontally bench new fill into existing slopes in maximum one-foot vertical steps.
- Maintain the following limits for new cuts in soil without additional geotechnical exploration and analysis:
 - 3:1 (horizontal: vertical) or flatter slopes.
 - Maximum cut height 5 feet.
- Provide adequate erosion and surface water drainage control during construction and over the life of the subdivision.
- Establish permanent vegetative cover as soon as practical.

Closing

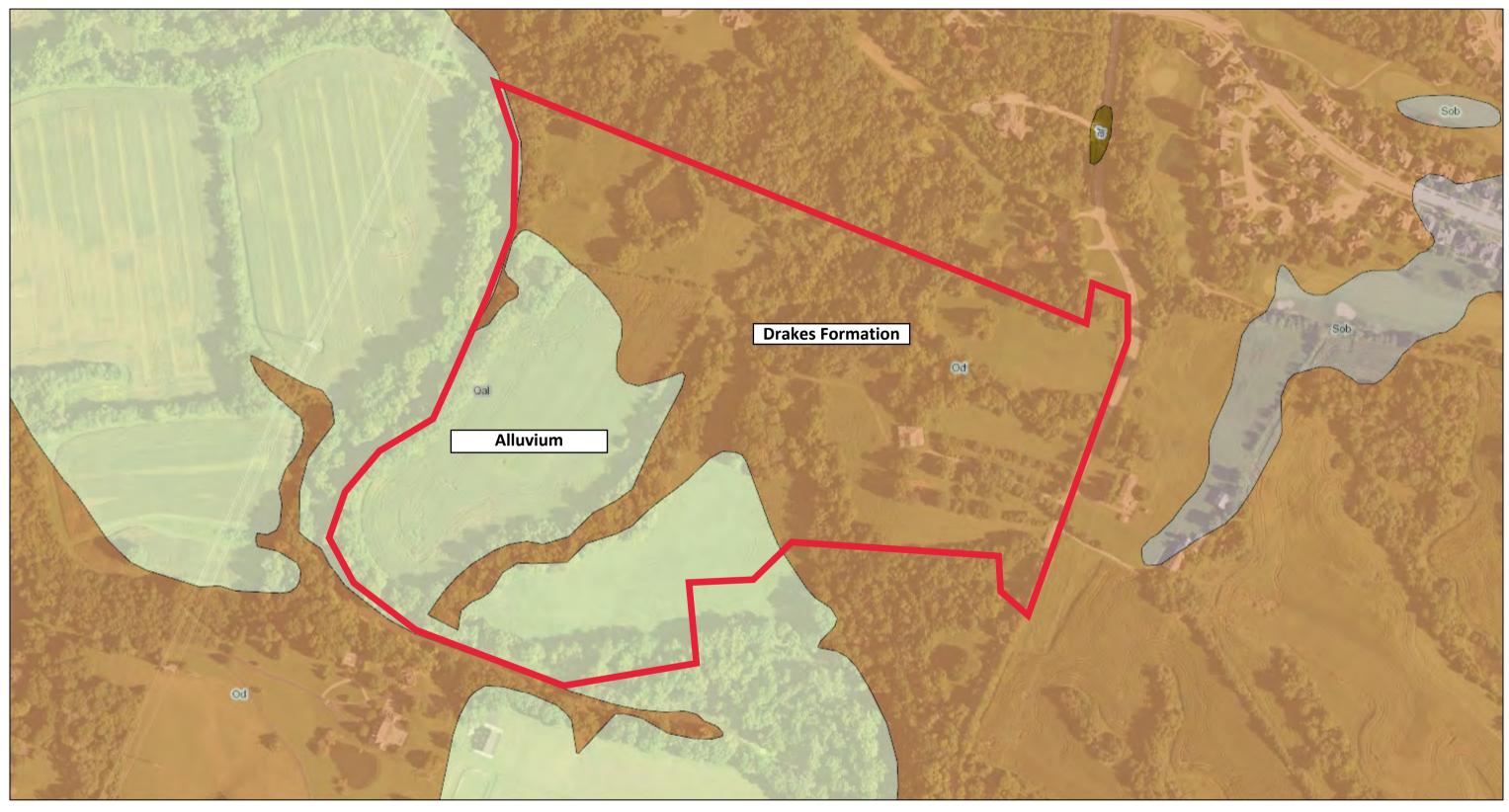
We appreciate the opportunity to serve as your geotechnical consultants for this project. We look forward to future association with you on this and other projects.

Respectfully submitted, **ECS Southeast, LLP**

Hess, P.G. Grant liam


Project Geologist ghess@ecslimited.com

Attachments:


Site Vicinity Diagram Geology Location Plan Karst Potential Map – 1 Karst Potential Map – 2 Site Reconnaissance Plan 3622 - PREPLAN - 3-30-2022-with slopes

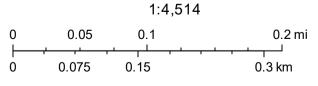
Liz Blandford Newcomb, P.E.

Liz Blandford Newcomb, P.E. Prinčipal Engineer Inewcomb@ecslimited.com

Kentucky Geologic Map Information Service - Geology Location Diagram

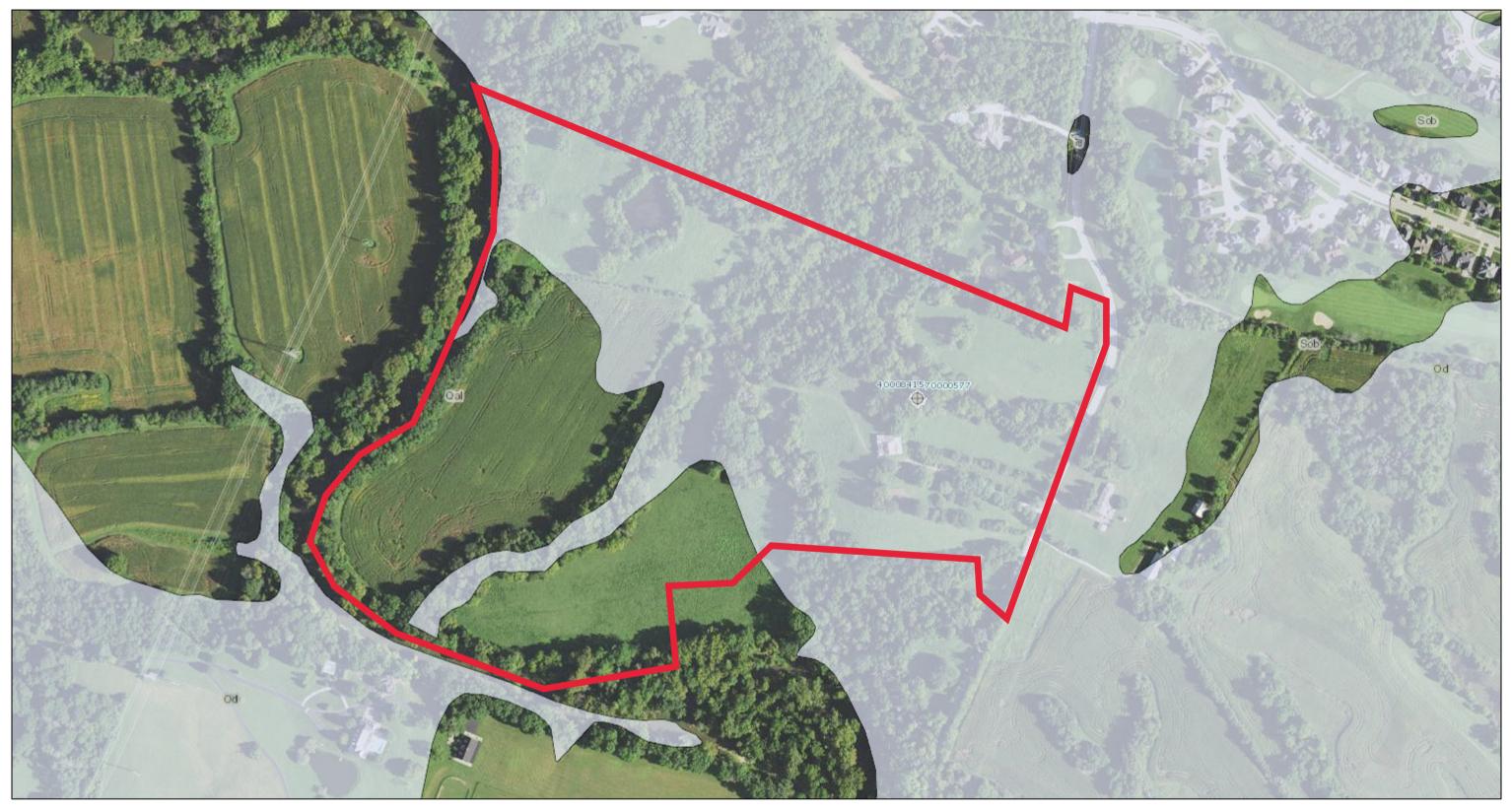
May 12, 2022

1:24,000 scale data (detailed geology)

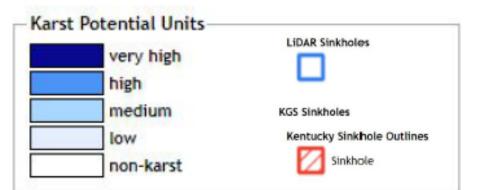

This legend includes all units from the 1:24,000 quadrangles in the current view. Some units on the legend may not appear on the map.

Qal

Alluvium (Quaternary - Quaternary)



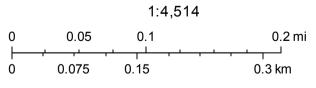
Drakes Formation (Upper Ordovician - Upper Ordovician)



Kentucky Geological Survey

Karst Potential Map - 1

May 12, 2022



Kentucky Water Wells

Other

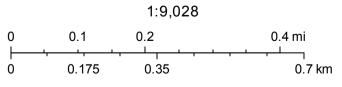
Kentucky Springs

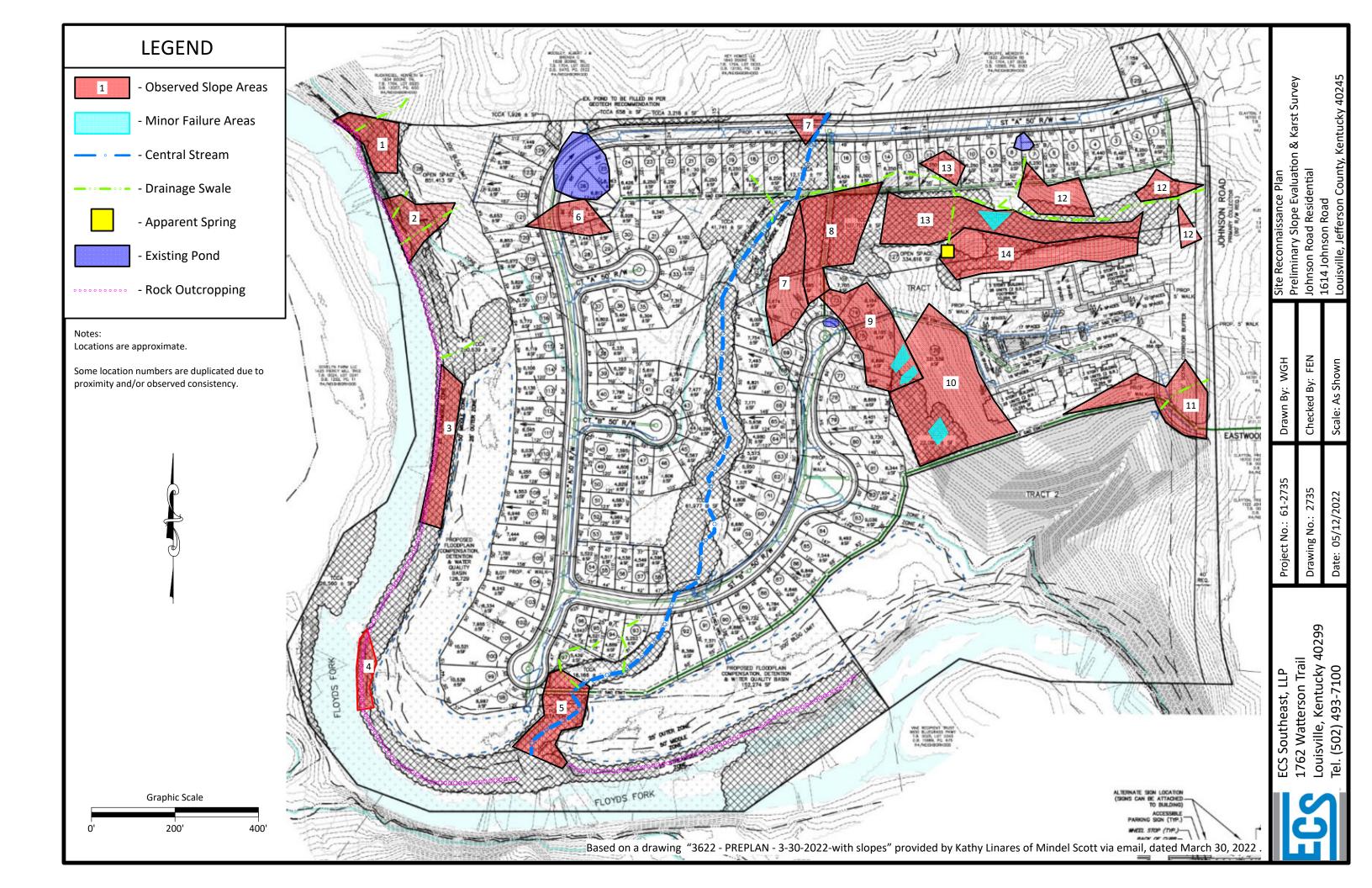
On Spring

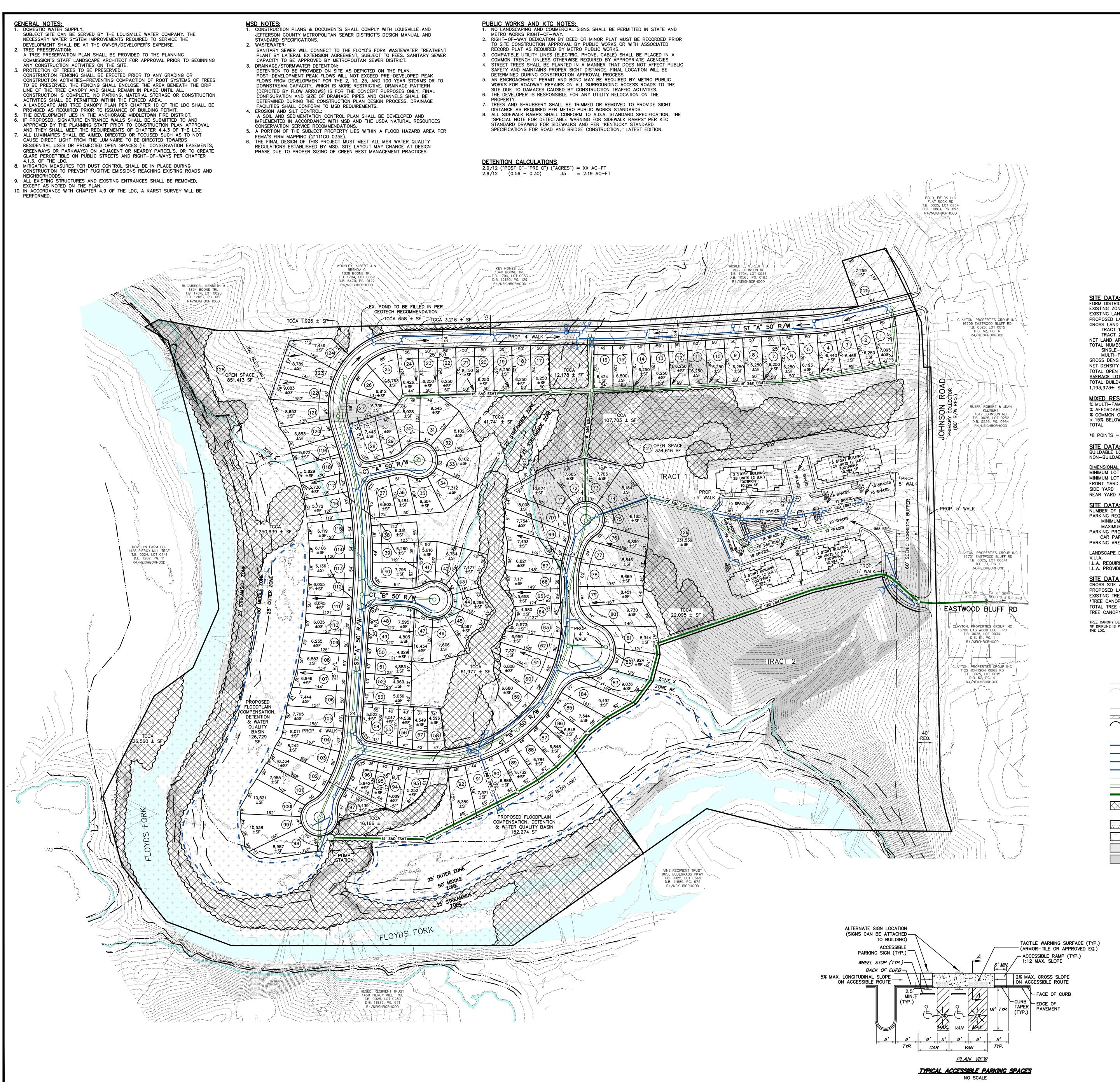


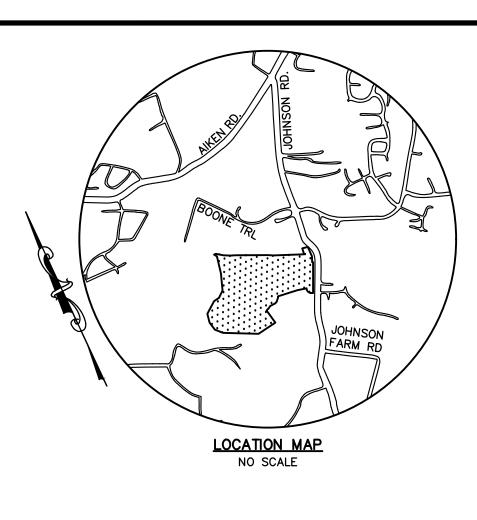
Kentucky Geological Survey

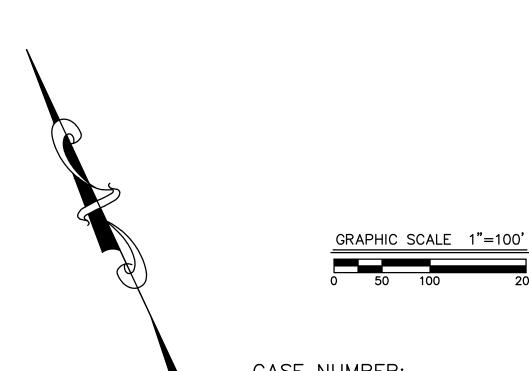
Karst Potential Map - 2


May 19, 2022


Kentucky Water Wells
Other


Kentucky Springs


Og Spring



Kentucky Geological Survey

DATA:		
DISTRICT		NEIGHBORHOOD
G ZONING		R4
G LAND USE		SINGLE FAMILY RESIDENTIAL/AGRICULTURAL
SED LAND USE		SINGLE & MULTI-FAMILY RESIDENTIAL (MRDI)
LAND AREA		72.54± AC
ACT 1		61.09± AC
ACT 2		11.45± AC (NOT INCLUDED IN PROPOSED DEVE
ND AREA		54.8± AC
NUMBER OF UNITS		237 UNITS
NGLE-FAMILY		125 LOTS
JLTI-FAMILY		112 UNITS
DENSITY		3.87 D.U./AC
NSITY		4.32 D.U./AC*
OPEN SPACE PROVIDED		27.23± AC (44%)
E LOT SIZE CALCULATION:		
BUILDABLE LOT AREAS/TOTAL BUILDAE		
73± SF/126(INCLUDES MULTI-FAMILY	LOT)	9,476± SF
RESIDENTIAL DEVELOPMENT IN	<u>ICENTIVE (MF</u>	<u>RDI) POINTS:</u>
1-FAMILY UNITS:	47%	2 POINTS
RDABLE UNITS:	12 (5%)	1 POINT
ION OPEN SPACE	44%	3 POINTS
BELOW POVERTY LEVEL	6.03%	2 POINTS
		8 POINTS
NTS = 5% DENSITY BONUS = 5.08 DU	/AC ALLOWED	IN R-4
DATA: SINGLE-FAMILY RESIDENT	<u>IAL</u>	
BLE LOTS		125
JILDABLE LOTS		2
ONAL STANDARDS: A LOT SIZE		4 500 SE (9 000 SE AVG)

MINIMUM LOT SIZE MINIMUM LOT WIDTH FRONT YARD & STREET SIDE YARD SIDE YARD REAR YARD MIN.
SITE DATA: MULTI-FAMILY RESIDENTIAL NUMBER OF DWELLING UNITS PARKING REQUIRED MINIMUM (1 SPACE/D.U.) MAXIMUM (2 SPACE/D.U.) PARKING PROVIDED CAR PARKING PARKING AREA RATIO
LANDSCAPE_DATA: V.U.A. I.L.A. REQUIRED I.L.A. PROVIDED
SITE DATA TREE CANOPY: GROSS SITE AREA PROPOSED LAND USE EXISTING TREE CANOPY *TREE CANOPY TO BE PRESERVED TOTAL TREE CANOPY REQUIRED TREE CANOPY TO BE PLANTED

	<u>LEGEND</u>
XXX	EXISTING CONTOUR
	EXISTING TREE MAS
	EXISTING TREE
X X	EXISTING FENCE
S	EXISTING SANITARY
	PROPOSED TREE MA
Ĕ.	PROPOSED HANDICA
0	PROPOSED CATCH E
O	PROPOSED STORM
	PROPOSED HEADWA
<u>~</u>	PROPOSED WATER (
	DRODOSED DITCH /S

^	EXISTING FENCE
<u>\$</u>	EXISTING SANITARY
	PROPOSED TREE M
É.	PROPOSED HANDIC
0	PROPOSED CATCH
	PROPOSED STORM
(PROPOSED HEADWA
	PROPOSED WATER
· · · ·	PROPOSED DITCH/S
0	PROPOSED SANITAR
	PROPOSED FORCEM
	PROPOSED TREE C
\rightarrow	PROPOSED DRAINA
	INTERIOR LANDSCA

\rightarrow	
+ + + + + + + + + + + + + + + + + + + +	

EXISTING TREE MASS
EXISTING TREE
EXISTING FENCE
EXISTING SANITARY MANHOLE W/PIPE
PROPOSED TREE MASS
PROPOSED HANDICAP SPACE
PROPOSED CATCH BASIN & YARD DRAIN W/PIPE
PROPOSED STORM MANHOLE W/PIPE
PROPOSED HEADWALL W/PIPE
PROPOSED WATER QUALITY UNIT W/PIPE
PROPOSED DITCH/SWALE
PROPOSED SANITARY MANHOLE W/PIPE
PROPOSED FORCEMAIN

NIT W/PIPE W/PIPE MAIN CANOPY CREDIT AREA

IAGE ARROW APE AREA (ILA)

OPEN SPACE AREA

EXISTING SLOPES 20-30%

EXISTING SLOPES 30-100%

6,821 SF

61.09± AC (2,661,157± SF) SINGLE & MULTI-FAMILY RESIDENTIAL (MRDI) 910,757± SF (34%) 544,859± SF (21%) 1,064,463± SF (40%) 519,604± SF (19%)

4,500 SF (9,000 SF AVG) 15' (25' IF GARAGE FACING STREET)

112 112 SPACE

224 SPACES 188 SPACES (INCLUDES 6 ADA SPACES) 1.67 SP./UNIT

59,487 SF 4,461 SF (7.5%)


TREE CANOPY DEPICTED ON PLAN PER MSD LOJIC MAPPING, AERIAL PHOTO OR FIELD SURVEY. TREE CANOPY CALCULATIONS BASED UPON TREE AREAS SHOWN.

DEVELOPMENT)

*IF DRIPLINE IS PLOTTED/FIELD LOCATED THE AREA OF CANOPY TO BE PLANTED MAY BE REDUCED BY THE EXISTING CANOPY TO BE PRESERVED PER 10.1.5.A.2 OF

CASE NUMBER: -----

MSD WM # XXXX

