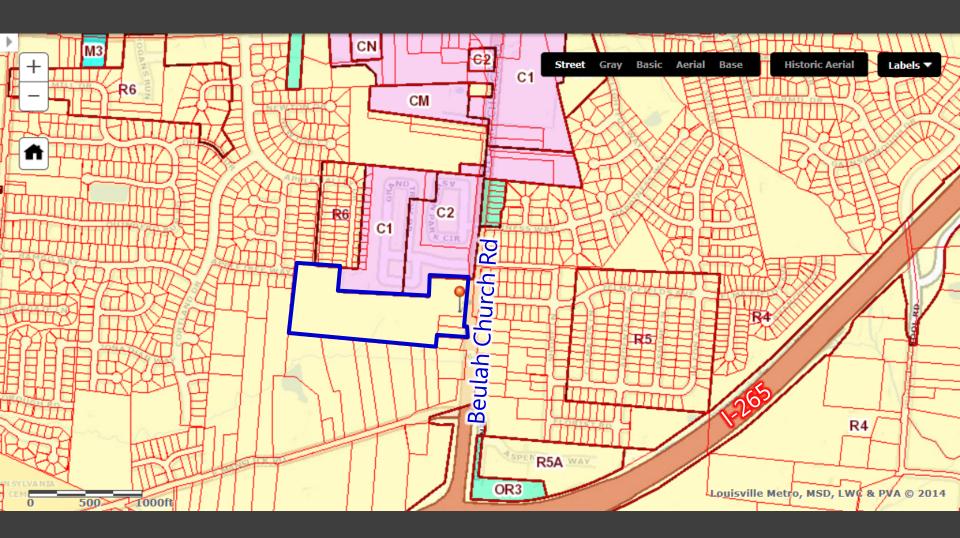
Louisville Metro Planning Commission April 16, 2015

Docket No 14ZONE1057

Partial zone change from R-4 to R-5A for apartments with landscape waiver combined with a proposed single-family subdivision on property located at 7508, 7506 and 7504 Beulah Church Road


Ashton Park, LLC c/o Ken Blacketer & David Bright

Attorneys: Bardenwerper Talbott & Roberts, PLLC Land Planner, Landscape Architects and Engineers: Land Design & Development, Inc.

<u>Index</u>

- 1. LOJIC Zoning Map
- 2. Aerial photographs of the site and surrounding area
- 3. Ground level photographs of the site and surrounding area
- 4. Neighborhood meeting notice list map, letter to neighbors inviting them to the meeting, and summary of meeting
- 5. Color Development Plan
- 6. Building elevations, exterior and interior photographs
- 7. Landscape buffer exhibit and photos of existing buffer
- 8. Traffic Study
- 9. Statement of Compliance filed with the original zone change application with all applicable Guidelines and Policies of the Cornerstone 2020 Comprehensive Plan and Waiver Justification
- 10. Proposed findings of fact pertaining to compliance with the Comprehensive Plan and Waiver criteria

Tab 1 LOJIC Zoning Map

Tab 2
Aerial photograph of the site and surrounding area

Tab 3
Ground level photographs of the site and surrounding area

View of site from Zelma Fields Subdivision.

View of Beulah Church Road, looking north. Site is the left.

View of existing Ashton Park.

View of The Fountains Condominiums at Grande Cascade Drive. Existing Ashton Park is to the right. Site is to the left.

View of Beulah Church Road, looking south. Site is to the right.

Tab 4
Neighborhood meeting notice list map, letter to neighbors inviting them to the meeting, and summary of meeting

Notice map inviting 44 first and second tier property owners, plus those on the "Interested Parties" list e-mailed by DPDS

Neighborhood meeting letter

ASHTON PARK, LLC

7600 Beulah Church Road Louisville, KY 40228

November 21, 2014

Dear Neighbor,

RE: Proposed zone change from R-4 to R-5 and R-5A to allow a combination of single-family and multi-family homes. 6.9 acres of the site proposed to be zoned R-5 for single-family use, and the remaining 9.1 acres proposed to be zoned R-5A for multi-family use on property located on the west side of Beulah Church Road just north of E. Manslick Road at 7506 Beulah Church Road

We are writing to invite you to a meeting regarding our proposed zone change to allow a combined single family and apartment community to be located as above.

A meeting will be held on Wednesday, December 3rd at 7:15 p.m. at the Central Government Center, Room A located at 7201 Outer Loop to discuss the plan with interested neighbors.

If you cannot attend the meeting but have questions or concerns, please call our attorney Bill Bardenwerper at 426-6688 or our land planning and engineering firm representative Kevin Young at 426-9374.

We look forward to seeing you.

Sincerely,

Ken Blacketer, Ashton Park, LLC, Member

Hon. James Peden, councilman, District 23
 David Wagner, case manager, Department of Planning & Design Services
 Bill Bardenwerper, attorney with Bardenwerper, Talbott & Roberts, PLLC
 Kevin Young, land planner with Land Design & Development

E: CLIENT FOLDER\Blacketer-Bright\Beulah Church\Nov 2014 Zone Change\Neighbor Meeting\Neigh Ltr 11 21 14.doc AMC Rev. 11/21/2014 4:10 PM

Summary of neighborhood meeting

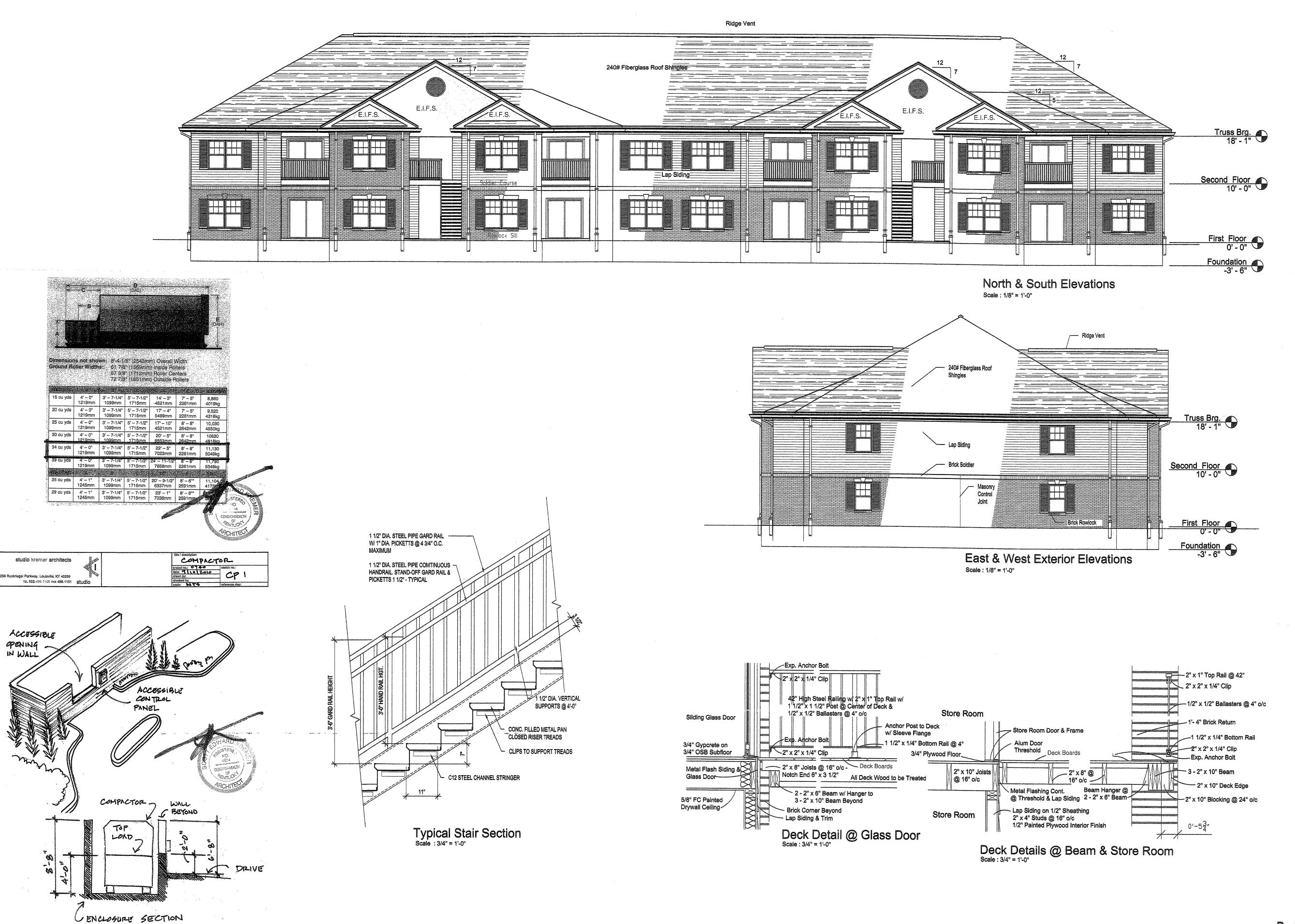
The Neighborhood Meeting was held at the Central Government Center, Room A located at 7201 Outer Loop on Wednesday, December 3rd, 2014 The meeting was mostly attended by owners of properties in the area, as well as Council Member James Peden.

Nick Pregliasco presented a PowerPoint showing the location, other uses in the area, the design of this property, how it is accessed, and how it will provide screening and buffering. Kevin Young with Land Design and Development, Inc. (LD&D) was present to address technical issues relating thereto, including drainage concerns.

After their presentations, the floor was opened to questions. Most of the questions pertained to traffic and the upcoming traffic improvements in the area. Many of the residents were from the adjoining subdivision and were particularly concerned with the connection from this property to their Apple Valley subdivision by Appleview Lane. Many residents were concerned that this property will become the main cut through in the area and will cause major traffic problems. Ken Blacketer, Kevin Young, and Nick all explained that the applicant would prefer not to connect to Appleview Lane, but this was Land Development Code requirement for connectivity. Other than the connection, many questions related to the additional traffic on Beulah Church Road, which Kevin Young explained was the reason for the upcoming road improvements.

Other than that, Kevin Young explained access, drainage and screening and buffering along the shared property line with the neighboring subdivision. Ken Backeter explained that the apartments would look very similar to the current apartment project on Beulah Church Road and pictures were shown. Mr. Pregliasco, Kevin Young and Councilman Peden explained the process and the fact that the applicant has not yet filed an official application but will do so in the near future to be followed by government agencies reviews, a committee review of the Planning Commission, a full public hearing and then final review and decision by the Metro Council. Kevin explained when those meetings will likely be held, the fact that anyone present or anyone noticed will received added notice of those meetings and will be invited to attend and comment. He also explained that every application has a DPDS case manager who can be contacted as well as officials associated with Metro Transportation Planning & MSD. Many of the residents had already contacted the case manager about this project.

Respectfully submitted,


Tab 5 Color Development Plan

Tab 6
Building elevations, exterior and interior photographs

project no.: 6940 sketch no.: drawn by: CP 2

studio kremer architects

3258 Ruckriegel Parkway, Louisville, KY 40299

TEL 502.499.1160 Fax 499.1101 Studio

Building #1 2-Story with 16 Two-Bedroom Units

FRONT ELEVATION

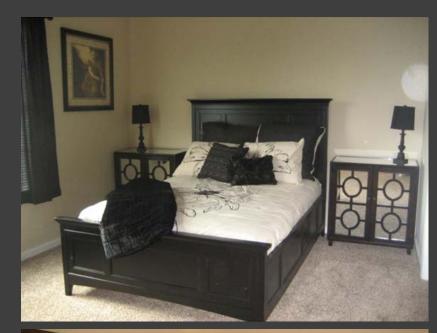
DESIGN
RAFTING, LL

9900 CORPORATE CAMPUS DR. SUITE 3000

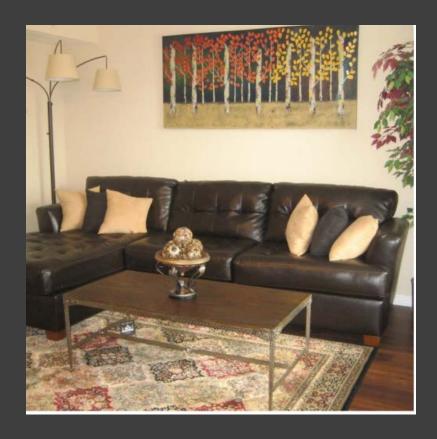
WRIGHT BUILT HOMES INC & PLEX FOR ASHTON PARK

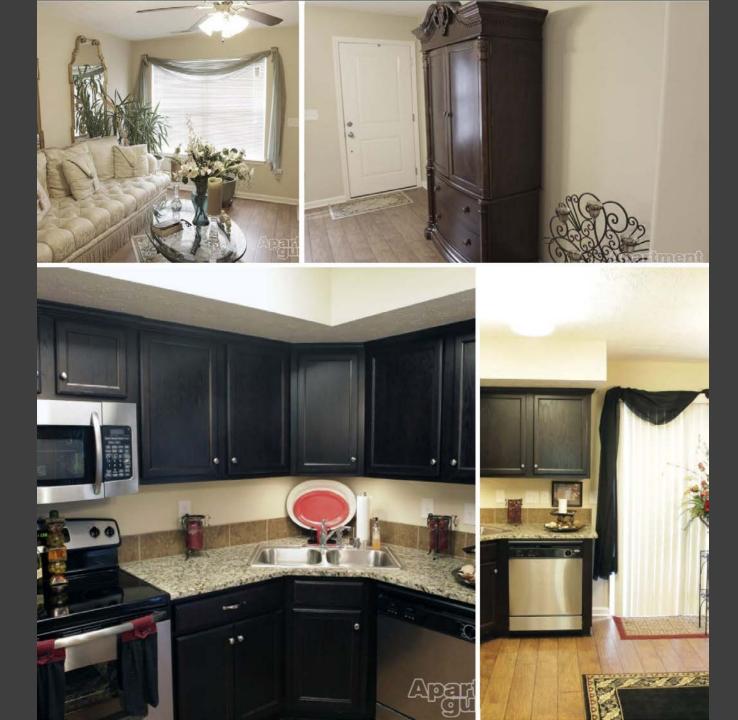
> SHT & LEFT SIDE ELEYATIONS

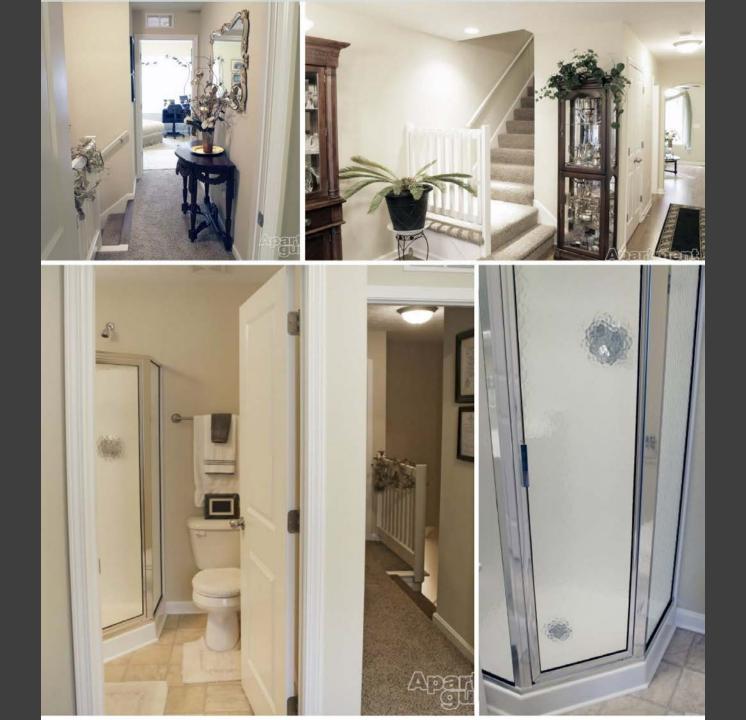
DATE:

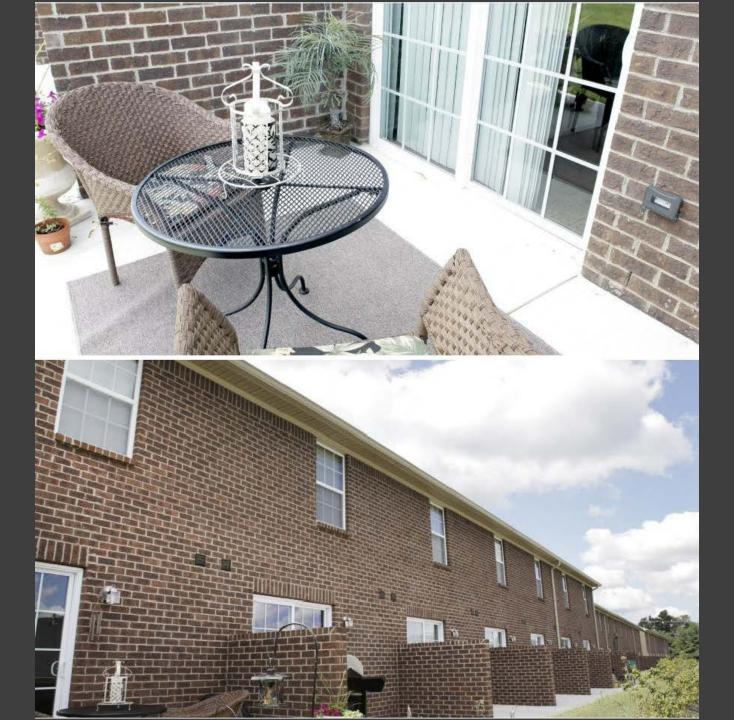

REVISED:

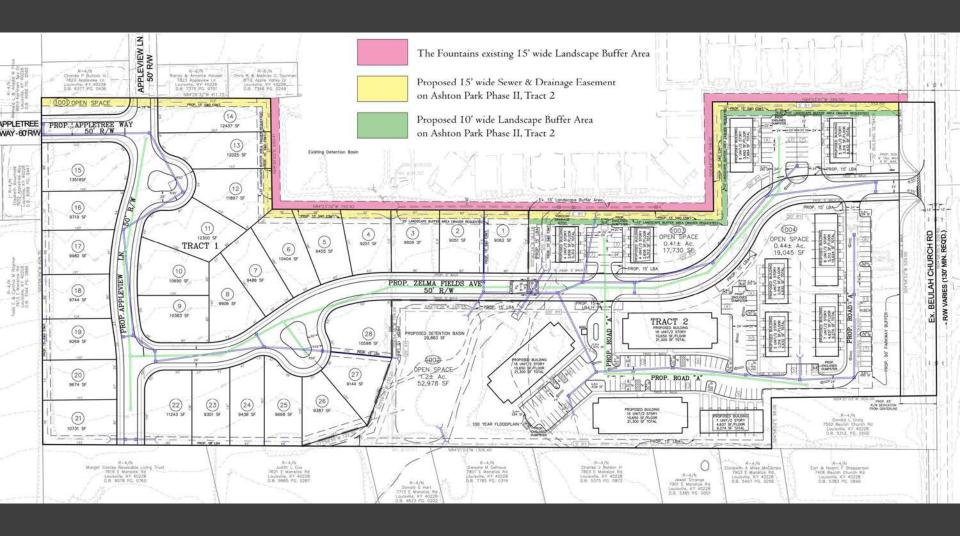
SCALE:

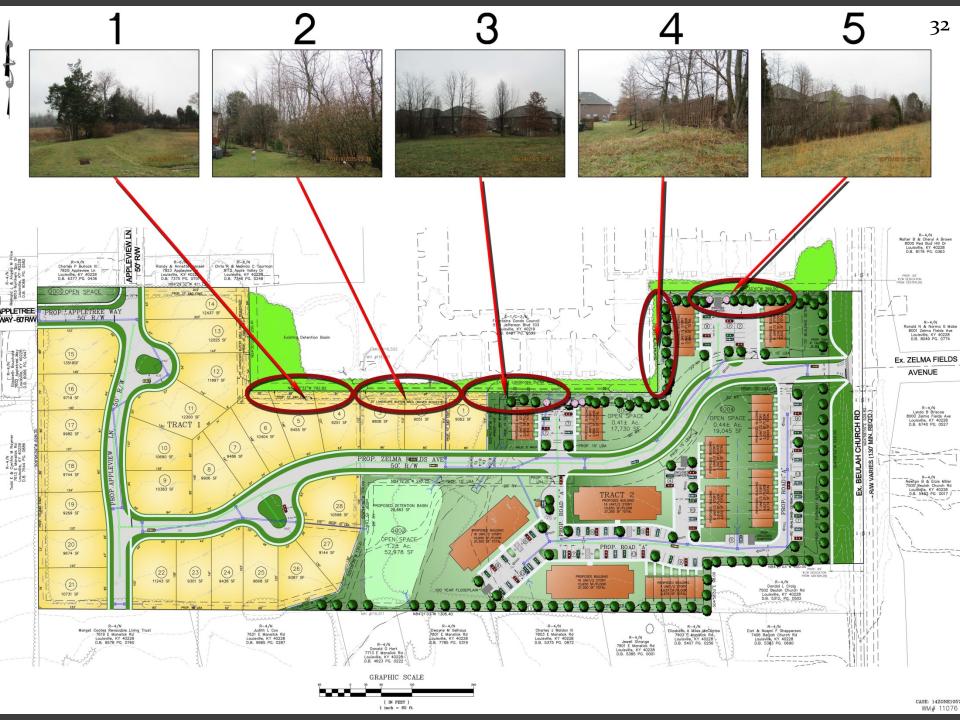

1/4" = 1' O"











Tab 7
Landscape buffer exhibit and photos of existing buffer

Tab 8 Traffic Study

final report

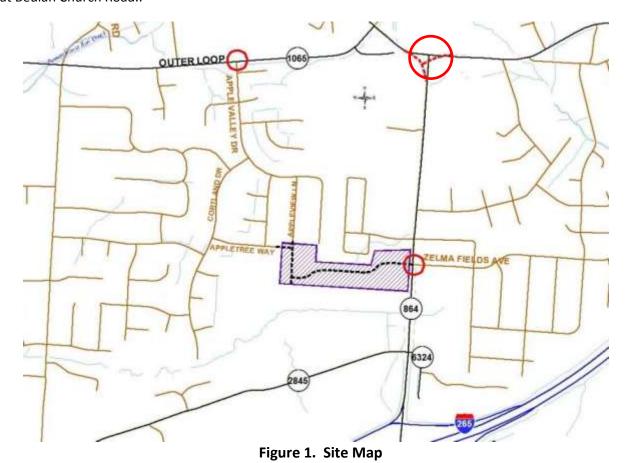
January 26, 2015 Revised April 7, 2015

Traffic Impact Study

Ashton Park Phase II Beulah Church Road Louisville, KY

Prepared for

Metro Public Works


Table of Contents

INTRODUCTION	2
Figure 1. Site Map	2
EXISTING CONDITIONS	2
Figure 2. 2015 Peak Hour Volumes	3
FUTURE CONDITIONS	3
Figure 3. 2018 Peak Hour No Build	4
TRIP GENERATION	4
Table 1. Peak Hour Trips Generated by Site	4
Figure 4. Trips Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	5
Figure 6. 2018 Peak Hour Build	6
ANALYSIS	6
Table 2. Peak Hour Level of Service	7
CONCLUSIONS	8
APPENDIX	9

INTRODUCTION

The development plan for Ashton Park Phase II on Beulah Church Road shows 28 single family lots and 106 apartment units. **Figure 1** displays a map of the site. Access to the development will be from Beulah Church Road, Appleview Lane, and Appletree Way. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study the impact area was defined to be the Beulah Church Road intersection with Zelma Fields Avenue at the proposed entrance, Apple Valley Drive at Outerloop and Fegenbush Lane at Beulah Church Road..

EXISTING CONDITIONS

Beulah Church Road, KY 864, is a state maintained road with an estimated 2015 ADT of 15,000 vehicles per day between I 265 and the Outer Loop (KY 1065), as provided by the Kentucky Transportation Cabinet at station 296. The road is a three-lane highway with twelve-foot lanes, eight foot paved shoulders (provided by the Kentucky Transportation Cabinet). The speed limit is 45 mph. There is a sidewalk on the east side of Beulah Church Road. The intersection with Zelma Fields Road is controlled with a stop sign. There is a two-way left turn lane. TARC does not provide service along Beulah Church Road.

Jacobs Engineering Group collected a.m. and p.m. peak hour turning movement counts for the intersection of Beulah Church Road and Zelma Field Avenue, on January 13 and 14, 2015. The a.m. peak occurred between 7:00 and

8:00 and the p.m. peak hour occurred between 4:30 and 5:30 p.m. For the Outerloop intersection with Apple Valley Drive a 5/28/09 count was used. The thru volumes on Outerloop were increased by two percent per year. Metro Public Works provided a count made on 5/5/10 for the intersection of Beulah Church Road and Fegenbush Lane. All volumes at the intersection were increased by two percent per year. **Figure 2** illustrates the 2015 peak hour traffic volumes.

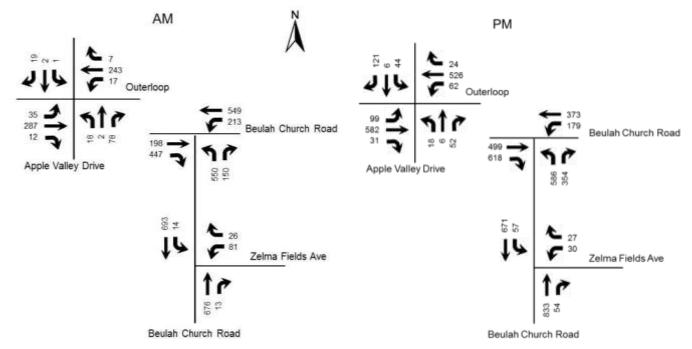


Figure 2. 2015 Peak Hour Volumes

FUTURE CONDITIONS

The projected completion year for this project is 2018, so the analysis year for this study is 2018. To predict traffic conditions in 2018, two and one third percent annual growth in traffic was added to the 2015 volumes on Beulah Church Road, Outerloop and Fegenbush Lane. This growth is Metro Louisville's standard rate. **Figure 3** displays the 2018 No build volumes.

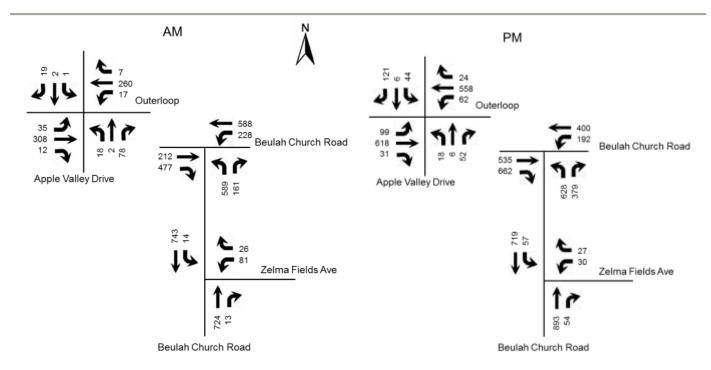


Figure 3. 2018 Peak Hour No Build

TRIP GENERATION

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 9th Edition contains trip generation rates for a wide range of developments. The land uses of "Apartments" and "Single-Family Detached Housing" were reviewed and determined to be the best match. The trip generation results are listed in **Table 1**. The results of the trip generation analysis are that this development will generate 85 a.m. peak hour trips and 109 p.m. peak hour trips. The trips were assigned to the highway network with the percentages shown in **Figure 4**. Additionally, forty percent of the traffic to/from Apple Valley and Outerloop east was assumed to be diverted thru Ashton Park. **Figure 5** shows the trips generated by this development and distributed throughout the road network for the year 2018 during the peak hours. **Figure 6** displays the individual turning movements for the year 2018 for the peak hours when the development is completed.

A.M. Peak Hour P.M. Peak Hour % OUT OUT % OUT Land Use Trips % In **Trips** % In IN OUT IN **Apartments** 56 20 80 11 45 76 65 35 49 27 Single Family 29 25 75 7 22 33 63 37 21 12 **TOTAL** 85 18 67 109 70 39

Table 1. Peak Hour Trips Generated by Site

Figure 4. Trips Distribution Percentages

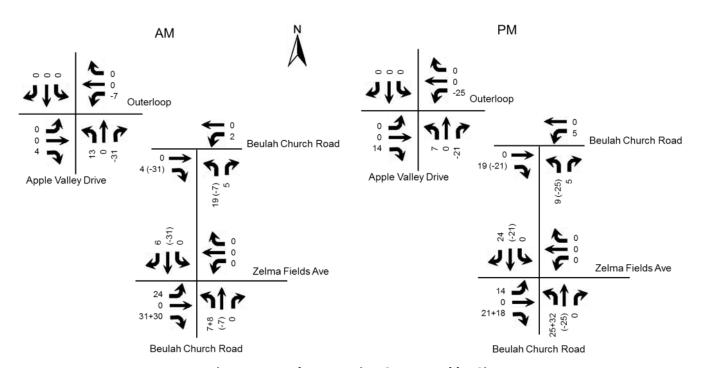


Figure 5. Peak Hour Trips Generated by Site

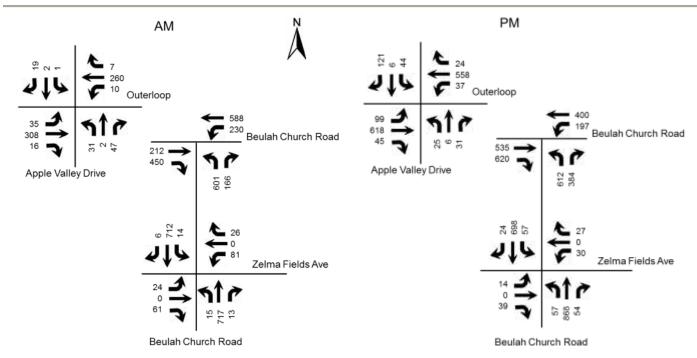


Figure 6. 2018 Peak Hour Build

ANALYSIS

The qualitative measure of traffic operations for a roadway facility or intersection is evaluated by assigning a "Level of Service" or LOS. Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst. LOS results depend upon the facility that is analyzed. In this case, the LOS is based upon the total delay experienced at an intersection.

To evaluate the impact of the proposed development, the average vehicle delays at the intersection were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 2010 edition. Future delay and LOS were determined for the intersections using the Highway Capacity Software HCS 2010 Streets (version 6.65) and HCS+ (version 5.6).

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Approach	2014	2018	2018	2014	2018	2018
	Existing	No Build	Build	Existing	No Build	Build
Beulah Church Road at Zelma Fields Ave						
Beulah Church Road Northbound	NA	NA	A 9.4	NA	NA	A 9.5
Beulah Church Road Southbound	A	A	A	B	B	B
	9.3	9.5	9.4	10.3	10.6	10.4
Zelma Fields Ave Westbound	D	D	E	C	C	D
	25.6	28.4	46.9	22.2	24.1	34.2
Entrance Eastbound			C 22.3			C 23.0
Beulah Church Road at Fegenbush Lane	B	C	C	C	C	C
	19.0	22.6	22.2	26.5	32.2	29.3
Beulah Church Road Eastbound	C	C	C	C	C	C
	24.5	27.4	27.4	27.6	31.6	30.1
Fegenbush Lane Westbound	B	B	B	B	B	B
	14.8	17.2	17.7	15.5	17.6	17.1
Beulah Church Road Northbound	C	C	C	C	D	D
	20.5	25.7	24.3	32.1	41.2	36.1
Outerloop at Apple Valley Drive	B	B	B	B	B	B
	15.3	18.0	18.3	17.2	18.9	19.6
Outerloop Eastbound	A	A	A	B	B	B
	7.6	7.8	7.2	13.1	13.8	13.5
Outerloop Westbound	B	B	C	B	B	C
	15.5	19.1	20.2	16.7	18.8	20.5
Apple Valley Northbound	D	D	D	C	C	C
	35.3	39.7	40.3	28.4	31.6	33.1
Outerloop Plaza Southbound	C	D	D	C	D	D
	31.4	35.2	36.8	32.0	35.6	36.9

Key: Level of Service, Delay in seconds per vehicle

The Kentucky Transportation Cabinet (KYTC) evaluates the need for turn lanes using <u>Highway Design Memorandum</u> <u>No. 03-09</u> dated July 28, 2009. The volumes for the 2018 Build condition does not meet the warrants for a southbound right turn on Beulah Church Road at the entrance.

KYTC has the intersection of Beulah Church Road and Fegenbush Lane scheduled for construction beginning in 2016. The completed project should fully operational in 2017. The project will relocate the intersection to the west and make the Fegenbush Lane to Beulah Church Road south the through movement. Beulah Church Road east will become the side road. Fegenbush Lane will be widened to four lanes through the Outerloop/Watterson Trail intersection.

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2018, there will be manageable impact to the existing highway network. The delays experienced will increase, but will continue to operate at an acceptable Level of Service. Zelma Fields Avenue will experience Level of Service E during the a.m. peak. However, a review of the volume to capacity ratio indicates in both scenarios the ratio is less than 0.6, indicating an additional lane is not needed on the approach.

APPENDIX

Traffic Counts

File Name : Beulah ChurchAM

Site Code : 00011415 Start Date : 1/14/2015

Page No : 1

Counted by: Andy Wolak

							Group	is Printed-	Unshit	ted							
	Ве		hurch F North	load	Ze		lds Ave n East	enue	Ве		hurch F	Road		From	ı West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	Acc Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	3	171	0	174	28	0	12	40	0	127	0	127	0	0	0	0	341
07:15 AM	1	166	0	167	13	0	9	22	0	177	4	181	0	.0	0	0	370
07:30 AM	4	183	0	187	23	0	2	25	0	196	4	200	0	0	0	0	412
07:45 AM	- 6	173	0	179	17	0	- 3	20	0	176	- 5	181	0	- 8	0	0	380 1503
Total	14	693	0	707	81	0	26	107	0	676	13	689	0	0	0	0	1503
08:00 AM		149	0	150	20	0	12	32	0	133	4	137	0	0	0	0	319
08:15 AM	. 1	111	0	112	12	0	. 5	17	0	105	3	108	0	0	. 0	0	237 252
08:30 AM	3	120	0	123	17	.0	11	28	.0	98	- 3	101	0	- 0	0	0	252
08:45 AM	2	108	. 0	110	9	0	- 4	13	0	114	. 2	116	0	- 0	0	0	239 1047
Total	7	488	0	495	58	0	32	90	0	450	12	462	0	0	0	0	1047
Grand Total	21	1181	0	1202	139	0	58	197	0	1126	25	1151	0	0	0	0	2550
Approh %	1.7	98.3	0		70.6	0	29.4	8 11	0	97.8	2.2		.0	. 0	0		
Total %	0.8	46.3	0	47.1	5.5	0	2.3	7.7	0	44.2	- 1	45.1	0	0	0	0	

0.0000000	7,005		VICE ROLE -				es Aarta n Sar			Sever 5	furci Hose South			Fee	- Admit		
Start Time	Let	. Mys.	Right	66,766	15257	Secretification of the second	77.5			- 20	0000				2001		
Peak Hour Anal	ysis Fro	m 07:00	AM to	08:45 AM	- Peak	1 of 1											
Peak Hour for E																	
07:00 AM	3	171	Ö	174	28	- 00	12	40	0	127	0	127	0	0	0	0	341
07:15 AM	1	166	0	167	13	0	9	22	0	177	4	181	0	0	0	0	370
07:30 AM	4	183	0	187	23	0	2	25	0	196	4	200	0	0	0	0	412
07:45 AM	6	173	0	179	17	0	3	20	.0	176	5	181	0	0	0	0	380
Total Volume	14	693	0	707	81	0	26	107	- 0	676	13	689	- 0	0	0	.0	1503
% App Total	2	98	0	77001	75.7	0	24.3	24.0	0	98.1	1.9	HOAT SEA	0	0	0		
PHF	583	947	000	.945	.723	.000	542	.669	.000	862	650	861	.000	000	000	.000	.912

File Name : Beulah Church PM Counted by: Andy Wolak

Site Code : 00011315 Start Date : 1/13/2015

Page No : 1

Charles and	Post of		11	100 - 4
Groups	PHI	neo-	unst	imed
- CINCHES		110-14	minute.	11100

- 1	Be	ulah Cl	nurch R	oad	- 2	čelma F	ields A	ve	Be	ulah C	hurch R	oad					
		From	North			Fron	n East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Int. Total
04:00 PM	7	146	0	153	7	0	10	17	0	173	13	186	0	0	0	0	356
04:15 PM	10	164	0	174	6	0	9	15	0	197	16	213	0	.0	0	0	40.
04:30 PM	10	165	0	175	9	0	11	20	0	201	19	220	0	0	0	0	419
04:45 PM	11	170	0	181	- 5	0	7	13	0	203	18	221	0	- 8	0	0	411
Total	38	645	0	683	29	0	37	65	0	774	66	840	0	0	0	0	158
05:00 PM	18	160	0	178	3	0	2	51	0	215	8	223 [0	0	0	0	40
05:15 PM	18	176	0	194	12	0	. 7	19	0	215 214	8	223	0	0	0	0	43
05:30 PM	4	185	0	189	10	0	5	15	.0	188	14	202	0	- 0	.0	0	40
05:45 PM	8	160	. 0	168	10	0	4	14	0	213	13	225	0	0	0	0	40
Total	48	681	0	729	35	0	18	53	0	830	44	874	0	0	0	0	165
Grand Total	85	1326	0	1412	63	0	55	118	0	1604	110	1714	0	0	0	0	324
Approh %	6.1	93.9	0		53.4	0	46.6		0	93.6	6.4		0	0	0		
Total %	2.7	40.9	0	43.5	1.9	0	1.7	3.6	.0	49.4	3.4	52.8	0	0	0	0	

	7,025		Not Rost				Federal Frame .				TUTO ROSE			Fee	Was:		
Start fire	Litt	750	Right	2000	152501	cray(00				- 40				10.00			
Peak Hour Anal	ysis Fro	m 04:00	PM to	05:45 PM	- Peak	1 of 1											
Peak Hour for E																	
04:30 PM	10	166	Ō	175	9	0.	11	20	0	201	19	220	0	0	0	0	415
04:45 PM	11	170	0	181	6	0	7	13	0	203	18	221	0	0	0	0	415
05:00 PM	18	160	0	178	3	0	2	. 5	0	215	8	223	0	0	0	0	406
05:15 PM	18	176	0	194	12	0	7	19	.0	214	9	223	0	0	0	0	436
Total Volume	57	671	0	728	30	0	27	57	- 0	833	54	887	- 0	0	0	.0	1672
% App Total	7.8	92.2	0		52.6	0	47.4		0	93.9	6.1	10.65511	0	0	0		
PHF	792	953	000	.938	625	.000	.614	713	.000	969	711	994	.000	000	.000	:000	959

Louisville Metro Traffic Engineering 601 W Jefferson St Louisville, 40202

File Name : Beulah Church Rd & Fegenbush Ln (2) Site Code : 05050234 Start Date : 5/5/2010 Page No : 6

			om Nort					h Church rom Eas					h Chure om Sout					rnhush l rom Wes			
Start Time	Right	Thru	Left	Pods	App. Total	Right	Thru	Left	Peds	Agg. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Tetal	Int. Total
Peak Flour Analysis	From 97.01	0 AM to 0	9.45 AM -	Peak I of	1																
Peak Hour for Entire	Intersection	on Begins i	x 07:15 A	M																	
07:15 AM	0	0	0	.0	0	0.	121	69	.0	190	33	0.	1.33	. 0	366	74	46	1	0.7	121	477
97.30 AM	0.5	0	0.	.0	9	0.	124	39	.0	185	35	0	150	9	185	101	401	0	0	149	517
07:45 AM	0	0	0.7	.0	0	0.	159	41	- 10	200	3/9	.0	93	0	332	129	43	. 0	0	172	304
08:00 AM	0	0	0	0	0.1	- 0	93	24	. 0	117	29	0	122	0	151	101	42	0	0	141	401
Total Volume	0	.0	0	0	. 0	- 0.	497	193	.0	690	136	0	498	0	634	405	179	- 1	0	585	1900
% Age, Total	. 0	. 0	- 0	. 0	- 85.1	0	72	28	. 0	335.9	21.5	0	78.5		4.33	69.2	30.6	0.2	- 0	500,00	M 27/2
PHF	.000	.000	.000	.000	.000	.1900	.741	.699	.000	863	472	.000	:830	000	357	785	.932	250	.000	.859	.923
Peak Hour Analysis Peak Hour for Entire					1	: 100	226	8550	70	100	22	17200	19931	727	023	U si	52.5	90	7.55	177.00	N 222
01:00 PM		0	0.0		10	- 11	79	27	. 10	47	10	0	60 82	- 0	82	54	50	- 10	. 0	110	289
01:15 PM	0	-0	0.0	- 0	- 0	41	58	15	- 0	73 92	3/2	0	8.2	0	114	94	79	- 0	-0-	173	369
01:30 PM	0.5	0	0.5	- 0	0	- 11	70	22		92	21	0	160	0	901	64	54	- 0	- 0	118	311
01:45 PM		- 0	- 0	- 0	. 0	- 11	-70	28	. 0	98	22	- 0	69	- 0	91		56	- 0	-0	130	319
Total Volume	0	. 0	0	.0	0	- 0	288	92	. 0	360	. 91	0	297	0	385	286	245	- 0	- 0	.531	1279
% App. Total	0	0	- 0	0		(f	74.4	25.6		- 855.0	23.5	0	76.5	- 0	2377	53.9	46.1		- 0	2010	1000
PHF	.000	14400	000	5890	0000	000	047	821	1100	918	211	000	904	1000	351	781	776	.000	000	767	855

Louisville Metro Traffic Engineering 601 W Jefferson St Louisville, 40202

File Name : Beulah Church Rd & Fegenbush Ln (2) Site Code : 05050234

Start Date : 5/5/2010 Page No : 7

			rum Nort	h		Ti		th Churci from Eas				1000	d Churc rom Sout					enbash I rom Wes			
Start Time	Right	Thru	Left	Peds	App. Tieul	# ight	Thm	Left	Pods	Age, Total	Right	Thre	Left	Peds	Appl. Total	Right	Thru	Lett	Pads	App. Total	Int. Total
Peak Hour Analysis	From 02:0	the PMI to be	6:43 PM +	Peak I of	politicas)	F -5.0%.	10.000		100000	11111111111	-250	177	1111111		15.600019	275.000					
Peak Hour for Entire	e Intersection	on Blegins:	at 05:30 P	M																	
05:30 PM	0	0	. 0	0	0.1		75	44	0	119	97	0	121	. 0	218	160	133	0.	. 0	282	619
05:45 PM	0.		0	0.7	. 0	.0	85	28	0	113	92	0.7	116	0	208	124	115	0.	0	239	560
00:00 PM	0		0	0	0	0	94	53	0	147	.64	0.	:143	. 0	207	137	95		. 0	232	586
06:15 PM	0	- 0	0	- 0	- 0	0	64	37	0	121	68	0	151	0	219	139	120		. 0	259	590
Total Volume	0	10	- 0	0.	-0	- 0	338	162	0	900	321	0	.531	0	852	500	452	. 0	. 0	1012	2364
% Age, Total	0.0		0	0		0	67.0	32.4	0.		37.7	0	62.3	0		55.3	44.7	- 6	. 0	0	
2910	.000	.000	.000	.000	.000	.000	.500	764	.000	850	827	000	879	.000	973	175	975	.000	.000	M9T	.935

Traffic Counts 5/28/09

	1													
Interval	Outer	Loop I	Plaza	Ou	ter Lo	ор	Арр	leVa	lley	Ou	ter Lo	оор		
Start Time	Fr	om Nor	th	F	rom Eas	st	Fr	om Sou	ıth	Fi	om We	st		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total	Hour
7:00	0	1	3	3	44	0	6	2	15	4	28	2	108	
7:15	0	2	2	3	48	0	3	0	23	6	64	3	154	
7:30	0	0	8	6	66	1	4	0	27	9	74	2	197	
7:45	0	0	4	2	57	0	6	1	13	13	60	3	159	618
8:00	1	0	5	6	45	6	5	1	15	7	57	4	152	662
8:15	2	0	9	1	46	4	9	0	11	16	39	3	140	648
8:30	3	0	9	0	44	6	7	0	13	9	55	0	146	597
8:45	3	2	15	3	55	4	6	0	7	14	49	1	159	597
16:00	12	3	32	22	120	8	6	0	6	28	134	12	383	
16:15	11	3	37	20	107	2	5	5	13	20	87	8	318	
16:30	5	2	29	15	116	5	4	2	12	27	112	5	334	
16:45	6	1	33	14	120	5	3	0	17	24	110	7	340	1375
17:00	11	2	39	20	108	7	3	2	7	14	105	8	326	1318
17:15	8	0	23	15	142	9	7	1	12	34	139	5	395	1395
17:30	20	1	23	11	109	3	4	1	18	27	143	10	370	1431
17:45	5	3	36	16	108	5	4	2	15	24	130	8	356	1447
AM PEAK														
7:15	0	2	2	3	48	0	3	0	23	6	64	3	154	
7:30	0	0	8	6	66	1	4	0	27	9	74	2	197	
7:45	0	0	4	2	57	0	6	1	13	13	60	3	159	
8:00	1	0	5	6	45	6	5	1	15	7	57	4	152	
	1	2	19	17	216	7	18	2	78	35	255	12	662	
PM PEAK													-	
17:00	11	2	39	20	108	7	3	2	7	14	105	8	326	
17:15	8	0	23	15	142	9	7	1	12	34	139	5		
17:30	20	1	23	11	109	3	4	1	18	27	143	10		
17:45	5	3	36	16	108	5	4	2	15	24	130	8		
	44	6	121	62	467	24	18	6	52	99	517	31	1447	
<u> </u>														

HCS Reports

	TWC	-WAY STOP	CONTR	OL SI	UM	MARY				
General Information	on		Site I	nform	nati	ion				
Analyst Agency/Co. Date Performed	DBZ Jacobs 1/26/201	5	Interse Jurisd Analys		ır		2015			
Analysis Time Period Project Description A	AM Peak									
East/West Street: Zeli	na Fields Ave		North/s	South S	Stre	et: Beula	h Church I	Road		
Intersection Orientation		h				s): 0.25	ii ondion i	touu		
Vehicle Volumes a					<u> </u>					
Major Street	Aujuotii	Northbound		T			Southbou	und		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume (veh/h)		676	13			14	693			
Peak-Hour Factor, PHF	1.00	0.91	0.91			0.91	0.91		1	.00
Hourly Flow Rate, HFR (veh/h)	0	742	14			15	761			0
Percent Heavy Vehicles	s 0					1				
Median Type			Two V	/ay Lef	t Tu	ırn Lane				
RT Channelized			0							0
Lanes	0	1	0			1	1			0
Configuration			TR			L	Т			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume (veh/h)						81				26
Peak-Hour Factor, PHF	1.00	1.00	1.00)		0.91	1.00		(0.91
Hourly Flow Rate, HFR (veh/h)	0	0	0			89	0			28
Percent Heavy Vehicles	s 0	0	0			1	0			1
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0					$\neg \uparrow$		0
Lanes	0	0	0			0	0	\dashv		0
Configuration	1		1				LR	-+		-
Delay, Queue Length,	and Level of	Service								
Approach	Northbound	Southbound	\	Vestbo	und	1	F	Eastbo	ound	
Movement	1	4	7	8		9	10	1		12
Lane Configuration	•	L	-	LR				.	-	
v (veh/h)		15		117						
C (m) (veh/h)		859		290						
V/C		0.02		0.40						
95% queue length		0.05		1.87	_					
Control Delay (s/veh)		9.3		25.6						
LOS		Α		D						
Approach Delay (s/veh)				25.6	;					
Approach LOS				D						

Copyright © 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6 Generated: 1/26/2015 3:34 PM

	TWC	-WAY STOP	CONTR	OL S	ШМ	IMARY				
General Information		7-WAI 510F	Site I							
Analyst Agency/Co.	DBZ Jacobs		Interse Jurisd	ection liction		1011				
Date Performed Analysis Time Period	1/26/201 AM Peak	_	Analy	sis Yea	ar		2018 No	Build		
Project Description A East/West Street: Zeli			North/	South	Stre	et: Beula	h Church i	Road		
Intersection Orientation		h				s): 0.25	,, charon i	touu		
Vehicle Volumes a	and Adjustn	nents								
Major Street		Northbound					Southboo	und		
Movement	1	2	3			4	5			6
	L	T	R			L	Т			R
Volume (veh/h)		724	13			14	743			
Peak-Hour Factor, PHF Hourly Flow Rate, HFR		0.91	0.91	'		0.91	0.91		1	1.00
(veh/h)	0	795	14			15	816			0
Percent Heavy Vehicles	s 0					1				
Median Type				Vay Le	ft Τι	ırn Lane				
RT Channelized			0							0
Lanes	0	1	0			1	1			0
Configuration			TR			L	T			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume (veh/h)		100	4.00			81	4.00	-		26
Peak-Hour Factor, PHF		1.00	1.00	<u>'</u>		0.91	1.00	-	().91
Hourly Flow Rate, HFR (veh/h)	0	0	0			89	0			28
Percent Heavy Vehicles	s 0	0	0			1	0			1
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration							LR			
Delay, Queue Length,										
Approach	Northbound	Southbound	١	Nestbo	ounc	1	E	Eastbo	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L		LR						
v (veh/h)		15		117	7					
C (m) (veh/h)		821		268	3					
v/c		0.02		0.44	4					
95% queue length		0.06		2.09	9					
Control Delay (s/veh)		9.5		28.4						
LOS		A		D						
Approach Delay (s/veh)				28.4	4					
Approach LOS				D						

HCS+™ Version 5.6

Generated: 1/26/2015 3:36 PM

	TWC	-WAY STOP	CONTR) SII	IMMADV				
General Information		-WAT STOP	Site Ir						
Analyst	DBZ		Interse		ution				
Agency/Co.	Jacobs		Jurisdi						
Date Performed	4/2/2015			is Year		2018 Bui	ild		
Analysis Time Period	AM Peak	(
	shton Park								
East/West Street: Zeli			North/S	South St	treet: Beula	h Church F	Road		
Intersection Orientation	: North-Sout	h	Study F	Period (hrs): 0.25				
Vehicle Volumes a	ınd Adjustn	nents							
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4	5		6	
	L	Т	R		L	T		F	
Volume (veh/h)	15	717	13		14	712		6	
Peak-Hour Factor, PHF		0.91	0.91		0.91	0.91		0.9	91
Hourly Flow Rate, HFR (veh/h)	16	787	14		15	782		6	
Percent Heavy Vehicles	s 1				1				
Median Type			Two W	'ay Left	Turn Lane				
RT Channelized			0					0)
Lanes	1	1	0		1	1		0)
Configuration	L		TR		L			TF	₹
Upstream Signal		0				0			
Minor Street		Eastbound				Westbou	ınd		
Movement	7	8	9		10	11		1	2
	L	T	R		L	Т		F	₹
Volume (veh/h)	24	0	61		81	0		26	5
Peak-Hour Factor, PHF		0.91	0.91		0.91	0.91		0.9	91
Hourly Flow Rate, HFR (veh/h)	26	0	67		89	0		28	3
Percent Heavy Vehicles	s 1	0	1		1	0		1	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				1			
RT Channelized			0					0)
Lanes	0	1	0		0	1		0)
Configuration		LTR				LTR			
Delay, Queue Length,	and Level of	Service							
Approach	Northbound	Southbound	V	Vestbou	ınd	E	astbo	und	
Movement	1	4	7	8	9	10	11		12
Lane Configuration	L	L		LTR			LTF	_	
v (veh/h)	16	15		117			93		
C (m) (veh/h)	836	827		197			300)	
v/c	0.02	0.02		0.59			0.3	1	
95% queue length	0.06	0.06		3.30			1.2	_	
Control Delay (s/veh)	9.4	9.4		46.9			22.	$\overline{}$	
LOS	A	A A		E			C		
Approach Delay				46.9			22.3		
(s/veh) Approach LOS				E			C		

HCS+™ Version 5.3

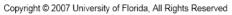
Copyright © 2007 University of Florida, All Rights Reserved

Generated: 4/2/2015 4:16 PM

	TWC	-WAY STOP	CONTR	OL S	UM	IMARY				
General Informati		, MAI GIGI	Site I							
Analyst	DBZ		Inters							
Agency/Co.	Jacobs		Jurisd	iction						
Date Performed	1/26/201	5	Analys	sis Yea	ar		2015			
Analysis Time Period	PM Peak	(
Project Description /	Ashton Park		•							
East/West Street: Zel	ma Fields Ave		North/	South	Stre	et: Beula	h Church I	Road		
Intersection Orientation	n: North-Sout	h	Study	Period	l (hrs	s): 0.25				
Vehicle Volumes	and Adjustn	nents								
Major Street		Northbound					Southboo	und		
Movement	1	2	3			4	5			6
	L	T	R			L	Т			R
Volume (veh/h)		833	54			57	671			
Peak-Hour Factor, PHI		0.96	0.96			0.96	0.96	\rightarrow	1	1.00
Hourly Flow Rate, HFF (veh/h)	0	867	56			59	698			0
Percent Heavy Vehicle	s 0					1				
Median Type			Two V	/ay Le	ft Tı	ırn Lane				
RT Channelized			0							0
Lanes	0	1	0			1	1			0
Configuration			TR			L	T			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume (veh/h)						30				27
Peak-Hour Factor, PHI		1.00	1.00	1		0.96	1.00		().96
Hourly Flow Rate, HFF (veh/h)	0	0	0			31	0			28
Percent Heavy Vehicle	s 0	0	0			1	0			1
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration							LR			
Delay, Queue Length	and Level of	Service								
Approach	Northbound	Southbound	١	Vestbo	ounc	1	E	Eastbo	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		L		LR						
v (veh/h)		59		59						1
C (m) (veh/h)		744		268						
v/c		0.08		0.22						
		0.06								
95% queue length				0.82						
Control Delay (s/veh)		10.3		22.2						
LOS		В		С						
Approach Delay (s/veh)				22.2	2					
Approach LOS				С						

HCS+™ Version 5.6

Generated: 1/26/2015 3:44 PM


		-WAY STOP								
General Information	n		Site I	nfor	mati	ion				
Analyst	DBZ		Inters							
Agency/Co.	Jacobs	-	Jurisd							
Date Performed	1/26/201		Analy	sis Ye	ar		2018 No	Build	d	
Analysis Time Period	PM Peak									
Project Description A East/West Street: Zeln			North/	Couth	Ctro	ot: Poulo	h Church F	Dood	ı	
Intersection Orientation		h				6): 0.25	n Gnuich i	TUAU		
			Jolddy	i enoc	<i>I</i> (1113	5). 0.20				
Vehicle Volumes a	na Aajustn						Couthbou	ınd		
Major Street Movement	1	Northbound 2	3			4	Southbou 5	una		6
Movement	 	T	R			-4	T			R
Volume (veh/h)		893	54			57	719			
Peak-Hour Factor, PHF	1.00	0.96	0.96	;		0.96	0.96		1	.00
Hourly Flow Rate, HFR (veh/h)		930	56			59	748			0
Percent Heavy Vehicles	0					1				
Median Type			Two V	Vay Le	eft Tu	ırn Lane				
RT Channelized			0							0
Lanes	0	1	0			1	1			0
Configuration			TR			L	Т			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	T	R			L	Т			R
Volume (veh/h)						30				27
Peak-Hour Factor, PHF	1.00	1.00	1.00)		0.96	1.00		0	.96
Hourly Flow Rate, HFR (veh/h)	0	0	0			31	0			28
Percent Heavy Vehicles	0	0	0			1	0			1
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration							LR			
Delay, Queue Length,	and Level of	Service								
Approach	Northbound	Southbound	١	Nestb	ound	1	E	astb	ound	
Movement	1	4	7	8		9	10		11	12
Lane Configuration		L		LF	?					
v (veh/h)		59		59)					
C (m) (veh/h)		705		24	_					
v/c		0.08		0.2						
95% queue length		0.27		0.9						
Control Delay (s/veh)		10.6		24.						
LOS				_						
Approach Delay		B 		C 24.				<u></u>		
(s/veh) Approach LOS				С						

HCS+™ Version 5.6

Generated: 1/26/2015 3:48 PM

Site Information		TWO	-WAY STOP	CONTR	OL S	UM	IMARY				
Agency/Co	General Informati	on		Site I	nforr	nati	ion				
EastWest Street	Agency/Co. Date Performed	Jacobs 4/2/2015		Jurisd	iction	ar		2018 Bui	ild		
Intersection Orientation: North-South Study Period (hrs): 0.25				l							
Vehicle Volumes and Adjustments								h Church F	Road		
Major Street Northbound Southbound Movement 1 2 3 4 5 6 Wolume (veh/h) 57 868 54 57 698 24 Peak-Hour Factor, PHF 0.96 </td <td></td> <td></td> <td></td> <td>Study</td> <td>Period</td> <td>ı (nrs</td> <td>s): 0.25</td> <td></td> <td></td> <td></td> <td></td>				Study	Period	ı (nrs	s): 0.25				
Movement		and Adjustn									
Colume (veh/h)				1 2					ınd		
Volume (veh/h) 57 868 54 57 698 24 Peak-Hour Factor, PHF 0.98 0.96 0.96 0.96 0.96 0.96 0.96 Percent Heavy Vehicles 0	Movement		_								
Peak-Hour Factor, PHF 0.96	Volumo (voh/h)										
Hourly Flow Rate, HFR (veh/h) 59 904 56 59 727 25			_		:						
(veh/h))			,						
Median Type		59	904	56			59	727		2	25
RT Channelized	Percent Heavy Vehicle	es 0					1				
Lanes	Median Type			Two V	Vay Le	ft Tu	ırn Lane				
Configuration L TR L TR Upstream Signal 0 TR L TR Minor Street Eastbound Westbound Movement 7 8 9 10 11 12 Wolume (veh/h) 14 0 39 30 0 27 Peak-Hour Factor, PHF 0.96	RT Channelized			0							0
Upstream Signal O	Lanes	1	1	0			1	1			0
Minor Street Eastbound Westbound Movement 7 8 9 10 11 12 Volume (veh/h) L T R L T R Volume (veh/h) 14 0 39 30 0 27 Peak-Hour Factor, PHF 0.96 0.96 0.96 0.96 0.96 0.96 Hourly Flow Rate, HFR (veh/h) 14 0 40 31 0 28 Percent Heavy Vehicles 1 0 1 1 0 1 Percent Grade (%) 0 0 0 0 0 1 Percent Grade (%) 0 0 0 0 0 0 1 0 1 0	Configuration	L		TR			L			7	R
Movement	Upstream Signal		0					0			
L	Minor Street		Eastbound					Westbou	nd		
Volume (veh/h) 14 0 39 30 0 27 Peak-Hour Factor, PHF 0.96 0.96 0.96 0.96 0.96 0.96 Hourly Flow Rate, HFR (veh/h) 14 0 40 31 0 28 Percent Heavy Vehicles 1 0 1 1 0 1 Percent Grade (%) 0 0 0 0 0 1 Percent Grade (%) 0 0 0 0 0 0 1 0 0 1 0<	Movement	7	8	9			10	11			12
Peak-Hour Factor, PHF 0.96		L	T	R			L	Т			R
Hourly Flow Rate, HFR (veh/h)				39			30			2	27
(veh/h) 14 0 40 31 0 28 Percent Heavy Vehicles 1 0 1 1 0 1 Percent Grade (%) 0 0 0 0 0 Flared Approach N 0 N 0 0 Storage 1 0 0 1 0 Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR LTR Delay, Queue Length, and Level of Service Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR V (veh/h) 59 59 59 54 1 C (m) (veh/h) 867 721 181 253 1 v/c 0.07 0.08 0.33 0.21 0.79 Control Delay (s/v			0.96	0.96	3		0.96	0.96		0.	96
Percent Grade (%) O	(veh/h)	14		1							
Storage		s 1		1			1				1
Storage 1 0 RT Channelized 0 1 0 0 Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR V (veh/h) 59 59 59 54 54 54 54 54 54 54 54 54 54 553 54 <td>Percent Grade (%)</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td>	Percent Grade (%)		0					0			
RT Channelized	Flared Approach		N					N			
Lanes 0 1 0 0 1 0 Configuration LTR LTR LTR 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	Storage		1					0			
Configuration LTR LTR Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR v (veh/h) 59 59 54 Cm/yc C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	RT Channelized			0							0
Delay, Queue Length, and Level of Service Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR v (veh/h) 59 59 54 54 C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	Lanes	0	1	0			0	1			0
Approach Northbound Southbound Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR LTR VC 0.07 0.08 59 54 59 54 54 54 55 50 52 53 50 51 50 50 50 50 50 50 50 50 50 50 50 <td>Configuration</td> <td></td> <td>LTR</td> <td></td> <td></td> <td></td> <td></td> <td>LTR</td> <td></td> <td></td> <td></td>	Configuration		LTR					LTR			
Movement 1 4 7 8 9 10 11 12 Lane Configuration L L LTR LTR LTR v (veh/h) 59 59 59 54 C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	Delay, Queue Length	, and Level of	Service								
Lane Configuration L L LTR LTR v (veh/h) 59 59 54 C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	Approach	Northbound	Southbound	1	Nestb	ounc	1	Е	astbo	und	
Lane Configuration L L LTR LTR v (veh/h) 59 59 54 C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	Movement	1	4	7	8		9	10	11		12
v (veh/h) 59 59 54 C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0	Lane Configuration	L			LTF	₹				_	
C (m) (veh/h) 867 721 181 253 v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0					-						
v/c 0.07 0.08 0.33 0.21 95% queue length 0.22 0.27 1.33 0.79 Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0		-			-						
95% queue length					_					\rightarrow	
Control Delay (s/veh) 9.5 10.4 34.2 23.0 LOS A B D C Approach Delay (s/veh) 34.2 23.0										\rightarrow	
LOS					_					\rightarrow	
Approach Delay 34.2 23.0										'	
(s/ven)	Approach Delay										
Approach LOS D C	(s/veh) Approach LOS				D				C C		

HCS+™ Version 5.3

Generated: 4/2/2015 4:19 PM

		HCS 2	010 S	ignali	zed l	nterse	ection	Res	sults S	Summa	ary				
General Inforn	nation								Intersed	tion Info	ormati	on	U	4741	3-14
Agency		Jacobs							Duration	ı, h	0.25				
Analyst		DBZ		Analys	sis Date	Apr 2,	2015		Area Ty	ре	Othe	r	25		
Jurisdiction				Time F	eriod	AM Pe	eak		PHF		0.92		*		7
Intersection		Beulah Church Roa	ad	Analys	sis Year	2015			Analysis	Period	1> 7:	00	7		
File Name		15 AM.xus												10	
Project Descrip	tion	Ashton Park II											n	4144	7 1
D 11.6					ED			14/5			ND			0.0	
Demand Infor					EB	T 5	+ -	WE			NB	T 5		SB	
Approach Move				L	T	R	L	T		L	T	R	L	T	R
Demand (v), ve	h/h				198	447	213	549	9	550	_	150		_	
Signal Informa	ation					1 .	$\overline{}$	$\overline{}$		$\overline{}$					
Cycle, s	66.0	Reference Phase	2	1	5	7		2			1	\Box	→		
Offset, s	0	Reference Point	End	Graan	0.2	17.0	24.0		100	0.0		1	¥ 2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow	-	17.9 3.6	24.3 3.5	0.0		0.0					E .
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	1.5	1.5	0.0	0.0	0.0		5	6	7	Y
													,		
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	е					2	1		6			8			
Case Number						7.3	1.0		4.0			9.0			
Phase Duration						23.0	13.8	3	36.8			29.3			
Change Period	nge Period, (Y+Rc), s					5.6	5.5		5.6			5.0			
Max Allow Hea	nge Period, (Y+R₀), s Allow Headway (<i>MAH</i>), s					6.2	4.5		5.9			3.1			
Queue Clearan	ice Time	e (g₅), s				13.3	7.6		18.0			22.7			
Green Extension						4.0	0.7		5.9			1.5			
Phase Call Pro	bability					1.00	0.99	,	1.00			1.00			
Max Out Proba	bility					0.00	0.01		0.02			0.00			
Mayramant Cur	Daa	lea			ED			\A/D			ND			en.	
Movement Gro		suits		L	EB T	R		WB T	Тв	L	NB	В	,	SB	Тв
Approach Move				L	2		L	6	R	-		R	L	T	R
Assigned Move		l. /l-				12	1	-	+	3		18			-
Adjusted Flow I					134	302	232	597		598		163			
		ow Rate (s), veh/h/ln			1900	1610	1810 5.6	1900	_	1810 20.7		1610			
Queue Service Cycle Queue C	- 10				3.7	11.3	5.6	16.0 16.0		20.7		3.8			
Green Ratio (q		e mile (ge), S							_	_		-			
					0.26	0.26	0.42	0.47		0.37		0.49			
Capacity (c), ve		atio (V)			500		603	897	_	666		795			
Volume-to-Cap Available Capa					0.267	_	$\overline{}$	1434		0.898		0.205			
		·	\		1434	1215	922	_		1092		1175			
		h/ln (95th percentile) RQ) (95th percentile			2.7	7.5	3.5 0.25	9.7		12.5 0.62		1.9			
)		0.11	0.62		0.49		_		0.09			
Uniform Delay					19.3	22.1	13.1	13.5		19.8		9.5			
Incremental De					0.6	4.4	0.5	1.8	+	3.7		0.0			-
Initial Queue De					0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (19.9	26.5	13.6	15.3		23.5		9.5			
Level of Service Approach Dela				24.5	B	C	B 14.8	В	P	C 20.5		C	0.0		1
				24.5	,			·	В	20.5					
Intersection De	iay, S/VE	:::/ LU3				18	9.0						3		
Multimodal Re	sults				EB			WB			NB			SB	
		/LOS		2.3		В	0.7	_	Α	2.3		В	2.3	Ť	В
Pedestrian LOS						-						- 1			_

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	ized I	nters	ectior	n Res	sults S	umma	ary				
General Inform	nation								Intersec	tion Info	_	on	- 6	4741	J. L
Agency		Jacobs						\rightarrow	Duration		0.25				
Analyst		DBZ		Analys	sis Date	Apr 3	2015		Area Typ	ре	Othe	r			
Jurisdiction				Time F	eriod	AM P	eak		PHF		0.92		* -		-
Intersection		Beulah Church Roa	ad	Analys	sis Year	2018	No Build	ı t	Analysis	Period	1> 7:	00	7		
File Name		18 AM NB.xus												10	
Project Descrip	tion	Ashton Park II											T 1	TIPY	7-17
		,													
Demand Inform				_	EB		-	WE	_	-	NB	_	-	SB	
Approach Move				L	T	R	<u> </u>	T	R	L	T	R	L	T	R
Demand (v), ve	h/h				212	477	228	58	В	589		161			
Signal Informa	tion					7	_								
Cycle, s	74.0	Reference Phase	2	1	2	=						<u>/_</u> _	_		
Offset, s	0	Reference Point	End		2	Š				\perp		1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Green		20.3	28.6	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap E/V	Off	Yellow Red	2.0	3.6 1.5	3.5	0.0	0.0	0.0		5	K	7	Ý
i orce wode	rixed	Simult. Gap N/S	Oll	rieu] Z.U	1.0	1.0	10.0	10.0	10.0		3	•		
Timer Results				EBI		EBT	WB	L	WBT	NBL		NBT	SBI		SBT
Assigned Phase						2	1		6			8			
Case Number	e Number					7.3	1.0		4.0			9.0			
	se Duration, s				_	25.4	15.0	-	40.4		-	33.6			
	nge Period, (Y+Rc), s					5.6	5.5	-	5.6			5.0			
	inge Period, (Y+R _o), s (Allow Headway (<i>MAH</i>), s				_	6.2	4.5	-	5.9		_	3.1	_	_	
Queue Clearan				_	_	15.4	8.8	-	21.9		_	26.9	_		
				_	_	4.3	0.8	-	6.2		-	1.5	_	_	
Green Extension Phase Call Prol		(ge), S		_	_	1.00	0.99	-	1.00	-	_	1.00	_	_	
				_	-			_		-	-		_	-	
Max Out Proba	ollity					0.00	0.03	3	0.04		-	0.02	_	_	
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v)	. veh/h			142	319	248	639		640		175			\top
	_ ` '	ow Rate (s), veh/h/ln			1900	1610	1810	1900		1810		1610			
Queue Service					4.4	13.4	6.8	19.9	_	24.9		4.4			
Cycle Queue C					4.4	13.4	6.8	19.9		24.9		4.4			
Green Ratio (g/		(J // -			0.27	0.27	0.42	0.47	_	0.39		0.52			
Capacity (c), ve					508	431	596	894		700		830			
Volume-to-Capa		atio (X)			_	0.741	_	_	5	0.915		0.211			+
Available Capa					1280	1084	850	1280		975		1075			+
		h/ln (95th percentile)	,		3.3	8.8	4.5	12.2		16.0		2.3			
		RQ) (95th percentile			0.14	0.73	0.32	0.61		0.80		0.11			
Uniform Delay (,		21.5	24.8	14.6	15.7		21.6		9.8			
Incremental De					0.6	4.9	0.6	2.3		8.4		0.0			\vdash
Initial Queue De					0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (,,			22.1	29.7	15.2	18.0		30.0		9.8			
Level of Service					С	С	В	В		С		A			
Approach Delay				27.4		С	17.2		В	25.7		С	0.0		_
Intersection De							2.6						C		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		2.3		В	0.7		Α	2.3		В	2.3		В
Bicycle LOS Sc	ore / L C	OS		1.7		Α	2.0		Α			F			

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed l	nters	ection	ı Res	sults \$	Summa	ary				
General Inform	nation							$\neg \neg$	Interse	tion Info	ormati	on	Į.	4741	FU
Agency		Jacobs							Duration	n, h	0.25				
Analyst		DBZ		Analys	sis Date	Apr 3,	2015	\neg	Area Ty	pe	Othe	r	4		
Jurisdiction				Time F		AM P		\neg	PHF		0.92		* -		=
Intersection		Beulah Church Roa	ıd	Analys	is Year	2018		\neg	Analysis	Period	1> 7:	00	74		
File Name		18 AM B.xus		, ,					, , , , , ,				-	50	
Project Descrip	tion	Ashton Park II											N	বাক্স	14
Demand Inform	mation				EB			WI	В		NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	:h/h				212	450	230	58	8	601		166			
Signal Informa	tion				_		1	_		_					
Signal Informa Cycle, s	71.7	Reference Phase	2		5	= 5		_					\Box		
Offset, s	0	Reference Point	End		2	F.	5						Y 2	3	4
		Simult. Gap E/W	_	Green	-	18.2	28.3	0.0		0.0					
Uncoordinated Force Mode	Yes	Simult. Gap E/VV	On Off	Yellow Red	3.5	3.6 1.5	3.5 1.5	0.0		0.0		-			Y
Force Mode	Fixed	Simult. Gap N/S	Oπ	Red	Z.U	6.1	1.5	[0.0	0.0	[0.0	_	5	6	1	
Timer Results				EBI		EBT	WB		WBT	NBL	$\overline{}$	NBT	SBL	$\overline{}$	SBT
Assigned Phase	е					2	1	_	6	1100		8	OBL		001
Case Number	e Number					7.3	1.0		4.0			9.0			
	se Duration, s				_	23.3	15.1	-	38.4		_	33.3			
	nge Period, (Y+Rc), s					5.6	5.5	_	5.6			5.0			
					_	6.2	4.5	-	5.9		_	3.1		_	
Queue Clearan						13.8	8.8	-	21.8			26.6			
Green Extension		10 //				3.9	0.8	_	6.2			1.6			
Phase Call Pro		(ge), 3				1.00	0.99	-	1.00			1.00			
Max Out Proba					-	0.00	0.03	-	0.04		_	0.02		_	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	T	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v)	, veh/h			136	288	250	639		653		180			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln			1900	1610	1810	1900)	1810		1610			
Queue Service					4.2	11.8	6.8	19.8		24.6		4.3			
Cycle Queue C		e Time (g₅), s			4.2	11.8	6.8	19.8	_	24.6		4.3			
Green Ratio (g/					0.25	0.25	0.41	0.46		0.39		0.53			
Capacity (c), ve					471	399	585	870		715		851			
Volume-to-Cap		· ·				0.722		_		0.914		0.212			
Available Capa		,			1321	1119	846	1321	$\overline{}$	1006		1110			
		h/ln (95th percentile)			3.2	8.0	4.5	12.2		15.6		2.1			
		RQ) (95th percentile)		0.13	0.67	0.32	0.61		0.78		0.11			
Uniform Delay					21.9	24.8	14.9	15.9		20.6		9.0			
Incremental De	lay (d2),	, s/veh			0.7	4.9	0.6	2.6		7.9		0.0			
Initial Queue De					0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (22.6	29.7	15.5	18.5		28.5		9.1			
Level of Service					С	С	В	В		С		Α			
Approach Delay	y, s/veh	/LOS		27.4		С	17.7	7	В	24.3		С	0.0		
Intersection De	lay, s/ve	eh / LOS				22	2.2					(С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.3	-	В	0.7	-	A	2.3	_	В	2.3	_	В
Bicycle LOS Sc	ore / LC	DS		1.7		Α	2.0		Α			F			

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed I	nters	ectior	n Res	ults S	umm	ary				
General Inform	nation								Intersec	tion Inf	_	n	- 6	4741	JA 14
Agency		Jacobs							Duration	h	0.25			• • •	
Analyst		DBZ		Analys	is Date	Apr 3	2015	\rightarrow	Area Typ	e	Other		÷		•
Jurisdiction				Time F	Period	PM P	eak	$\overline{}$	PHF		0.84		* -		7
Intersection		Apple Valley Drive		Analys	is Year	2015			Analysis	Period	1> 7:0	00	7		
File Name		15 PM.xus											╛	*	
Project Descrip	tion	Ashton Park II											h	া শ শ শ	7
	41						1	14/5			ND		_	0.0	
Demand Inform					EB			WE			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	:h/h			99	582	31	62	526	3 24	18	6	52	44	6	121
Signal Informa	tion					7	1 5	. 1 11:		_					_
		Reference Phase	2	ł	L /	-L-2		닐겓				_	я		本
Cycle, s Offset, s	76.3	Reference Point	End			R			17			1	Y 2	3	
				Green		0.3	41.9	13.		0.0			4		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow Red	2.0	0.0	2.0	3.6 2.0	0.0	0.0		^ [Y		Ψ
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	0.0		5	6	7	
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase				5	-	2	1		6	INDI	-	8	361	-	4
	se Number			-	_		<u> </u>	_	3.0				_	_	
	ase Duration, s			1.1	-	3.0	1.1	-				8.0	-	_	6.0
	<u>'</u>			9.5	-	48.5	9.2	-	48.2	_		18.6	_	_	18.6
	ange Period, (Y+R₀), s			5.5	$\overline{}$	6.3	5.5	-	6.3	_	_	5.6	-	-	5.6
	ange Period, (Y+R₀), s x Allow Headway (<i>MAH</i>), s eue Clearance Time (g₅), s			4.0	$\overline{}$	3.9	4.0	\rightarrow	3.9	_		5.2	_	_	5.2
		10 //		4.1	-	22.2	3.9	-	33.9		_	8.6	-	_	11.6
Green Extension		(ge), S		0.2	-	8.7	0.2	-	8.1	_	_	1.4	_	-	1.3
Phase Call Prol				0.92	-	1.00	0.89	-	1.00	_	-	1.00	-	-	1.00
Max Out Proba	DIIITY			0.00	,	0.05	0.00	,	0.14			0.01		_	0.04
Movement Gro	oup Res	sults			EB			WB			NB	_		SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v)	. veh/h		118	693	37	106	896	41		90		52	151	$\overline{}$
	. , ,	ow Rate (s), veh/h/ln		1810	1863	1610	1810	1863	1610		1456		1353	1622	
Queue Service				2.1	20.2	0.8	1.9	31.9			0.1		2.8	6.5	
Cycle Queue C		· **		2.1	20.2	0.8	1.9	31.9	0.9		6.6		9.6	6.5	
Green Ratio (g/				0.60	0.55	0.55	0.60	0.55	0.55		0.17		0.17	0.17	
Capacity (c), ve				271	1030	890	380	1022			308		206	278	
Volume-to-Capa		atio (X)		_		0.041					0.294		0.255	0.544	
Available Capa				532	1465	1267	649	1465			547		417	532	
		h/ln (95th percentile)		1.5	11.0	0.4	1.0	15.5			2.5		1.7	4.5	
		RQ) (95th percentile		0.08	0.28	0.07	0.21	0.39			0.63		0.52	0.57	
Uniform Delay			,	14.7	12.1	7.8	10.3	15.0			27.7		33.4	28.9	
Incremental De	` //			1.1	0.8	0.0	0.2	2.8	0.0		0.7		0.9	2.4	
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (15.8	12.9	7.8	10.5	17.8	_		28.4		34.3	31.2	
Level of Service	•			В	В	A	В	В	A		C		С	C	
Approach Delay				13.1		В	16.7		В	28.4		С	32.0		C
Intersection De				10.			7.2			20.			B		
	, 0.70														
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.1		В	2.2		В	2.4		В	2.4		В
Bicycle LOS Sc	ore / L C	DS.		1.9		Α	1.7		Α	0.6		Α	0.8		Α

HCS 2010™ Streets Version 6.65

Generated: 4/7/2015 9:35:30 AM

General Inform	nation								Intersec	tion Inf	ormatio	n		1482	2.4
Agency		Jacobs						\neg	Duration	h	0.25	-		44	
Analyst		DBZ		Analys	sis Date	Apr 7	2015		Area Typ	e	Other		1		-
Jurisdiction				Time F	-	PM P			PHF		0.84		100		
Intersection		Apple Valley Drive		Analys	sis Year	2018	No Build	i	Analysis	Period	1> 7:0	00	- 1		
File Name		18 PM NB xus							-				-	7240	
Project Descrip	tion	Ashton Park II												2707	2.5
Demand Inform	nation				EB		-	W		1	NB		T	SB	
Approach Move	-			L	T T	I R	L	T	R	1	T	R	L	T	T
The second secon				99	618	31	-	_		18	6	52	44	6	1
Demand (v), ve	n/n			99	018	31	62	55	3 24	18	0	52	44	0	1,
Signal Informa	tion				Τ	T.	1 . 1	47		Т	-		107		1
Cycle, s	84.1	Reference Phase	2		K	TE .	₩ ?		12				4	1	4
Offset, s	0	Reference Point	End	Green	3.0	0.3	48.5	14.	::Li.L.	0.0		11		2.7	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.3	3.6	The second second	0.0		*			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0		0.0		- 1		19	
							-			100			1 200		- Acceptan
Timer Results	_			EBI	-	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase				5		2	1		6			8	-		4
Case Number				1.1		3.0	1.1	_	3.0	-	-	8.0	-		6.0
Phase Duration	se Duration, s inge Period, (Y+R _c), s			9.6	_	55,1	9.3	_	54.8			19.6	-		19.6
Commence of the second continues	inge Period, (Y+R _c), s Allow Headway (<i>MAH</i>), s			5.5	-	6.3	5.5	_	6.3	-	_	5.6			5.6
Constitution or the second second second	Allow Headway (MAH), s			4.0	\rightarrow	3.9	4.0	_	3.9			5.2			5.2
Queue Clearan		JAMES J.		4.2		25.1	4.0	_	40.5			9.4			12.7
Green Extensio	Noneuroscop N	(<i>g</i> e), S		0.2	-	9.8	0.2		8.1			1.4	-		1.2
Phase Call Pro	rises by the parties and			0.94		1.00	0.90	_	1.00		_	1.00		_	1.00
Max Out Probai	Dility			0.00	,	0.10	0.00	,	0.31			0.02			0.06
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	1
Assigned Move	ment			-5	2	12	1	6	16	3	8	18	7	4	1
Adjusted Flow F	Rate (v)	, veh/h		118	736	37	108	968	42		90		52	151	Г
Adjusted Satura	ation Fl	ow Rate (s), veh/h/ln		1810	1863	1610	1810	1863	1610		1400		1353	1622	
Queue Service	Time (c)ı), S		2.2	23.1	0.8	2.0	38.5	0.9		0.1		3.1	7.2	
Cycle Queue C	learanc	e Time (g ₀), s		2.2	23.1	0.8	2.0	38.5	0.9		7.4		10.7	7.2	
Green Ratio (g/	C)			0.62	0.58	0.58	0.62	0.58	0.58		0.17		0.17	0.17	
Capacity (c), ve	h/h			244	1079	933	374	1073	928		288		190	272	
Volume-to-Cap	acity Ra	atio (X)		0.483	0.682	0.040	0.288	0.902	0.045		0.314		0.275	0.556	
Available Capa	city (ca)	, veh/h		479	1331	1150	614	1331	1150		486		366	483	
Back of Queue	(Q), ve	h/ln (95th percentile))	2.1	12.6	0.4	1.1	18.7	0.5		2.9		1.9	5.1	
	THE RESIDENCE AND RESIDENCE	RQ) (95th percentile		0.10	0.32	0.07	0.22	0.47	-		0.71		0.58	0.64	
Uniform Delay ((d1), 5/V	eh		17.3	12.3	7.6	10.7	15.7	7.7		30.8		37.2	32.1	
Incremental De	lay (da)	s/veh		1.5	1.1	0.0	0.2	4.4	0.0		0.9		1.1	2.5	
Initial Queue De	Queue Delay (ds), s/veh			0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (d), s/ve	h		18.8	13.3	7.6	10.9	20.2	7.8		31.6		38.3	34.6	
Level of Service	(LOS)			В	В	Α	В	C	A		C.		D	C	
Approach Delay	y, s/veh	/LOS		13.8	3	В	18.8	3	В	31.6	3	C	35.6	3	D
Intersection De	lay, s/ve	eh / LOS				18	3.9	-				į.	В		
****	nodal Results				50						1100			7414	
Multimodal Re	(MINISTER ADMINISTRATION OF THE PARTY OF THE	1100		- 0.4	EB	0	70.0	WB	-	0.4	NB	n	2.1	SB	-
Pedestrian LOS	Score	/LOS OS		2.0		A	1.8	_	A	0.6	-	B A	0.8	_	A

HCS 2010™ Streets Version 6.65

Generated: 4/7/2015 9:38:14 AM

				.g	ZCU I	iiici 3	, ((101	ı ive.	Juito	Summa	ai y				
General Inform	ation								Interce	ction Info	orm ati	on	l v	4 744 1	I. U
	lation	Jacobs						\rightarrow	Duratio		0.25	OII	-		
Agency Analyst		DBZ		Analye	sic Date	e Apr 3,	2015	\rightarrow	Area Ty		Othe	-	- 2		
Jurisdiction		DBZ		Time F		PM P		$\overline{}$	PHF	pe	0.92	ı	-		
		Beulah Church Roa	- d	_		-		\rightarrow		o Dorind	1> 7:	00	- 3		•
Intersection File Name		18 PM B.xus	au	Analys	sis Yea	r 2018	Bulla		Analys	s Period		00	- 6		
	4:												- 5	jį	20 1
Project Descrip	lion	Ashton Park II													
Demand Inform	nation				EB			W	3		NB			SB	
Approach Move	ment			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	h/h				535	620	197	40	0	612		384			
Signal Informa		Deference Dhase		-	5	d . s						_			
Cycle, s	96.3	Reference Phase	2	-	2	, Rit	5	2					→ 2	3	
Offset, s	0	Reference Point	End	Green		33.7	37.4	0.0							
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.6	3.5	0.0					2		5
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	1.5	1.5	0.0	0.0	0.0		5	6	7	
Timer Results				EBI		EBT	WB		WBT	NBL		NBT	SBL	$\overline{}$	SBT
Assigned Phase	e			201		2	1	_	6	7450		8	JUL		551
Case Number						7.3	1.0		4.0			9.0			
Phase Duration	ase Duration, s					38.8	15.0	5	53.8		\neg	42.4		\top	
Change Period.						5.6	5.5		5.6			5.0		\neg	
	ange Period, (Y+R₅), s x Allow Headway (<i>MAH</i>), s				\neg	6.1	4.5		5.9	-	\neg	3.1		\neg	
Queue Clearan						25.7	8.9		16.3			36.2			
Green Extensio		10 77			\neg	7.5	0.6		3.9		\neg	1.1		\top	
Phase Call Prol	bability					1.00	1.00	0	1.00			1.00			
Max Out Proba	bility					0.15	0.02	2	0.00			0.82			
								14/15		_	NIB			0.0	
Movement Gro	•	sults			EB	T 5		WB	_	-	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				_	2	12	1	6	+	3		18			+
Adjusted Flow F					379	439	214	435	-	665		417			\vdash
		ow Rate (s), veh/h/ln			1900	1610	1810	1900	_	1810		1610			-
Queue Service					15.7	23.7	6.9	14.3	-	34.2		17.3			-
Cycle Queue C		e ⊓me (g₅), s			15.7	23.7	6.9	14.3	_	34.2		17.3			-
Green Ratio (g/					0.34	0.34	0.47	0.50	-	0.39		0.49			-
Capacity (c), ve Volume-to-Capa		atio (V)			655	555	439	952		704		786			-
Available Capa					985	0.790	0.487 636	0.457 985	$\overline{}$	0.945 751		0.531 828			+
		, ven/n h/ln (95th percentile)	\		10.5	13.4	4.9	9.6	-	24.1		9.7			+
		n/in (95th percentile) RQ) (95th percentile			0.44	1.11	0.35	0.48		1.20		0.48			+
Uniform Delay (1		25.8	28.4	17.7	15.6	_	28.5		17.1			-
Incremental De					1.3	4.3	1.0	0.7		19.5		0.2			+
Initial Queue De					0.0	0.0	0.0	0.0	-	0.0		0.2			1
Control Delay (,,			27.1	32.7	18.7	16.3	-	47.9		17.3			+
Level of Service					C C	C C	B	10.3 B		D D		17.3 B			
				30.1		C	17.1		В	36.1		D	0.0		
	pach Delay, s/veh / LOS section Delay, s/veh / LOS						9.3			30.1			0.0		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/ LOS		2.3		В	0.7		Α	2.3		В	2.3		В
Bicycle LOS Sc	ore / L C	OS		2.6		В	1.6		Α	1		F			

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed l	nters	ectior	Res	sults S	umm	ary				
General Inforn	nation								Intersec	tion Inf	ormatio	on		4741	Ja lu
Agency		Jacobs							Duration	, h	0.25			•••	
Analyst		DBZ		Analys	sis Date	Apr 2,	2015		Area Typ	e	Other		A		٠.
Jurisdiction				Time F	eriod	AM P	eak		PHF		0.84		*		÷
Intersection		Apple Valley Drive		Analys	is Yea	2015			Analysis	Period	1> 7:0	00	7		
File Name		15 AM.xus													
Project Descrip	tion	Ashton Park II											- F	বাক্স	1- 1
D 11.6					ED			100			ND			0.0	
Demand Inform					EB	T 5		WI			NB	T 5	+ -	SB	
Approach Move				L	T	R	L	T		L	T	R	L	T	R
Demand (v), ve	h/h			35	287	12	17	24	3 7	18	2	78	1	2	19
Signal Informa	ation						_ 5	JJ	\a	Т					I
Cycle, s	74.4	Reference Phase	2	1	P 8	- 5	743		:42		×	<u> </u>	4		4
Offset, s	0	Reference Point	End		2.2	100	40.0	7.		0.0		1	2	3	
Uncoordinated	Yes	Simult, Gap E/W	On	Green Yellow	-	0.9	46.3	7.5		0.0		7	→		rt.
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0		0.0		5	6	7	Y
. s.ss mode	, ixeu	Simulation of the	Uni						3.0	3.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	L	NBT	SBI	-	SBT
Assigned Phas	е			5		2	1		6			8			4
Case Number				1.1		3.0	1.1		3.0			8.0			6.0
Phase Duration				7.8		52.6	8.7		53.5			13.1			13.1
Change Period	ange Period, (Y+R _o), s			5.5		6.3	5.5		6.3			5.6			5.6
Max Allow Hea	ange Period, (Y+R₀), s x Allow Headway (<i>MAH</i>), s			4.0		3.9	4.0		3.9			5.2			5.2
Queue Clearan				2.6		8.3	3.1		40.1			7.2			7.3
Green Extension				0.1		8.4	0.1	-	7.0			0.6			0.6
Phase Call Pro				0.58	3	1.00	0.79	-	1.00			0.95			0.95
Max Out Proba				0.00	-	0.01	0.00	_	0.20		_	0.00		-	0.00
M	D				ED			WD			ND			CD	
Movement Gro	_	suits			EB	I D		WB	_		NB			SB	T 5
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1 70	6	16	3	8	18	7	4	14
Adjusted Flow				42	342	14	76	1087	_		117		1	25	
		ow Rate (s), veh/h/ln		1810	1863	1610	1810	1863	_		1603		1321	1634	
Queue Service Cycle Queue C	- 10			0.6	6.3	0.3	1.1	38.1			2.7 5.2		0.1 5.3	1.0	
		e nine (ge), S		_			_	_	_		_		_	_	
Green Ratio (g/				0.65	0.62	0.62	0.67	0.63			0.10		0.10	0.10	
Capacity (c), ve		-4:- //0		204		1003		_	1022		218		137	164	
Volume-to-Cap				0.205		0.014		_	0.031		0.534		0.009	0.152 549	
Available Capa		, ven/n h/ln (95th percentile)		512 0.6	1501 3.3	1297	1032 0.5	1501 16.1	_		588 3.7		0.0	0.7	
		n/in (95th percentile) RQ) (95th percentile		0.03	0.08	0.1	0.10	0.41	_		0.93		0.01	0.7	
Uniform Delay			/	15.8	6.5	5.3	4.6	11.9	_		32.4		35.0	30.6	
Incremental De				0.5	0.1	0.0	0.0	4.7			2.9		0.0	0.6	
Initial Queue D				0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (16.3	6.6	5.3	4.6	16.6	_		35.3		35.0	31.2	
Level of Service				В	A	A	А	В	A		D		D	С	
	oach Delay, s/veh / LOS			7.6		Α	15.5		В	35.3		D	31.4		С
	ection Delay, s/veh / LOS					15	5.3						В		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.1	-	В	2.2	_	В	2.4	_	В	2.4	-	В
Bicycle LOS So	ore / LC	OS		1.1		Α	1.0		Α	0.7		Α	0.5		Α

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	ized l	nters	ectior	ı Res	sults S	umm	ary				
General Inform	nation								Intersec	tion Inf	ormatic	n		4741	ja li
Agency		Jacobs							Duration,	h	0.25		7	11	
Analyst		DBZ		Analys	sis Date	e Apr 3,	2015		Area Typ	е	Other		Δ		٠.
Jurisdiction				Time F	eriod	AM P	eak		PHF		0.84		÷		÷
Intersection		Apple Valley Drive		Analys	sis Yea	r 2018	No Build	d	Analysis	Period	1> 7:0	00	Y		
File Name		18 AM NB.xus													
Project Descrip	tion	Ashton Park II											1	HINY	14
Demand Inform	nation				EB			W	3		NB			SB	
Approach Move				L	T	T R	L	T		L	T	R	L	T	R
Demand (v), ve				35	308	12	17	26	_	18	2	78	1	2	19
201111111111111111111111111111111111111					000	1.2						10			
Signal Informa			-		2		3 5	닠깄	20			_	_		\mathbf{A}
Cycle, s	83.3	Reference Phase	2		L. 6	7 4	TB "	· 6	17				€ ₂	3	*
Offset, s	0	Reference Point	End	Green	2.5	0.8	54.3	8.2		0.0			5		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	3.5	0.0	4.3	3.6	0.0	0.0		7	7		
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	0.0		5	6	7	T
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	p			5	-	2	1	_	6	INDI	_	8	SBI	-	4
Case Number				1.1		3.0	1.1	\rightarrow	3.0			8.0			6.0
	ase Duration, s					60.6	8.8	-	61.5			13.8		_	13.8
	ange Period, (Y+R₀), s			8.0 5.5	-	6.3	5.5	-	6.3			5.6			5.6
	ange Period, (Y+R₀), s x Allow Headway (<i>MAH</i>), s			4.0	-	3.9	4.0	-	3.9			5.2		_	5.2
	0 10 77			2.6	$\overline{}$	9.1	3.1	-	49.6			7.8			7.9
Green Extensio		10 //		0.1	-	10.0	0.1	-	5.6			0.6			0.6
Phase Call Prol		(90), 0		0.62	-	1.00	0.83	-	1.00			0.96			0.96
Max Out Proba				0.00	-	0.02	0.00	$\overline{}$	0.58		-	0.00		-	0.00
Mayamant Cra	Daa	léa			EB			WB			NB			SB	
Movement Gro		suits		L	T	l R	.	T	l R	L	T	R	L	T	ГВ
Approach Move				5	2	12	1	6	16	3	8	18	7	4	14
Assigned Move Adjusted Flow F		v a la /la		_	_	14	77	-		3	_	10	_	_	14
		, ven/n ow Rate (s), veh/h/ln		42 1810	367 1863	1610	1810	1171	$\overline{}$		117 1603		1321	25 1634	
Queue Service		. ,,		0.6	7.1	0.3	1.1	47.6	_		3.1		0.1	1.2	
Cycle Queue C		• •		0.6	7.1	0.3	1.1	47.6			5.8		5.9	1.2	
Green Ratio (g/		c ranc (ge), s		0.68	0.65	0.65	0.69	0.66	_		0.10		0.10	0.10	
Capacity (c), ve				173	1216		745	1234			209		124	161	
Volume-to-Capa		atio (X)				$\overline{}$	-	-	0.030		0.558		0.010		
Available Capa				445	1342		999	1342			526		390	490	
		h/ln (95th percentile))	0.9	3.8	0.1	0.5	20.6	-		4.3		0.0	0.8	
		RQ) (95th percentile		0.04	0.10	0.02	0.10	0.52			1.06		0.01	0.11	
Uniform Delay (19.9	6.3	5.1	4.4	12.8			36.4		39.4	34.4	
Incremental De				0.7	0.1	0.0	0.0	7.7	0.0		3.3		0.0	0.6	
Initial Queue De	elay (d3)), s/veh		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (20.6	6.4	5.1	4.5	20.4	4.8		39.7		39.4	35.0	
Level of Service	e (LOS)			С	Α	Α	Α	С	Α		D		D	С	
Approach Delay				7.8		A	19.1	1	В	39.7	'	D	35.2	2	D
Intersection De	lay, s/ve	eh / LOS				18	3.0						В		
								,							
Multimodal Re		/1.00			EB			WB			NB	-		SB	-
Pedestrian LOS				2.1	-	В	2.2	-	В	2.5	-	В	2.5	-	В
Bicycle LOS Sc	ore / LC)5		1.2		Α	1.0		Α	0.7		Α	0.5		Α

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed I	nters	ectior	Res	sults S	umm	ary						
														4.441	-		
General Information								\rightarrow	Intersec			on	- i	11	24 14		
Agency		Jacobs				-		\rightarrow	Duration,		0.25		-				
Analyst		DBZ		Analysis Date Apr 3, 2015					Area Typ	e	Other		·		•		
Jurisdiction				Time Period AM Peak					PHF		0.84		*		:		
Intersection Apple Valley Drive					sis Year	2018	Build		Analysis	Period	1> 7:0	00	7				
File Name 18 AM B.xus														*			
Project Descrip	tion	Ashton Park II											T I	বাক্স	11		
Demand Information					EB			W	3		NB			SB			
Approach Movement					T	T R	L	T		L	T	R	1	T	R		
Demand (v), ve				35	308	16	10	26		31	2	47	1	2	19		
Demand (v), ve	:11/11			33	300	10	10	20	0 7	31		47	<u> </u>		19		
Signal Informa	tion					5	= 2 5	77	2	\top					$\overline{\mathbf{L}}$		
Cycle, s	84.0	Reference Phase	2		L 6	7 2			17		×		Θ		stz.		
Offset, s	0	Reference Point	End	Green	2.5	0.2	56.8	7.1	0.0	0.0		1	Y 2	3			
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.2	4.3	3.6		0.0		7	→		ĸŤ:		
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0		0.0		5	6	7	T		
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	L	NBT	SBI	-	SBT		
Assigned Phase	е			5		2	1		6			8			4		
Case Number				1.1		3.0	1.1		3.0			8.0			6.0		
Phase Duration), S			8.0		63.1	8.2	63.3				12.7			12.7		
Change Period	(Y+Rc)	, s		5.5		6.3	5.5	5.5 6.3		5		5.6			5.6		
Max Allow Head	dway (A	ЛАН), s		4.0		3.9	4.0	4.0 3.9		5.2		5.2			5.2		
Queue Clearan	ce Time	e (g₃), s		2.6		8.6	2.6 52.3		52.3	6		6.9			7.0		
Green Extension		10 //		0.1		10.9	0.1		4.7			0.5			0.5		
Phase Call Prol				0.62	2	1.00	0.66	-	1.00			0.94		(
Max Out Proba				0.00	-	0.03	0.00	-	0.75		-	0.00		-	0.00		
Mayamant Car	un De-	ulte			ED			WD			NID			S.D.			
Movement Gro	•	suits		,	EB	В	,	WB	В	,	NB T	В	SB		Б		
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R		
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14		
Adjusted Flow F	. ,	,		42	367	19	47	1213	_		95		1	25			
		ow Rate (s), veh/h/ln		1810	1863	1610	1810	1863			1563		1366	1634			
Queue Service				0.6	6.6	0.3	0.6	50.3			3.7		0.1	1.2			
Cycle Queue C		e Tíme (g₅), s		0.6	6.6	0.3	0.6	50.3			4.9		5.0	1.2			
Green Ratio (g/				0.71	0.68	0.68	0.71	0.68			0.08		0.08	0.08			
Capacity (c), ve				166	1261	1090	760	1265			191		120	137			
Volume-to-Cap	acity Ra	atio (X)		0.251	0.291	0.017	0.061	0.959	0.030		0.499		0.010	0.182			
Available Capacity (c _s), veh/h					1331	1150	1026	1331			518		412	486			
Back of Queue	(Q), vel	h/ln (95th percentile)		1.0	3.4	0.1	0.3	21.3	0.2		3.5		0.0	0.9			
Queue Storage	Ratio (RQ) (95th percentile)	0.05	0.09	0.02	0.06	0.54	0.02		0.88		0.01	0.11			
Uniform Delay ((d1), s/v	eh		21.5	5.5	4.4	3.9	12.4	4.4		37.4		39.9	35.8			
Incremental Delay (d2), s/veh				0.8	0.1	0.0	0.0	8.8	0.0		2.9		0.0	0.9			
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0			
Control Delay (d), s/veh			22.2	5.6	4.4	3.9	21.2	4.4		40.3		40.0	36.7				
Level of Service (LOS)					Α	Α	Α	С	Α		D		D	D			
Approach Delay, s/veh / LOS						Α	20.2	2	С	40.3	3	D	36.8	3	D		
Intersection De						18	3.4						В				
Multimodal Re	sults				EB			WB			NB		SB				
Pedestrian LOS	Score	/ LOS		2.0		В	2.2		В	2.5		В	2.5		В		
Bicycle LOS Sc	ore / L (os		1.2		Α	1.0		Α	0.6		Α	0.5		Α		

HCS 2010™ Streets Version 6.65

		HCS 2	010 S	ignali	zed I	nters	ection	Res	ults S	umm	ary							
O	4!										41			الخلالة	K U			
General Information Agency Jacobs								$\overline{}$	Intersect		_	on	- i	41				
Agency						1. 0	0045	\rightarrow	Duration,		0.25		- 1					
Analyst		DBZ		Analysis Date Apr 3, 2015					Area Typ	e	Other				-			
Jurisdiction					Period	PM P	eak	\rightarrow	PHF		0.84			W+=	-			
Intersection Apple Valley Drive					sis Year	2015			Analysis	Period	1> 7:0	00	2					
File Name 15 PM.xus														+				
Project Descrip	tion	Ashton Park II												IN I WY	MU			
Demand Information					EB			WE	3	T	NB		SB					
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Demand (v), ve				99	582	31	62	526	3 24	18	6	52	44	6	121			
Signal Informa					1 2		3 6	4 2	S			_	_		\mathbf{A}			
Cycle, s	76.3	Reference Phase	2		L. 6	R	B	100	17			1	€ ,	3	41			
Offset, s	0	Reference Point	End	Green	3.7	0.3	41.9	13.0		0.0			7					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	3.5	0.0	4.3	3.6	0.0	0.0		<i>></i>	7		寸			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	0.0		5	6	7				
T C				- FB:		CDT.	14/5		MDT	NE		NDT	0.00		OPT			
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT			
Assigned Phase	e			5		2	1		6			8			4			
Case Number	_			1.1	-	3.0	1.1	-	3.0		-	8.0	-	-	6.0			
Phase Duration				9.5	-	48.5	_	9.2 48.2		\vdash		18.6	-		18.6			
Change Period				5.5	_	6.3	5.5	-	6.3	_	_	5.6	-	-	5.6			
Max Allow Head				4.0	-	3.9		4.0 3.9				5.2			5.2			
Queue Clearan		10 //		4.1	_	22.2	3.9	-	33.9		-	8.6	-	-	11.6			
Green Extensio		(ge), S		0.2	-	8.7	0.2	-	8.1		-	1.4	-					
Phase Call Prol				0.92	_	1.00	0.89	_	1.00		-	1.00	-	_	1.00			
Max Out Proba	DIIITY			0.00	,	0.05	0.00	,	0.14		_	0.01		_	0.04			
Movement Gro	oup Res	sults			EB			WB			NB			SB				
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14			
Adjusted Flow F		, veh/h		118	693	37	106	896	41		90		52	151				
		ow Rate (s), veh/h/ln		1810	1863	1610	1810	1863	-		1456		1353	1622				
Queue Service				2.1	20.2	0.8	1.9	31.9	-		0.1		2.8	6.5				
Cycle Queue C	- 10			2.1	20.2	0.8	1.9	31.9	0.9		6.6		9.6	6.5				
Green Ratio (g/				0.60	0.55	0.55	0.60	0.55	0.55		0.17		0.17	0.17				
Capacity (c), ve	h/h			271	1030	890	380	1022	-		308		206	278				
Volume-to-Capa		ntio (X)		0.435			0.278		-		0.294		0.255	0.544				
Available Capa				532	1465	1267	649	1465	-		547		417	532				
		h/ln (95th percentile))	1.5	11.0	0.4	1.0	15.5	0.5		2.5		1.7	4.5				
		RQ) (95th percentile		0.08	0.28	0.07	0.21	0.39	-		0.63		0.52	0.57				
Uniform Delay (d ₁), s/veh					12.1	7.8	10.3	15.0	-		27.7		33.4	28.9				
Incremental Delay (d₂), s/veh				14.7	0.8	0.0	0.2	2.8	0.0		0.7		0.9	2.4				
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0				
Control Delay (d), s/veh				15.8	12.9	7.8	10.5	17.8	-		28.4		34.3	31.2				
Level of Service (LOS)					В	А	В	В	Α		С		С	С				
Approach Delay, s/veh / LOS						В	16.7		В	28.4		С	32.0 C					
Intersection De							7.2						В					
Multimodal Results					EB WB NE						NB		SB					
Multimodal Re	Suits		Pedestrian LOS Score / LOS											2.4 SB				

HCS 2010™ Streets Version 6.65

Generated: 4/7/2015 9:35:30 AM

		HCS 2	010 S	ignali	zed	Inters	ectior	n Res	sults S	umm	ary					
General Inforn					\rightarrow	Intersec		_	on	- 1	41	24 14				
Agency		Jacobs						$\overline{}$	Duration		0.25					
Analyst		DBZ		Analysis Date Apr 7, 2015					Area Typ	e	Other		<u> </u>		•	
Jurisdiction				Time Period PM Peak					PHF		0.84		*		7	
Intersection Apple Valley Drive					sis Yea	r 2018	No Build	t	Analysis	Period	1> 7:0	00	17			
File Name 18 PM NB.xus													╛╗	*		
Project Descrip	tion	Ashton Park II												4144	14 17	
Demand Information					EB			WI	B		NB			SB		
Approach Move				L	T	R	1	T		1	T	T R	1	T	R	
Demand (v), ve				99	618		62	55		18	6	52	44	6	121	
Bomana (*), *e				- 00	010	0.	- 02	- 00	J 2.	10		U.E.			121	
Signal Informa	ation				Т	$\overline{}$	5	JJ		$\overline{}$					I	
Cycle, s	84.1	Reference Phase	2	1	P .		R		:42		×	<u>_</u> _	4		4	
Offset, s	0	Reference Point	End	Green	2.0	0.3	48.5	_	0 0.0	0.0		1	2	3		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	48.5	3.6		0.0		7	}		ĸŤ:	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0		0.0		5	6	7	-Y	
Timer Results				EBL		EBT	WB	L	WBT	NBI	-	NBT	SBI	_	SBT	
Assigned Phas	е			5		2	1		6			8			4	
Case Number				1.1		3.0	1.1		3.0			8.0			6.0	
Phase Duration	1, s			9.6	$\neg \vdash$	55.1	9.3	3 54.8				19.6	9.6		19.6	
Change Period	, (Y+Rc)), s		5.5		6.3	5.5	5.5 6.3				5.6			5.6	
Max Allow Hea	dway (N	/AH), s		4.0		3.9	4.0	4.0 3.9				5.2			5.2	
Queue Clearan	ce Time	e (g₃), s		4.2		25.1 4.			40.5			9.4			12.7	
Green Extension	n Time	(g _e), s		0.2		9.8	0.2		8.1			1.4			1.2	
Phase Call Pro	bability			0.94	1	1.00	0.92	2	1.00			1.00			1.00	
Max Out Proba	bility			0.00)	0.10	0.00)	0.31			0.02			0.06	
Movement Gro	un Res	ulte			EB			WB			NB			SB		
Approach Move	•	74113		L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow I		veh/h		118	736	37	108	968	_		90		52	151		
		ow Rate (s), veh/h/ln		1810	1863		1810	1863	_		1400		1353	1622		
Queue Service				2.2	23.1	0.8	2.0	38.5	_		0.1		3.1	7.2		
Cycle Queue C				2.2	23.1	0.8	2.0	38.5			7.4		10.7	7.2		
Green Ratio (g		(3-7) =		0.62	0.58	0.58	0.62	0.58	_		0.17		0.17	0.17		
Capacity (c), ve				244	1079		374				288		190	272		
Volume-to-Cap		atio (X)		0.483							0.314		0.275	0.556		
Available Capa				479	1331	_	614	1331			486		366	483		
	, , ,	h/ln (95th percentile))	2.1	12.6	_	1.1	18.7	_		2.9		1.9	5.1		
		RQ) (95th percentile		0.10	0.32	_	0.22	0.47	_		0.71		0.58	0.64		
Uniform Delay (d ₁), s/veh					12.3		10.7	15.7	_		30.8		37.2	32.1		
Incremental Delay (d2), s/veh				17.3	1.1	0.0	0.2	4.4			0.9		1.1	2.5		
Initial Queue Delay (d3), s/veh					0.0	0.0	0.0	0.0	_		0.0		0.0	0.0		
Control Delay (d), s/veh			0.0 18.8	13.3		10.9	20.2			31.6		38.3	34.6			
Level of Service (LOS)				В	В	Α	В	С	А		С		D	С		
Approach Delay, s/veh / LOS					3	В		18.8 B			3	С	35.6		D	
Intersection De							3.9						В			
Multimodal Re	sults				EB			WB		NB				SB		
Pedestrian LOS	Score	/LOS		2.1		В	2.2		В	2.4		В	2.4		В	
Bicycle LOS So	ore / LC	os		2.0		Α	1.8		Α	0.6		Α	0.8		Α	

HCS 2010™ Streets Version 6.65

Generated: 4/7/2015 9:38:14 AM

		ncs z	V IV 3	ıyılalı	ZCU I	1116130	CUUI	11/63	sults S	ullille	ат у					
General Inform	ation							Intersect	tion Info	ormatic	n .		4741	ja lu		
Agency Jacobs					Intersection Information Duration, h 0.25							/11	┨	11		
Analyst		DBZ		Δnalve	is Date	Δnr 7	2015	$\overline{}$	Area Typ		Other		- 2 A			
Jurisdiction		1002		Analysis Date Apr 7, 2015 Time Period PM Peak					PHF		0.84		·		÷	
Intersection Apple Valley Drive					sis Year	-		\rightarrow	Analysis	Pariod	1> 7:0	20	- 4		-	
File Name 18 PM B.xus					sis icai	20101	Build		Allalysis	renou	127.0	JU	-			
Project Descrip	tion	Ashton Park II											- 4	পু বিক্প	P (1	
T Toject Descrip	tion	ASHIOITI aik ii					-	-								
Demand Information					EB		$\overline{}$	WE	3		NB		$\overline{}$	SB		
Approach Move	ement			L	Т	l R	L	Т	R		Т	R	L	Т	R	
Demand (v), ve				99	618	45	37	558	3 24	25	6	31	44	6	121	
(),																
Signal Informa	tion				T_		- 5	山川	9						1	
Cycle, s	87.3	Reference Phase	2	1	P 6	\blacksquare	R	,			×	~ _	4		4	
Offset, s	0	Reference Point	End	Green	22	1.0	51.1	14.	6 0.0	0.0		1	¥ 2	3	4	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	0.0	4.3	3.6	0.0	0.0		7	→		κŤ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	0.0		5	6	7	-Y	
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT	
Assigned Phase	е			5		2	1		6			8			4	
Case Number				1.1		3.0	1.1		3.0			8.0			6.0	
Phase Duration	i, S			9.7		58.4	8.7		57.4	20.2		20.2			20.2	
Change Period	(Y+Rc)), s		5.5		6.3	5.5		6.3			5.6			5.6	
Max Allow Head				4.0	\neg	3.9	4.0		3.9		\neg	5.2		\neg	5.2	
Queue Clearan				4.2		25.1	3.2		43.4			10.1			13.5	
Green Extension		10 //		0.2	-	10.2	0.1	-	7.8			1.3				
Phase Call Probability				0.94	-	1.00	0.80		1.00			1.00			1.00	
Max Out Proba				0.00		0.11	0.00		0.41			0.02			0.07	
Movement Gro	un Dar	eulte			EB			WB			NB			SB		
Approach Move	•	suit3		L	T	R	L	T	R	L	T	R	L T		R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
		vob/b						_	_	3		10	_	_	14	
Adjusted Flow F		, ven/n ow Rate (s), veh/h/ln		118 1810	736 1863	54 1610	66 1810	992 1863	43 1610		74 1065		52 1384	151 1622		
Queue Service				2.2	23.1	1.2	1.2	41.4	_	\vdash	0.6		3.2	7.5		
Cycle Queue C	- 10			2.2	23.1	1.2	1.2	41.4			8.1		11.5	7.5		
Green Ratio (g/		e fille (ge), S		0.63	0.60	0.60	0.62	0.58	_				0.17	0.17		
Capacity (c), ve				233	1109	959	373	1088			0.17 238		185	274		
Volume-to-Cap		atio (X)							0.045				0.283	0.552		
Available Capa		· ,		0.507 457	1280	0.056 1106	618	1280	$\overline{}$		0.311 410		347	464		
	, , ,		\	_		_	_	_	-				_	-		
		h/ln (95th percentile)		0.12	12.5	0.6	0.7	20.4	-		2.4		2.0	5.3		
Queue Storage Ratio (RQ) (95th percentile)					0.32	0.11	0.14	0.52			0.61 32.0		0.61 38.9	0.66 33.3		
Uniform Delay (d1), s/veh				18.6	11.8	7.4	10.2	16.2	-				_	2.5		
Incremental Delay (d2), s/veh				_	1.1	0.0	0.1	5.6	0.0		1.0		1.2			
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0		
Control Delay (d), s/veh			20.3 C	12.9	7.4	10.3	21.7	7.8		33.1		40.1	35.7			
Level of Service (LOS)					B	A	B	C	A	22.4	С		D 26.0	D		
Approach Delay, s/veh / LOS					5	В	20.5		С	33.1	С	36.9	,	D		
Intersection De	ay, s/ve	en / LOS				19	9.6						В			
	le-				ED.			1115			NID			SB		
Multimodal Results					EB			WB			NB					
Multimodal Re Pedestrian LOS		/1.00		2.1		В	2.2		В	2.4		В	2.4		В	

HCS 2010™ Streets Version 6.65

Generated: 4/7/2015 9:41:50 AM

Tab 9
Statement of Compliance filed with the original zone change application with all applicable Guidelines and Policies of the Cornerstone 2020 Comprehensive Plan and Waiver Justification

BARDENWERPER, TALBOTT & ROBERTS, PLLC

- ATTORNEYS AT LAW -

Building Industry Association of Greater Louisville Bldg • 1000 N. Hurstbourne Parkway • Second Floor • Louisville, Kentucky 40223 (502) 426-6688 • www.Bardlaw.net

STATEMENT OF COMPLIANCE WITH THE APPLICABLE GUIDELINES AND POLICIES OF THE CORNERSTONE 2020 COMPREHENSIVE PLAN

Applicant: Blacketer Company

Owner: Donald L. Craig

The Revocable Trust Agreement with

Margaret D. Greenwell

Location: 7508, 7506, 7504 and 7504 Beulah Church Rd

<u>Proposed Rezoning/Use:</u> Rezoning from R-4 to R-5A

Engineers, Land Planners and

Landscape Architects: Land Design & Development

INTRODUCTORY STATEMENT

This is an application for an apartment community that mirrors the apartment community on the north side of "The Fountains" condominiums. It is proposed by the same developer that built the apartments on the opposite side of The Fountains, and the building designs will be nearly identical. The PowerPoint presentation for the neighborhood meeting, along with the site plan, accompanies this application as evidence of that. This application also includes a standard single-family subdivision. The apartment community requires R-5A zoning, whereas the single-family community will remain R-4 zoning – both the rezoning and development plan accompanying same are compatible with the form of development that has occurred already in the immediate vicinity. After all, as said, there already exists The Fountains "stacked" form of a apartment-style condominium community, plus the referenced apartment community to the north. And part of the Apple Valley subdivision to the west is zoned R-6. Beulah Church Road leads to and from the Snyder Freeway, thus this area is a good location, fronting as this site does on a minor arterial or major collector level roadway, which takes traffic to and from places of employment and places of retail shopping along the Outer Loop and such places of worship as the large Highview Baptist Church not far north of this site.

GUIDELINE 1: COMMUNITY FORM

The Community Form that this property is located in is the Suburban Neighborhood Form District, which is characterized by predominantly residential uses that vary from low to high density and that blend compatibility into the existing landscape and neighborhood areas. These proposed apartment and single-family uses, as noted above, adjoin multi-family zoning and single-family uses. Plus they are compatible in terms of layout, design and density/intensity to adjoining and nearby uses. Because the Suburban Neighborhood Form recommends diverse housing types, this application does that: adds another small apartment community to the successful one to the north that this same developer recently built, plus some home sites typical

of what builders/developers are wanting to build today for the market that is out there such as this. This is proposed as a low to medium density use, not close to high density, which would in and of itself probably be appropriate, given its location on an arterial or major collector roadway such as Beulah Church Road which is in close proximity to areas of shopping, worship, schools, etc.

Also in conformance with this Guideline of the Comprehensive Plan, the pattern of streets and connectivity are also shown on the site plan, together with street trees, sidewalks and so forth.

GUIDELINE 2: CENTERS

The Intents and applicable Policies 1, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15 and 16 of this Guideline all pertain to the notion of "centers", which is a Comprehensive Plan concept which encourages mixed land uses organized around compact activity centers that are existing, proposed or planned in order to promote efficient uses of land, lower utility costs, reduce commuting time and transportation related air pollution, provide an opportunity for a mixture of residential development and housing types, and add to and encourage vitality and a sense of place in neighborhoods. Within Suburban Neighborhood Form Districts, activity centers should be located at street intersections with at least one of the intersecting streets classified as collector or above. Beulah Church Road is probably a minor arterial or at least a major collector. The entrance to this proposed community of multi- and single-family residences will probably lead to Apple Valley subdivision, such that that entrance road will become a major local street or collector in its own right. For the location of this somewhat higher density/intensity series of residential uses, from this site on the south moving north through The Fountains condominium community to the apartment community on the north of that, this larger development takes on the character of a small Neighborhood Center at this location.

Policies 4 and 5 encourage compact and mixed uses, which this proposal ensures, both by virtue of the site design, including the somewhat smaller single-family lots that are otherwise allowed in the R-4 zoning district. That assures a buyer seeking a higher level of amenities on a smaller lot. Guidelines 6 and 7 encourage a mixture of residential and commercial uses, proximate one as to the other. That is what is shown on this site plan in this case.

Policies 11, 13, 14 and 15 recommend that centers be designed taking into account the development patterns and designs of nearby development projects and also assure well screened and shared parking, well identified safe access, as well as use of existing utilities when possible. All of that occurs in this particular case.

GUIDELINE 3: COMPATIBILITY

The Intents and applicable Policies 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 28 and 29 of this Guideline all pertain to the issues of how to ensure that land uses and transportation facilities are located, designed and constructed so as to be compatible with nearby land uses and to minimize impacts to residential areas, schools and other sensitive features.

This application complies with the Intents and applicable Policies of this Guideline as follows. For example, as said above, the design of this proposed apartment community and single-family subdivision take into account what adjoins them while looking at the way these uses were laid out, as well as the way that the buildings were designed. In this case, materials similar to those

used in the existing apartment community and nearby homes will be utilized on all structures, which is evident in immediate adjoining neighborhoods. Buildings will be one and two-story, not taller. Odors, traffic, noise and commercial type lighting will not be involved in these developments, such that those kinds of impacts will not exist. Lighting will be residential in style and design. Visually speaking, the proposed communities will be compatible with those adjoining it and typical of the area. Again, this is not high density zoning, but it is a type different than standard R-4 single-family housing. But then the current market for new housing does not call for large lot standard single-family housing, but rather for more multi-family and for smaller single-family lots. As evident on the development plan accompanying this application, good transitions, appropriate setbacks, landscape buffers, building heights that do not require variances, suitable LDC compliant signage are all involved in this application and again, evident on the development plan.

GUIDELINES 4 AND 13: OPEN SPACE AND LANDSCAPE CHARACTER

The Intents and applicable Policies 1, 3, 6 and 7 of this Guideline 4 and Policies 1, 2 and 5 of Guideline 13 all pertain to the idea of ensuring well designed, permanently protected open spaces within communities, as well as landscape throughout these communities that protect and enhance the natural environment.

This application complies with these Intents and applicable Policies of this Guideline as follows. Green space and open areas are included within the apartment community. Throughout both the multi-family and single-family zoned communities, there will be abundant trees appropriately located to provide for internal aesthetics, screening and buffering, as well as to all of the requirements pertaining to the tree canopies and landscaping within the LDC.

GUIDELINE 6: ECONOMIC GROWTH AND SUSTAINABILITY

The Intents and applicable Policies 1, 3, 5 and 6 of this Guideline all pertain to the provision of a positive culture for attracting and sustaining a variety of land uses, in this case residential.

This application complies with the Intents and applicable Policies of this Guideline as follows. This is an infill development, meaning that is adjoined by other existing like-kind development for which there is a significant market demand.

GUIDELINES 7, 8 AND 9: CIRCULATION, TRANSPORTATION FACILITIES, AND BICYCLE, PEDESTRIAN AND TRANSIT ACCESS

The Intents and applicable Policies 1, 2, 4, 6, 9, 10, 11, 13, 14, 15 and 16 of Guideline 7, plus Policies 7, 8, 9, 10 and 11 of Guideline 8, plus Policies 1, 2, 3, 4 and 5 of Guideline 9 all pertain to the issues of traffic impacts, access to and circulation through proposed developments and the provision of access by other means of transportation than simply the automobile. As these are low to medium density single-family and multi-family developments along a road that has adequate traffic-carrying capacity, development of this site for residential communities of this type is appropriate. If additional road improvements are required, and if those impacts are proportionate to whatever the road improvements requirements are, they will be provided. That could include additional right-of-way dedication and a center turn lane. But probably nothing more than that would be required. Metro Transportation Planning must review the development

plan filed with this application prior to docketing for the LD&T Committee meeting, which is even before the full-blown Planning Commission public hearing. Consequently, this application will not be reviewed until such time as that agency has determined that, as said, the existing external road system has adequate traffic-carrying capacity as it is believed to have and that access to the site, through the site and to adjoining properties is provided in accordance with the LDC and these Comp Plan Policies. Sidewalks will be provided along Beulah Church Road and internally. Bicycle accommodations will be made within the multi-family development.

GUIDELINES 10 AND 11: FLOODING AND STORMWATER PLUS WATER QUALITY

The Intents and applicable Policies 1, 3, 6, 7, 10 and 11 of Guideline 10 and Policies 3, 5 and 8 of Guideline 11 pertain to the issues of effectively managing stormwater and preventing the degradation of water quality due to water pollution and soil erosion and sedimentation.

This application complies with the Intents and applicable Policies of these Guidelines as follows. MSD has provided regulations that pertain to soil erosion and sedimentation control, which is a construction detail that will be required of this applicant in connection with its developments of these multi-family and single-family communities. Among other things, post-development rates of runoff may not exceed pre-development conditions, and they will not do so in this case. Ordinarily that is accomplished through on-site detention as here. MSD new water quality guidelines will also be accommodated through the design of one or several of multiple measures that are now available to assure best management practices in this regard.

GUIDELINE 12: AIR QUALITY

The Intents and applicable Policies 1, 2, 4, 6, 8 and 9 this Guideline all pertain to the issues of assuring no adverse consequences on air quality and, when possible, even taking measures to improve same.

This application complies with the Intents and applicable Policies of this Guideline as follows. Generally speaking, by filling in the infill, so to speak, which means building next to development that already exists as opposed to in outlying areas, for example outside the Snyder Freeway, is important as a means to assure reduced vehicle miles traveled. That tends to help with air quality because people driving from their homes to places of work, to shopping, to places of worship, to school and so forth will be more proximately located relative to same. That will be the case here.

GUIDELINE 14: INFRASTRUCTURE

The Intents and applicable Policies 2, 3, 4, 6 and 7 of this Guideline all pertain to assuring adequate infrastructure to support a new development project.

This application complies with the Intents and applicable Policies of this Guideline as follows. This site was chosen because it has sanitary sewer service available. Also, water and electric service are available at the site without the need for lengthy extensions. It is always more cost-effective for the developer, and better for the public utilities when existing utility infrastructure can be utilized. And, as said, Beulah Church Road has adequate traffic-carrying capacity for limited amounts of added, especially residential, developments where infill sites like this exist.

* * * * * *

For all of these and other reasons to be further presented at the LD&T meeting and Planning Commission public hearing, this application complies with these and all other applicable Intents, Policies and Guidelines of the Comprehensive Plan.

Respectfully submitted,

William B. Bardenwerper Bardenwerper Talbott & Roberts, PLLC Building Industry Association of Greater Louisville Bldg. 1000 N. Hurstbourne Parkway, Second Floor Louisville, KY 40223

 $E:\CLIENT\ FOLDER\Blacketer-Bright\Beulah\ Church\Nov\ 2014\ Zone\ Change\Application\Compliance\ Statement.doc\ JTR\ Rev.\ 2-16-15\ 11:22\ AM$

General Waiver Justification:

In order to justify approval of any waiver, the Planning Commission or Board of Zoning Adjustment considers four criteria. Please answer all of the following questions. Use additional sheets if needed. A response of yes, no, or N/A is not acceptable.

Waiver of: Section 10.2 to (1) waive the 25 ft LBA adjacent to the Fountains Condominium property along the shared property line with Tract 1; (2) to reduce the 25 ft LBA to 10 ft along the shared property line between Tract 2 and the Fountains Condo Council property and to waive the dumpster and pavement encroachments; and (3) to reduce the required 8 ft screen to 6 ft along the shared property line between Tract 2 and the Fountains Condo Council property line.

Explanation of Waiver:

- 1. The waiver will not adversely affect adjacent property owners because along this eliminated LBA is a multi-family development on the adjoining property with its own LBA, and on this one are a 0.41 acre open space, 6 single family lots and only two small 5,300 sq ft apartment buildings. A 6 ft privacy fence will be provided to meet the screening requirement along the shared property line between the Fountain Condo Council property and Tract 2.
- 2. The waiver will not violate the Comprehensive Plan for all the set forth in the Detailed Statement of Compliance with all applicable Guidelines and Policies of the Cornerstone 2020 Comprehensive Plan filed with the rezoning application.
- 3. The extent of waiver of the regulation the minimum necessary to afford relief to the applicant because there is added setback and open space in the above referenced yards next to the adjoining multi-family property.
- 4. Strict application of the provisions of the regulation will deprive the applicant of a reasonable use of the land or would create an unnecessary hardship on the applicant because the applicant would end up moving everything to the south, changing configurations of buildings, reducing parking, and changing the configuration of Zelma Fields Avenue.

Tab 10
Proposed findings of fact pertaining to compliance with the Comprehensive Plan and Waiver criteria

BARDENWERPER, TALBOTT & ROBERTS, PLLC

- ATTORNEYS AT LAW -

Building Industry Association of Greater Louisville Bldg • 1000 N. Hurstbourne Parkway • Second Floor • Louisville, Kentucky 40223 (502) 426-6688 • www.Bardlaw.net

PROPOSED FINDINGS OF FACT REGARDING COMPLIACE WITH ALL APPLICABLE GUIDELINES AND POLICIES OF THE CORNERSTONE 2020 COMPREHENSIVE PLAN

Applicant: Ashton Park, LLC

Owner: The Revocable Trust Agreement with

Margaret D. Greenwell

Location: 7508, 7506, and 7504 Beulah Church Rd

Proposed Rezoning/Use: Rezoning from R-4 to R-5A

Engineers, Land Planners and

<u>Landscape Architects:</u> Land Design & Development

The Louisville Metro Planning Commission, having heard testimony before its Land Development & Transportation Committee, in the Public Hearing held on April 16, 2015 and having reviewed evidence presented by the applicant and the staff's analysis of the application, make the following findings:

INTRODUCTORY STATEMENT

WHEREAS, this is an application for an apartment community and single family subdivision that essentially mirror the apartment community on the north side of "The Fountains" condominiums and the adjoining existing residential subdivision; this mixed single family and apartment community is proposed by the same developer that built the apartments on the opposite side of The Fountains, and the apartment building designs will be nearly identical; the PowerPoint presentation shown at the Public Hearing, along with the site plan, accompanying this application is evidence of that; the apartment community requires R-5A zoning, whereas the single-family community will remain R-4 zoning; both the rezoning and development plan accompanying the R-5A zoning as well as the preliminary subdivision plan relevant to the R-4 zoning are compatible with the form of development that has occurred already in the immediate vicinity; there already exists The Fountains "stacked" form of an apartment-style condominium community, plus the referenced apartment community to the north and part of the Apple Valley subdivision to the west is zoned R-6; Beulah Church Road leads to and from the Snyder Freeway, thus this area is a good location, fronting as this site does on a minor arterial or major collector level roadway, which takes traffic to and from places of employment and places of retail shopping along the Outer Loop and such places of worship as the large Highview Baptist Church not far north of this site; and

GUIDELINE 1: COMMUNITY FORM

WHEREAS, the Community Form that this property is located in is the Suburban Neighborhood Form District, which is characterized by predominantly residential uses that vary from low to

high density and that blend compatibility into the existing landscape and neighborhood areas; these proposed apartment and single-family uses, as noted above, adjoin multi-family zoning and single-family uses, plus they are compatible in terms of layout, design and density/intensity to adjoining and nearby uses; the Suburban Neighborhood Form recommends diverse housing types, and this application does that by adding another small apartment community to the successful one to the north that this same developer recently built, plus some home sites typical of what builders/developers are wanting to build today for the market that is out there such as this; this is proposed as a low to medium density use, not close to high density, which would in and of itself probably be appropriate, given its location on an arterial or major collector roadway such as Beulah Church Road which is in close proximity to areas of shopping, worship, schools, etc; and

WHEREAS, also in conformance with this Guideline of the Comprehensive Plan, the pattern of streets and connectivity are also shown on the site plan, together with street trees, sidewalks and so forth; and

GUIDELINE 2: CENTERS

WHEREAS, the Intents and applicable Policies 1, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15 and 16 of this Guideline all pertain to the notion of "centers", which is a Comprehensive Plan concept which encourages mixed land uses organized around compact activity centers that are existing, proposed or planned in order to promote efficient uses of land, lower utility costs, reduce commuting time and transportation related air pollution, provide an opportunity for a mixture of residential development and housing types, and add to and encourage vitality and a sense of place in neighborhoods; within Suburban Neighborhood Form Districts, activity centers should be located at street intersections with at least one of the intersecting streets classified as collector or above; Beulah Church Road is a minor arterial or at least a major collector; the entrance to this proposed community of multi- and single-family residences will probably lead to Apple Valley subdivision, such that that entrance road will become a major local street or collector in its own right; for the location of this moderately dense series of residential uses, from this site on the south moving north through The Fountains condominium community to the apartment community on the north of that, this larger development takes on the character of a small Neighborhood Center at this location; and

WHEREAS, Policies 4 and 5 encourage compact and mixed uses, which this proposal ensures, both by virtue of the site design, including the somewhat smaller single-family lots that are otherwise allowed in the R-4 zoning district; that assures a buyer seeking a higher level of amenities on a smaller lot; Guidelines 6 and 7 encourage a mixture of residential and commercial uses, proximate one as to the other and that is what is shown on this site plan in this case; and

WHEREAS, Policies 11, 13, 14 and 15 recommend that centers be designed taking into account the development patterns and designs of nearby development projects and also assure well screened and shared parking, well identified safe access, as well as use of existing utilities when possible, and all of that occurs in this particular case; and

GUIDELINE 3: COMPATIBILITY

WHEREAS, the Intents and applicable Policies 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 28 and 29 of this Guideline all pertain to the issues of how to ensure that land uses

and transportation facilities are located, designed and constructed so as to be compatible with nearby land uses and to minimize impacts to residential areas, schools and other sensitive features; and

WHEREAS, this application complies with the Intents and applicable Policies of this Guideline as follows; the design of this proposed apartment community and single-family subdivision take into account what adjoins them while looking at the way these uses were laid out, as well as the way that the buildings were designed; materials similar to those used in the existing apartment community and nearby homes will be utilized on all structures, which is evident in immediate adjoining neighborhoods; buildings will be one and two-story, not taller; odors, traffic, noise and commercial type lighting will not be involved in these developments, such that those kinds of impacts will not exist; lighting will be residential in style and design; visually speaking, the proposed communities will be compatible with those adjoining it and typical of the area; this is not high density zoning, but it is a type different than standard R-4 single-family housing; the current market for new housing does not call for large lot standard single-family housing, but rather for more multi-family and for smaller single-family lots; and as evident on the development plan accompanying this application, good transitions, appropriate setbacks, landscape buffers, building heights that do not require variances, suitable LDC compliant signage are all involved in this application and, again, are evident on the development plan; and

GUIDELINES 4 AND 13: OPEN SPACE AND LANDSCAPE CHARACTER

WHEREAS, the Intents and applicable Policies 1, 3, 6 and 7 of this Guideline 4 and Policies 1, 2 and 5 of Guideline 13 all pertain to the idea of ensuring well designed, permanently protected open spaces within communities, as well as landscape throughout these communities that protect and enhance the natural environment; and

WHEREAS, this application complies with these Intents and applicable Policies of this Guideline as follows; green space and open areas are included within the apartment community; throughout both the multi-family and single-family zoned communities, there will be abundant trees appropriately located to provide for internal aesthetics, screening and buffering, as well as compliance with LDC requirements pertaining to tree canopies and landscaping; and

GUIDELINE 6: ECONOMIC GROWTH AND SUSTAINABILITY

WHEREAS, the Intents and applicable Policies 1, 3, 5 and 6 of this Guideline all pertain to the provision of a positive culture for attracting and sustaining a variety of land uses, in this case residential; and

WHEREAS, this application complies with the Intents and applicable Policies of this Guideline as follows; this is an infill development, meaning that is adjoined by other existing like-kind development for which there is a significant market demand; and

GUIDELINES 7, 8 AND 9: CIRCULATION, TRANSPORTATION FACILITIES, AND BICYCLE, PEDESTRIAN AND TRANSIT ACCESS

WHEREAS, the Intents and applicable Policies 1, 2, 4, 6, 9, 10, 11, 13, 14, 15 and 16 of Guideline 7, plus Policies 7, 8, 9, 10 and 11 of Guideline 8, plus Policies 1, 2, 3, 4 and 5 of Guideline 9 all pertain to the issues of traffic impacts, access to and circulation through proposed

developments and the provision of access by other means of transportation than simply the automobile; as these are low to medium density single-family and multi-family developments along a road that has adequate traffic-carrying capacity, development of this site for residential communities of this type is appropriate; if additional road improvements are required, and if those impacts are proportionate to whatever the road improvements requirements are, they will be provided; that could include additional right-of-way dedication and a center turn lane; but probably nothing more than that would be required; Metro Transportation Planning reviewed and approved the development plan filed with this application prior to this public hearing; sidewalks will be provided along Beulah Church Road and internally; and bicycle accommodations will be made within the multi-family development; and

GUIDELINES 10 AND 11: FLOODING AND STORMWATER PLUS WATER QUALITY

WHEREAS, the Intents and applicable Policies 1, 3, 6, 7, 10 and 11 of Guideline 10 and Policies 3, 5 and 8 of Guideline 11 pertain to the issues of effectively managing stormwater and preventing the degradation of water quality due to water pollution and soil erosion and sedimentation; and

WHEREAS, this application complies with the Intents and applicable Policies of these Guidelines as follows; MSD has provided regulations that pertain to soil erosion and sedimentation control, which is a construction detail that will be required of this applicant in connection with its developments of these multi-family and single-family communities; among other things, post-development rates of runoff may not exceed pre-development conditions, and they will not do so in this case; ordinarily that is accomplished through on-site detention as here; and MSD's new water quality guidelines will also be accommodated through the design of one or several of multiple measures that are now available to assure best management practices in this regard; and

GUIDELINE 12: AIR QUALITY

WHEREAS, the Intents and applicable Policies 1, 2, 4, 6, 8 and 9 this Guideline all pertain to the issues of assuring no adverse consequences on air quality and, when possible, even taking measures to improve same; and

WHEREAS, this application complies with the Intents and applicable Policies of this Guideline as follows; generally speaking, by filling in the infill, so to speak, which means building next to development that already exists as opposed to in outlying areas, for example outside the Snyder Freeway, is important as a means to assure reduced vehicle miles traveled; that tends to help with air quality because people driving from their homes to places of work, to shopping, to places of worship, to school and so forth will be more proximately located relative to same and that is the case here; and

GUIDELINE 14: INFRASTRUCTURE

WHEREAS, the Intents and applicable Policies 2, 3, 4, 6 and 7 of this Guideline all pertain to assuring adequate infrastructure to support a new development project; and

WHEREAS, this application complies with the Intents and applicable Policies of this Guideline as follows; this site was chosen because it has sanitary sewer service available; also, water and electric service are available at the site without the need for lengthy extensions; it is always more cost-effective for the developer, and better for the public utilities when existing utility infrastructure can be utilized; and, as said, Beulah Church Road has adequate traffic-carrying capacity for limited amounts of added, especially residential, developments where infill sites like this exist; and

* * * * * *

WHEREAS, for all the reasons explained at LD&T and the Planning Commission public hearing and also in the public hearing exhibit books on the approved detailed district development plan, this application also complies with all other applicable Guidelines and Policies of the Cornerstone 2020 Comprehensive Plan;

NOW, THEREFORE, the Louisville Metro Planning Commission hereby recommends to the Louisville Metro Council that it rezone the subject property from R-4 to R-5A.

PROPOSED FINDING FOR THE WAIVER

Waiver of: Section 10.2 to (1) waive the 25 ft LBA adjacent to the Fountains Condominium property along the shared property line with Tract 1; (2) to reduce the 25 ft LBA to 10 ft along the shared property line between Tract 2 and the Fountains Condo Council property and to waive the dumpster and pavement encroachments; and (3) to reduce the required 8 ft screen to 6 ft along the shared property line between Tract 2 and the Fountains Condo Council property line.

WHEREAS, the waiver will not adversely affect adjacent property owners because along this eliminated LBA is a multi-family development on the adjoining property with its own LBA, and on this one are a 0.41 acre open space, 6 single family lots and only two small 5,300 sq ft apartment buildings; and a 6 ft privacy fence will be provided to meet the screening requirement along the shared property line between the Fountain Condo Council property and Tract 2; and

WHEREAS, the waiver will not violate the Comprehensive Plan for all the set forth in the Detailed Statement of Compliance with all applicable Guidelines and Policies of the Cornerstone 2020 Comprehensive Plan filed with the rezoning application; and

WHEREAS, the extent of waiver of the regulation the minimum necessary to afford relief to the applicant because there is added setback and open space in the above referenced yards next to the adjoining multi-family property; and

WHEREAS, strict application of the provisions of the regulation will deprive the applicant of a reasonable use of the land or would create an unnecessary hardship on the applicant because the applicant would end up moving everything to the south, changing configurations of buildings, reducing parking, and changing the configuration of Zelma Fields Avenue;

NOW, THEREFORE, the Louisville Metro Planning Commission hereby approves this Waiver.

e:\client folder\blacketer-bright\beulah church\nov 2014 zone change\application\proposed findings of fact.doc