final report

October 1, 2020

Traffic Impact Study

1231 Durrett Lane Louisville, KY

Prepared for

Louisville Metro Planning Commission

Table of Contents

INTRODUCTION	2
Figure 1. Site Map	2
EXISTING CONDITIONS	2
Figure 2. Existing (2018) Peak Hour Volumes	3
FUTURE CONDITIONS	3
Figure 3. No Build Peak Hour Volumes	4
TRIP GENERATION	4
Table 1. Peak Hour Trips Generated by Site	4
Figure 4. Trip Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	6
Figure 6. Build Peak Hour Volumes	7
ANALYSIS	7
Table 2. Peak Hour Level of Service	8
CONCLUSIONS	8
ADDENDLY	^

INTRODUCTION

The development plan for 1231 Durrett Lane in Louisville, KY shows a single building with 142,438 square feet.

Figure 1 displays a map of the site. Access to the development will be from an entrance on Preston Highway and two on Durrett Lane. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study, the impact area was defined to be the intersection of Preston Highway at Durrett Lane and the proposed entrances.

Figure 1. Site Map

EXISTING CONDITIONS

Preston Highway, KY 61, is maintained by the Kentucky Transportation Cabinet with an estimated 2020 ADT of 26,000 vehicles per day between KY 1747 and I 264 Ramps, as provided by a 2018 Kentucky Transportation Cabinet count at station 607. The road is a four-lane highway with twelve-foot lanes, a two-way left turn lane and curb and gutter. The speed limit is 45 mph. There are sidewalks on both sides. The intersection with Durrett Lane is controlled with a traffic signal. At the intersection there is a dedicated left turn lane on Preston Highway and a dedicated right turn lane on Durrett Lane. The left turn lane on Durrett Lane is 175 feet in length.

Peak hour traffic counts for the intersection were obtained from the traffic impact study for 1201 Durrett Lane a convenience/gas station, dated May 15, 2018. The a.m. peak hour occurred between 7:15 and 8:15 a.m. The p.m. peak occurred between 4:30 and 5:30 p.m. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes.

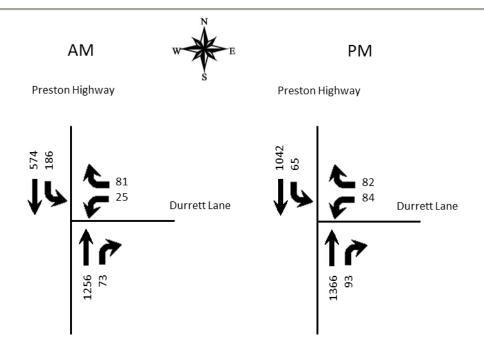


Figure 2. Existing (2018) Peak Hour Volumes

FUTURE CONDITIONS

The project completion date is 2021. An annual growth rate of 1.0 percent was applied to 2018 traffic volumes. This is based upon a review of historical traffic counts at station 607. The trip generation for the gas/convenience store under construction on the corner of Preston Highway and Durrett Lane was included. The trip generation for that site has been included in the appendix. **Figure 3** displays the 2021 No Build peak hour volumes.

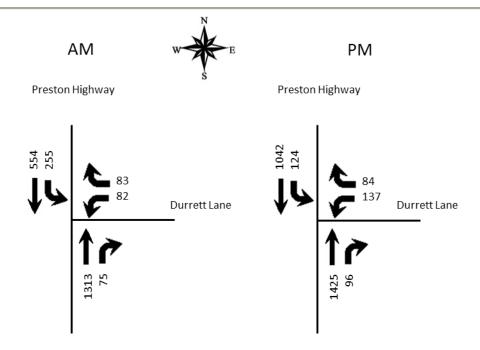


Figure 3. No Build Peak Hour Volumes

TRIP GENERATION

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 10th Edition contains trip generation rates for a wide range of developments. However, none of the published uses reflected the proposed operation. The user has provided trip generation for a typical 24-hour period. The full trip generation for the site is included in the appendix. The trip generation for the peak hours of the adjacent road are listed in **Table 1**. The new trips were assigned to the highway network with the percentages shown in **Figure 4**. **Figure 5** shows the trips generated by this development and distributed throughout the road network during the peak hours. **Figure 6** displays the individual turning movements for the peak hours when the development is completed.

Table 1. Peak Hour Trips Generated by Site

	A.M. F	Peak	Hour	P.M. F	Peak	Hour
Land Use	Trips	In	Out	Trips	In	Out
Distribution Facility	1	0	1	91	61	30

Figure 4. Trip Distribution Percentages

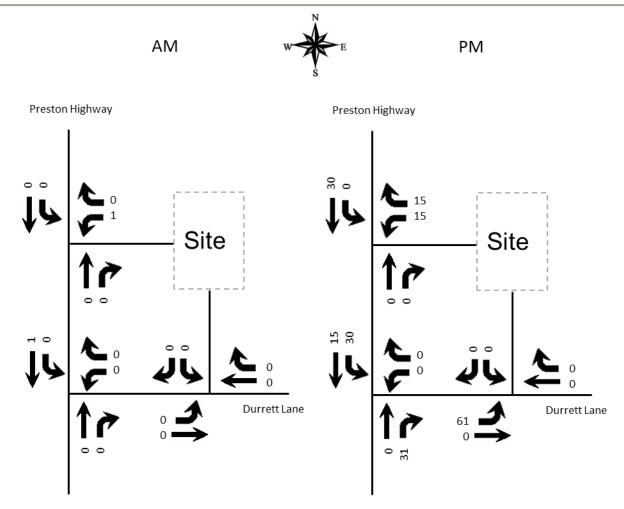


Figure 5. Peak Hour Trips Generated by Site

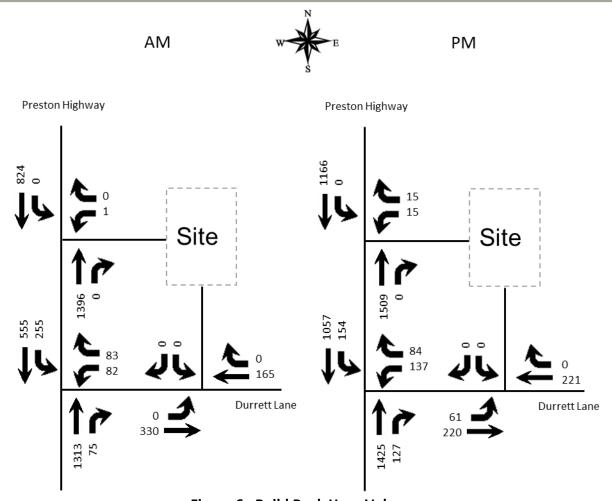


Figure 6. Build Peak Hour Volumes

ANALYSIS

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service". Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst. Level of Service results depend upon the facility that is analyzed. In this case, the Level of Service is based upon the total delay experienced at an intersection.

To evaluate the impact of the proposed development, the vehicle delays at the intersections were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 6th edition. Future delays and Level of Service were determined for the intersections using the HCS Streets (version 7.9) software. The delays and Level of Service are summarized in **Table 2**. Note that the Durrett Lane entrances have been analyzed as a single entrance, due to light traffic from the site in the peak hours.

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Annanah	2018	2021	2021	2018	2021	2021
Approach	Existing	No Build	Build	Existing	No Build	Build
Preston Highway at Entrance						
Entrance Westbound			F			D
Littratice Westbourid			74.8			30.1
Preston Highway Southbound (left)			В			В
Preston Highway Southbound (left)			14.3			14.6
	В	В	В	В	В	В
Preston Highway at Durrett Lane	15.3	18.6	18.6	12.5	17.4	17.8
	Е	Е	Е	Е	Е	Е
Durrett Lane Westbound	67.1	67.0	67.0	74.6	70.6	73.6
	В	В	В	В	В	В
Preston Highway Northbound	16.1	17.0	17.0	12.4	18.4	18.5
	Α	В	В	Α	Α	Α
Preston Highway Southbound	6.6	10.5	10.5	3.3	5.5	6.3
Durrett Lane at Entrance						
Durrett Lane Eastbound			Α			Α
Durien Lane Eastbound			7.6			7.8
Entrance Southbound			NA			NA

Key: Level of Service, Delay in seconds per vehicle

The entrance was evaluated for turn lanes using the Kentucky Transportation Cabinet <u>Highway Design Guidance</u> Manual dated March, 2017. No turn lanes are required at the entrances.

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2021, there will be a manageable impact to the existing highway network, with Levels of Service remaining within acceptable limits. The delays experienced in the area will increase within acceptable limits.

APPENDIX

Traffic Counts

Qk4

File Name : Preston Hwy & Durrett Ln Site Code : Qk4

Start Date : 3/10/2016 Page No : 1

Groups Printed- cars - trucks - pedak bikes

									miccu	ouis	uucks		un bin								,
		Pr	eston F	lwy				Durre	tt			Pr	eston	Hwy							ĺ
		Fi	rom No	orth			F	rom E	ast			Fr	rom So	outh			Fr	rom W	'est		ĺ
Start Time	Left	Thru	Right	U-Turns	App. Total	Left	Thru	Right	U-Turns	App. Total	Left	Thru	Right	U-Turns	App. Total	Left	Thru	Right	U-Turns	App. Total	Int. Total
07:00 AM	42	147	0	0	189	5	0	10	0	15	0	162	11	0	173	0	0	0	0	0	377
07:15 AM	106	199	0	0	305	4	0	20	0	24	0	223	14	0	237	0	0	0	0	0	566
07:30 AM	38	123	0	0	161	7	0	24	0	31	0	294	17	0	311	0	0	0	0	0	503
07:45 AM	21	143	0	0	164	8	0	16	0	24	0	343	23	0	366	0	0	0	0	0	554
Total	207	612	0	0	819	24	0	70	0	94	0	1022	65	0	1087	0	0	0	0	0	2000
08:00 AM	21	109	0	0	130	6	0	21	0	27	0	237	19	0	256	0	0	0	0	0	413
08:15 AM	8	91	0	0	99	10	0	19	0	29	0	230	21	0	251	0	0	0	0	0	379
08:30 AM	17	130	0	0	147	8	0	11	0	19	0	188	19	0	207	0	0	0	0	0	373
08:45 AM	13	115	0	0	128	10	0	14	0	24	0	174	19	0	193	0	0	0	0	0	345
Total	59	445	0	0	504	34	0	65	0	99	0	829	78	0	907	0	0	0	0	0	1510
	'					'															1
Grand Total	266	1057	0	0	1323	58	0	135	0	193	0	1851	143	0	1994	0	0	0	0	0	3510
Apprch %	20.1	79.9	0	0		30.1	0	69.9	0		0	92.8	7.2	0		0	0	0	0		ĺ
Total %	7.6	30.1	0	0	37.7	1.7	0	3.8	0	5.5	0	52.7	4.1	0	56.8	0	0	0	0	0	ĺ
cars	260	1002										1763									
% cars	97.7	94.8	0	0	95.4	89.7	0	97.8	0	95.3	0	95.2	95.8	0	95.3	0	0	0	0	0	95.3
trucks	6	55	0	0	61	6	0	3	0	9	0	88	6	0	94	0	0	0	0	0	164
% trucks	2.3	5.2	0	0	4.6	10.3	0	2.2	0	4.7	0	4.8	4.2	0	4.7	0	0	0	0	0	4.7
pedak bikes																					
% pedak bikes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Pre	eston l	Hwy				Durre	tt			Pr	eston	Hwy							
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fi	rom W	est		
Start Time	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	n 07:00	0 AM t	o 08:45	AM -	Peak 1	1 of 1						•					•		
Peak Hour fo	or Enti	re Inte	rsectio	on Beg	jins at 0	7:15 A	M														
07:15 AM	106	199	0	0	305	4	0	20	0	24	0	223	14	0	237	0	0	0	0	0	566
07:30 AM	38	123	0	0	161	7	0	24	0	31	0	294	17	0	311	0	0	0	0	0	503
07:45 AM	21	143	0	0	164	8	0	16	0	24	0	343	23	0	366	0	0	0	0	0	554
08:00 AM	21	109	0	0	130	6	0	21	0	27	0	237	19	0	256	0	0	0	0	0	413
Total Volume	186	574	0	0	760	25	0	81	0	106	0	1097	73	0	1170	0	0	0	0	0	2036
% App. Total	24.5	75.5	0	0		23.6	0	76.4	0		0	93.8	6.2	0		0	0	0	0		
PHF	.439	.721	.000	.000	.623	.781	.000	.844	.000	.855	.000	.800	.793	.000	.799	.000	.000	.000	.000	.000	.899

Qk4

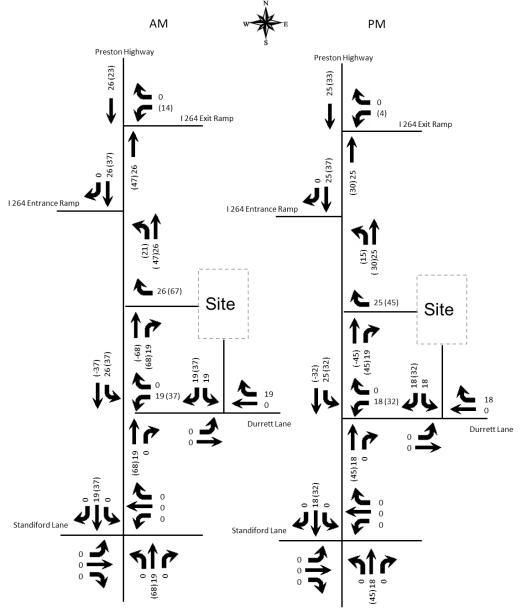
Qk4

File Name : Preston Hwy & Durrett Ln Site Code :

Start Date : 3/10/2016
Page No : 1

Groups Printed- cars - trucks - pedak bikes

							010			ours	uono		CIT DIT								
			eston I					Durre	tt				eston								
		Fi	rom No	orth			F	rom E	ast			Fi	rom S	outh			Fi	rom W	/est		
Start Time	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Turns	App. Total	Int. Total
04:00 PM	13	249	0	0	262	15	0	31	0	46	0	293	12	0	305	0	0	0	0	0	613
04:15 PM	13	250	0	0	263	12	0	16	0	28	0	325	15	0	340	0	0	0	0	0	631
04:30 PM	12	210	0	0	222	16	0	12	0	28	0	386	19	0	405	0	0	0	0	0	655
04:45 PM	20	272	0	0	292	20	0	21	0	41	0	331	24	0	355	0	0	0	0	0	688
Total	58	981	0	0	1039	63	0	80	0	143	0	1335	70	0	1405	0	0	0	0	0	2587
						'															
05:00 PM	15	302	0	0	317	27	0	30	0	57	0	314	25	0	339	0	0	0	0	0	713
05:15 PM	18	258	0	0	276	21	0	19	0	40	0	304	25	0	329	0	0	0	0	0	645
05:30 PM	13	216	0	0	229	12	0	13	0	25	0	294	21	0	315	0	0	0	0	0	569
05:45 PM	8	214	Ö	Ö	222	20	0	10	Ö	30	Ö	249	9	Ö	258	Ö	Ö	0	Õ	Ö	510
Total	54	990	0	0	1044	80	0	72	0	152	0	1161	80	0	1241	0	0	0	0	0	2437
rotai	01	000		O	1011	00		12	Ü	102		1101	00	O	1211		U	U		0	2101
Grand Total	112	1971	0	0	2083	143	0	152	0	295	0	2496	150	0	2646	0	0	0	0	0	5024
Apprch %	5.4	94.6	0	Ö	2000	48.5	0	51.5	Ô	200	0	94.3	5.7	0	2010	Ö	0	0	Ö		0021
Total %	2.2	39.2	Ö	0	41.5	2.8	0	3	0	5.9	0	49.7	3	0	52.7	0	0	0	0	0	
cars	108	1933			71.0	2.0				0.0	-	2453			02.1						
% cars	96.4	98.1	0	0	98	99.3	0	99.3	0	99.3	0	98.3	97.3	0	98.2	0	0	0	0	0	98.2
trucks	4	38	0	0	42	1	0	1	0	2	0	43	4	0	47	0	0	- 0	0	0	91
% trucks	3.6	1.9	0	0	42	0.7	0	0.7	0	0.7	0	1.7	2.7	0	1.8	0	0	0	0	0	1.8
	3.0	1.9	- 0	- 0		0.7	- 0	0.1	- 0	0.7	0	1.7	2.1		1.0	U	- 0		- 0	- 0	1.0
pedak bikes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% pedak bikes	0	U	U	U	U	0	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U


								_					-,								1
			eston					Durre	π				eston								1
		Fi	om No	orth			F	rom E	ast			Fı	rom So	outh			F	rom W	est		
Start Time	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Tums	App. Total	Left	Thru	Right	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	n 04:0	0 PM t	o 05:45	PM -	Peak	1 of 1													
Peak Hour fe	or Enti	re Inte	rsectio	on Beg	ins at 0	4:30 F	PM														
04:30 PM	12	210	0	0	222	16	0	12	0	28	0	386	19	0	405	0	0	0	0	0	655
04:45 PM	20	272	0	0	292	20	0	21	0	41	0	331	24	0	355	0	0	0	0	0	688
05:00 PM	15	302	0	0	317	27	0	30	0	57	0	314	25	0	339	0	0	0	0	0	713
05:15 PM	18	258	0	0	276	21	0	19	0	40	0	304	25	0	329	0	0	0	0	0	645
Total Volume	65	1042	0	0	1107	84	0	82	0	166	0	1335	93	0	1428	0	0	0	0	0	2701
% App. Total	5.9	94.1	0	0		50.6	0	49.4	0		0	93.5	6.5	0		0	0	0	0		1
PHF	.813	.863	.000	.000	.873	.778	.000	.683	.000	.728	.000	.865	.930	.000	.881	.000	.000	.000	.000	.000	.947

Diane B. Zimmerman Traffic Engineering, LLC.

Page 11

Trip Generation from Durrett Lane Gas/Convenience dated May 15, 2018.

	A.M. I	Peak H	lour	P.M. F	Peak H	our
Land Use	Trips	In	Out	Trips	In	Out
Convenience Market with Gas (12 pumps)	337	169	168	276	138	138
Pass-by Trips	209	105	104	154	77	77
TOTAL New Trips	128	64	64	122	61	61

TRIP GENERATION

Provided by Occupant Half Hour Increments

								DKY6 in	Louisville	, KY - Site	Specific							
		Associates			Trucks		D	SP Drivers	5		DSP Vans			Flex			Total	
Time	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total
00:00	0	0	0	1	1	2	0	0	0	0	0	0	0	0	0	1	1	2
00:30	0	0	0	0	1	1		0	0	0	0	0		0	0	0	1	1
01:00	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1
01:30	91	0	91	1	1	2	0	0	0	0	0	0	0	0	0	92	1	93
02:00	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
02:30	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1 1	0	1
03:00	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
03:30	0	0	٥	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1
04:00	0	0	0	1	1	2	0	0	0	0	0	0	0	0	0	1	1	2
04:30	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
05:00	0 29	0	0 29	1 0	0	1	0	0	0	0	0	0	0	0	0	1 29	0	1 30
05:30		0			0	1			- 1	0	0	0	"	0			1 0	
06:00	0	0	0	1 1	1	2		ö	0	"	0	0	"	0		1 1	1	1 2
07:00	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
07:30		0	ő	0	ō	ō		ő	ő	0	ő	0		0	0	0	ō	ō
08:00	0	o	ŏ	0	ő	ő	ا ا	ő	اه	0	اة	ő	ا ا	o	o	ا ة	ől	o
08:30	0	0	o	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1
09:00	0	0	0	0	1	1	22	0	22	0	0	0	0	0	0	22	1	23
09:30	0	0	0	1	0	1	87	0	87	0	0	0	0	0	0	88	0	88
10:00	0	0	0	0	1	1	90	0	90	0	72	72	0	0	0	90	73	163
10:30	0	0	0	0	0	0	8	0	8	0	144	144	0	0	0	8	144	152
11:00	0	0	0	1	0	1	0	0	0	0	13	13	0	0	0	1	13	14
11:30	5	0	5	0	1	1	0	0	0	0	0	0	0	0	0	5	1	6
12:00 12:30	0	0 91	0 91	0	0	0	0	0	0	0	0	0	0	0	0	0	0 91	0 91
13:00	29	91	29		0	0	"	öl	0	0	اة	0	"	0		29	91	29
13:30	23	0	23		ő	0		öl	0	0		0		0		23	0	23
14:00	0	0	2	"	ől	ő		ől	اه		ا ا	0		0		20	ől	20
14:30	اة ا	29	29		ől	ŏl	اة ا	ől	ől		اه	ő	ا ة	ő	اة	ا ة ا	29	29
15:00	0	0	0	0	ō	0	ا ا	ō	ō	0	0	0	اه ا	0	o	ا ا	0	0
15:30	0	0	0	0	ō	0	ا ا	ol	ol	0	0	ō	اه ا	0	o	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	60	0	60	60	0	60
16:30	0	0	0	1	0	1	0	0	0	0	0	0	0	30	30	1	30	31
17:00	0	0	0	0	1	1	0	0	0	0	0	0	0	30	30	0	31	31
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	23	23	1	0	1	0	0	0	0	0	0	0	0	0	1 1	23	24
18:30	0	0	٥	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
19:00	0	0	0	1	0	1	0	17	17	18	0	18	0	0	0	19	17	36
19:30	0	0	0	1	1	2	0	34	34	90	0	90	0	0	0	91	35	126
20:00	0	0	0	0	1 0	1	0	102	102	58	0	58	0	0	0	58	103	161 97
20:30	0	0	0	1 1	1	1 2	0	34 20	34 20	62	0	62	0	0	0	63 2	34 21	23
21:00	0	0	0	1	1	1		0	0	1 0	0	1 0		0		0	1	1
22:00	"	29	29	1 1		1		öl	0	0		0	"	0		1 1	29	30
22:30	0	5	5	1 1	1	2		ől	ő	0	اة	0		0		1 1	6	7
23:00		ő	اه	ا أ	1	1	ا ا	ől	اه		ا ة	0		ő	اة	اهٔ ا	1	í
23:30		ő	ő	1	ō	1	ا ا	اه	ő	0	ő	0		ő	اة	1 1	اه	1
Total	177	177	354	21	21	42	207	207	414	229	229	458	60	60	120	694	694	1,388

HCS Reports

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort _						
General Information							Site	Inforr	natio	1						_
Analyst	DBZ						Inters	ection			Presto	on Entra	nce			
Agency/Co.	Diane	B Zimm	nerman 1	raffic En	gineerin	g	Juriso	liction								
Date Performed	10/1/	20					East/	West Stre	eet		Entrai	nce				
Analysis Year	2021						North	n/South S	Street		Presto	on				
Time Analyzed	AM Pr	eak					Peak	Hour Fac	tor		0.90					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	1231	Durrett	Lane													
Lanes																
				74444	្សាក្ Major	1 + Y Street: Nor	† † r	7 4 4 7 1								
Vehicle Volumes and Ad	justme	nts														
Approach	\perp	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	\perp	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	0	2	0	0	1	2	0
Configuration	\perp					L		R			T	TR		L	T	
Volume (veh/h)						1		0			1396	0	0	0	824	
Percent Heavy Vehicles (%)	\perp					100		10					3	10		
Proportion Time Blocked	\bot															
Percent Grade (%)	+						0									
Right Turn Channelized						٨	lo									
	-												1			
Median Type Storage	二			Left	Only											
Median Type Storage	eadway	ys		Left	Only											
Median Type Storage	eadway	ys		Left	Only	7.5		6.9						4.1		
Median Type Storage Critical and Follow-up H	eadwa	ys		Left	Only	7.5 8.80		6.9 7.10						4.1		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	ys		Left	Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	ys		Left	Only	8.80		7.10						4.30		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)			ervice		Only	8.80 3.5		7.10 3.3						4.30 2.2		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)			ervice		Only	8.80 3.5		7.10 3.3						4.30 2.2		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an			ervice		Only	8.80 3.5 4.50		7.10 3.3 3.40						4.30 2.2 2.30		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)			ervice		Only	8.80 3.5 4.50		7.10 3.3 3.40						4.30 2.2 2.30		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)			ervice		Only	8.80 3.5 4.50		7.10 3.3 3.40 0 324						4.30 2.2 2.30 0 387		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio			ervice		Only	8.80 3.5 4.50 1 53 0.02		7.10 3.3 3.40 0 324 0.00						4.30 2.2 2.30 0 387 0.00		
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	Intersection															
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)			ervice		Only	8.80 3.5 4.50 1 53 0.02 0.1 74.8	4.8	7.10 3.3 3.40 0 324 0.00 0.0						4.30 2.2 2.30 0 387 0.00 0.0 14.3	0.0	

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM TWSC Version 7.9 Preston Ent AM 21 B.xtw

Generated: 10/1/2020 3:03:34 PM

HCS7 Two-Way Stop-Control Report																
Site Information																
Analyst	DBZ						Inters	ection			Presto	on Entra	nce			
Agency/Co.	Site Information															
	10/1/	20					East/	West Str	eet		Entra	nce				
Analysis Year	Site Information															
Time Analyzed	PM P	eak					Peak	Hour Fac	ctor		0.95					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	1231	Durrett	Lane													
Lanes																
				* Y ↑ * ^) 4 4 4 7								
Vehicle Volumes and Ad	justme	nts			· · · · · · · · · · · · · · · · · · ·											
Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	0	2	0	0	1	2	0
Configuration						L		R			T	TR		L	T	L
Volume (veh/h)						15		15			1509	0	0	0	1166	L
Percent Heavy Vehicles (%)						10		10					3	10		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized						١	10									
Median Type Storage				Left	Only								1			_
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						7.00		7.10						4.30		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.60		3.40						2.30		
Delay, Queue Length, ar	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					16		16						0		
Capacity, c (veh/h)						110		314						374		
v/c Ratio						0.14		0.05						0.00		
95% Queue Length, Q ₉₅ (veh)						0.5		0.2						0.0		
Control Delay (s/veh)						43.1		17.1						14.6		
Level of Service (LOS)						E		С						В		
Approach Delay (s/veh)						30	0.1							C	0.0	
Approach LOS							 D									

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM TWSC Version 7.9 Preston Ent PM 21 B.xtw Generated: 10/1/2020 3:06:35 PM

		HCS	/ Sig	nalize	a inte	ersect	ion R	esi	iits Su	mmar	У				
General Inforn	nation								Interse	ction Inf	ormatio	on	Į.	d Add L	a L
Agency		Diane B. Zimmerma	an Traffi	c Engine	eerina				Duratio		0.250			111	
Analyst						5/15/20	018		Area Ty		Other		4		
Jurisdiction				Time P		AM Pe			PHF	<u> </u>	0.90		1 40 1		*
Urban Street		Preston Highway		-	is Year	-	ui.			s Period	1> 7:	15	-4		
Intersection				File Na		-	n AM 18	R XIIS		o i ciica	11. 11.	10			
Project Descrip	tion			T IIC IVE	iiiic	1 10310	TAW I	J.Auc	,				-	4147	3+ (*
r roject Becomp	tion	1201 Bullett													
Demand Inforr	nation				EB			٧	/B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	T R	L	Т	R	L	Т	F
Demand (v), v	eh/h						25		81		1256	3 73	186	574	\top
, ,,															
Signal Informa	Information Diane B. Zimmer DBZ DBZ DBZ DBZ DBZ DBZ DBZ DB				17	1	1	\top			l				
Cycle, s	130.0	Reference Phase	2			+2	2	1				7	P		
Offset, s	0	Reference Point	End	Green	25.0	79.8	9.5	0.	0 0.0	0.0		1	2	3	F
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.6	3.6	0.	-						
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.				5	6	7	
Timer Results				EBL		EBT	WBI	-]	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е								8			2	1		6
Case Number									9.0			8.3	1.0		4.0
Phase Duration	ı, s							П	14.9			85.0	30.2	2 '	115.
Change Period	Period, (Y+Rc), s							П	5.4			5.2	5.2		5.2
Max Allow Hea								\neg	4.2			0.0	4.0		0.0
Queue Clearan	ow Headway (<i>MAH</i>), s							\neg	9.3				5.0		
Green Extension	n Time	(ge), s						\neg	0.3			0.0	0.7		0.0
Phase Call Pro	bability							\exists	0.99				1.00		
Max Out Proba									0.00				0.00		
Movement Gro	oup Res	sults			EB			WI	3		NB			SB	
Approach Move	_			L	Т	R	L	Т	R	L	Т	R	L	Т	F
Assigned Move							3		18		2	12	1	6	
), veh/h					28		90		732	721	200	618	
		,-	n				1668		1585		1826	1790	1781	1738	
		. ,,					2.0		7.3		49.8	30.9	3.0	2.9	Т
							2.0		7.3		49.8	30.9	3.0	2.9	
Green Ratio (g		() · /i					0.07		0.07		0.61	0.61	0.82	0.85	
Capacity (c), \							121		115		1120	1098	482	2940	
		atio (X)					0.229		0.780		0.653	0.657	0.415	0.210	
<u>.</u>)				42.6		15.8	-	399	379.6	161.7	24.2	
	` ''	· · ·					1.6		0.6		15.3	15.2	6.4	0.9	
							0.24		0.05		0.00	0.00	1.01	0.00	
		, , , ,	/				56.8		59.2		13.4	13.5	22.5	1.2	
							0.9		10.8	_	2.6	2.7	0.5	0.1	
		·					0.0		0.0		0.0	0.0	0.0	0.0	
							57.8		70.0		16.0	16.1	23.0	1.3	
							57.6 E		70.0		B	В	C	A	
				0.0			67.1		E	16.1		В	6.6		A
				0.0		15			_	10.			B		
mersection De	ay, 5/VE	,117 LOG				10	.U						J		
Multimodal Re	sults				EB			WI	3		NB			SB	
Pedestrian LOS		/LOS		2.16		В	2.33	_	В	1.89	_	В	0.62		A
, Jacobalan LOC	- 55516	os s		2.10	_	_	2.00	-	F	1.7	\rightarrow	В	1.18	\rightarrow	A

Copyright $\ensuremath{\texttt{@}}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 7/29/2020 5:10:28 PM

		HCS	7 Sig	nalize	d Inte	ersect	ion R	esi	ılts Su	nmar	У				
General Inform	nation								Intersec	tion Inf	ormatic	on.	Į.	4741	
Agency	iution	Diane B. Zimmerma	an Traffi	c Engine	ering				Duration		0.250		┧8	ttr	
Analyst		DBZ			is Date	Oct 1,	2020		Area Typ		Other				
Jurisdiction		552		Time F		AM Pe			PHF		0.90		→ 		
Urban Street		Preston Highway		Analys		-			Analysis	Period	1> 7:	15	4 4		*
Intersection		Durrett Lane		File Na		-	n AM 2			1 CHOC	11. 7.	10			
Project Descrip	tion	1231 Durrett		T IIC IVE	iiic	1 10310	II AIVI Z	IND	.Au3				- "	11144	3+ (*
r roject Bescrip	tion	1201 Bullett													
Demand Inforr	nation				EB		Т	٧	/B		NB			SB	
Approach Move	ement			L	Т	R	L	T	T R	1 -	Т	R	L	Т	R
Demand (v), v							82		83		1313	3 75	255	554	
, ,															
Signal Informa	tion				T/	↓↓	1	\top							
Cycle, s	130.0	Reference Phase	2			†č	∠	1				>	7		
Offset, s	0	Reference Point	End	Green	25.0	79.2	10.0	0.	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.6	3.6	0.	_	0.0					>
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	-	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phase	е								8			2	1		6
Case Number								\Box	9.0			8.3	1.0		4.0
Phase Duration	, s							П	15.4			84.4	30.2	2	114.6
Change Period	(Y+R	;), s						\neg	5.4			5.2	5.2		5.2
Max Allow Head	dway (/	<i>ЛАН</i>), s			4.1			0.0	4.0		0.0				
Queue Clearan	ce Time	(gs),s						\neg	9.4		0.0		9.3		
Green Extensio	n Time	(ge), s						\neg	0.6			0.0	0.9		0.0
Phase Call Prol	bability	,							1.00				1.00)	
Max Out Proba	bility								0.00				0.00)	
Movement Gro	up Res	ults			EB			W	3		NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move						- 1 1	3		18	_	2	12	1	6	<u> </u>
Adjusted Flow F), veh/h					91		92		732	721	258	560	-
		ow Rate (s), veh/h/l	n				1668		1585		1826	1791	1781	1738	\vdash
Queue Service		, ,,					6.9		7.4		53.6	32.0	7.3	2.6	
Cycle Queue C		. , .					6.9		7.4		53.6	32.0	7.3	2.6	
Green Ratio (g		5 (g c /, 5					0.08		0.08		0.61	0.61	0.82	0.84	
Capacity (c), v							128		121		1113	1092	470	2927	
Volume-to-Cap		tio (X)					0.713		0.759			0.661	0.549	0.191	
		In (90 th percentile)	١				145.4		140.5		419.7	399.4	266.5	22.6	
		eh/In (90 th percenti					5.4		5.5		16.1	16.0	10.5	0.9	
		RQ) (90 th percent					0.83		0.47		0.00	0.00	1.67	0.00	
Uniform Delay (, , , ,					58.6		58.8		14.4	14.4	29.6	1.2	
Incremental De	· /·						7.1		9.3		2.6	2.7	0.9	0.1	
Initial Queue De							0.0		0.0		0.0	0.0	0.0	0.0	
Control Delay (*					65.8		68.1		17.0	17.1	30.4	1.3	
Level of Service		211					65.6 E		E		17.0 B	17.1 B	30.4 C	1.3 A	
Approach Delay		/1.08		0.0			67.0		E	17.0		В	10.5		В
				0.0		40			E	17.0	,			,	В
Intersection De	ay, S/VE	:II / LUS				18	.o						В		
Multimodal Ba	eulte				EB			WI	3		NB			SB	
Multimodal Results						В	2.33	_	В	1.89		В	0.62		A
Pedestrian LOS				2.16			/ 33		D)	≡ 1.ດັຽ	7	D	= U.D.		~

Copyright $\ensuremath{@}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/1/2020 1:15:30 PM

		HCS	7 Sig	nalize	d Inte	ersect	ion R	esı	ılts Su	nmar	y				
General Inforn	nation								Intersec	tion Info	ormatic	on.	Į.	4.441	
Agency	lution	Diane B. Zimmerma	n Traffi	c Engine	ering				Duration		0.250		┨	111	
Analyst		DBZ	aill		is Date	Oct 1,	2020		Area Typ		Other		4		
Jurisdiction		DUZ		Time F		AM Pe			PHF		0.90				r_
Urban Street		Preston Highway			is Year	_			Analysis	Deriod	1> 7:	15	* T		•
Intersection		Durrett Lane		File Na		-	n AM 2	1 R v		renou	127.	10	-		
Project Descrip	tion	1231 Durrett		FIIE IN	iiie	Fiesto	II AIVI Z	1 0.8	us				- 🦷	2 1 2 2	2. 6
Project Descrip	lion	1231 Dullett													
Demand Inforr	nation				EB			V	/B	$\overline{}$	NB			SB	
Approach Move				L	Т	R	L	_	T R	L	Т	R	L	Т	R
Demand (v), v							82		83	1	1313		255	555	
											1010				
Signal Informa	tion				II.	Ţ <u>Ļ</u>	1 1	\top	$\neg \neg$	\top			.		
Cycle, s	130.0	Reference Phase	2	1		†č	2	1				>	1		
Offset, s	0	Reference Point	End	Green	25.0	79.2	10.0	0.	0 0.0	0.0		1	2	3	_
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.6	3.6	0.		0.0	_				>
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.		0.0		5	6	7	
Timer Results				EBL		EBT	WBI	_]	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	е								8			2	1		6
Case Number								\Box	9.0			8.3	1.0		4.0
Phase Duration	ı, s							П	15.4			84.4	30.2	2	114.6
Change Period	, (Y+R	c), S						\neg	5.4			5.2	5.2		5.2
Max Allow Hea	dway (/	<i>MAH</i>), s			4.1		4.1			0.0	4.0		0.0		
Queue Clearan	ce Time	e (g s), s			9.4						9.3				
Green Extension	n Time	(ge), s						\neg	0.6			0.0	0.9		0.0
Phase Call Pro	bability							\neg	1.00				1.00		
Max Out Proba	bility								0.00				0.00)	
Movement Gro	oup Res	sults			EB			W	В		NB			SB	
Approach Move	<u> </u>			L	T	R	L	Т	_	L	T	R	L	T	R
Assigned Move							3		18	_	2	12	1	6	<u> </u>
Adjusted Flow I), veh/h					91		92		732	721	258	561	-
		ow Rate (s), veh/h/l	n				1668		1585		1826	1791	1781	1738	\vdash
Queue Service		. , , ,					6.9		7.4		53.6	32.0	7.3	2.6	
Cycle Queue C							6.9		7.4		53.6	32.0	7.3	2.6	
Green Ratio (g		5 .ano (g c), 0					0.08		0.08		0.61	0.61	0.82	0.84	
Capacity (c), v							128		121		1113	1092	470	2927	
Volume-to-Cap		ntio (X)					0.713		0.759			0.661	0.548	0.192	
		/In (90 th percentile)	1	\vdash			145.4		140.5		419.7	399.4	266.2	22.6	\vdash
		eh/In (90 th percenti					5.4		5.5		16.1	16.0	10.5	0.9	
		RQ) (90 th percent					0.83		0.47		0.00	0.00	1.66	0.00	
Uniform Delay		, , ,	0)				58.6		58.8		14.4	14.4	29.5	1.2	
Incremental De	` ,.						7.1		9.3		2.6	2.7	0.8	0.1	
Initial Queue De	• •						0.0		0.0		0.0	0.0	0.0	0.0	
Control Delay (\vdash			65.8		68.1		17.0	17.1	30.4	1.3	
Level of Service							E		E		B	B	C	1.5 A	
Approach Dela				0.0			67.0		E	17.0		В	10.5		В
Intersection De				0.0		18			L	17.0	, <u> </u>		B	, <u> </u>	D
microection De	ay, sive	,,, LO3				10	.0						<u>ں</u>		
Multimodal Re	sulte				EB			WI	B		NB			SB	
Pedestrian LOS		/LOS		2.16		В	2.33	_	В	1.89		В	0.62		A
	200016	, 200		2.10			2.00	\rightarrow	F	1.76	-	В	1.23	-	A

Copyright $\ensuremath{@}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/1/2020 1:15:30 PM

			, olg	IIaIIZC	u iiite	.1000		030	lts Sur	ııııaı						
General Inform	ation								Intersect	ion Inf	ormatic	\n		INTEL	ьU	
	iation	Diana B. Zimmarma	on Troffi	o Engine	aarlaa								- 1	ŢŢĻ		
Agency		Diane B. Zimmerma	an Iraiii			Jul 29,	2020	_	Duration,		0.250		- 2			
Analyst		DBZ		<u> </u>		-			Area Typ PHF	е	Other		-	. #	•	
Jurisdiction		Decete a Historia		Time F		PM Pe	ак			Davia	0.95	20	- 3		*	
Urban Street		Preston Highway		<u> </u>	is Year	2018	D14.4		Analysis	Perioa	1> 4:3	30	_ <u> </u>			
Intersection		Durrett Lane		File Na	ame	Presto	n PM 1	3.xus					- 4	17		
Project Descript	lion	1231 Durrett Lane												ነጻተቀዣ	[F] [I]	
Demand Inforn	nation				EB			W	В		NB			SB		
Approach Move	ment			L	Т	R	L	T	R	L	Т	R	L	Т	F	
Demand (v), v	eh/h						84		82		1366	93	65	1042		
Signal Informa		D (D)		17 17		8	Ⅎ			Į		↑ ×				
Cycle, s	145.0	Reference Phase	2			1 17	' E					1	2	3		
Offset, s	0	Reference Point	End	Green	22.4	96.5	10.2	0.0	0.0	0.0					5	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.6	3.6	0.0	_	0.0					~	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.0	0.0	0.0		5	6	7		
Timer Results				- FDI		ERT	MDI	T	WBT	NIDI		NRT	CDI		CDT	
Assigned Phase				EBL		EBT	WBI	-	8 8	NBI	-	NBT 2	SBI 1	-	SBT 6	
Case Number								+	9.0			8.3	1.0		4.0	
Phase Duration	-			_		_		_	15.6		1	101.7	27.6	_	129.4	
Change Period,	, -	~ \ e		_		_		-	5.4			5.2	5.2	_	5.2	
Max Allow Head	•	**		_		_		+	4.1			0.0	4.0		0.0	
Queue Clearand						_		-	9.7			0.0	3.0	0.0		
Green Extensio								+	0.5			0.0			0.0	
Phase Call Prob		(9 0), 3				_		-	1.00			0.0	0.94	\rightarrow	0.0	
Max Out Probat				_		_		+	0.00		_		0.00	_		
									0.00				0.01			
Movement Gro	up Res	ults			EB			WE	3		NB			SB		
A	mont			L	Т	R	L	Т	R	L	Т	R	L	T	F	
Approach Move	ment			-					18		2	12	1	6		
Approach Move Assigned Move							3		10							
	ment), veh/h					3 88		86		766	754	68	1089		
Assigned Move Adjusted Flow F	ment Rate(<i>v</i>), veh/h ow Rate (s), veh/h/l	In						_		766 1870	754 1828	68 1753	1089 1781		
Assigned Move Adjusted Flow F Adjusted Satura	ment Rate (<i>v</i> ation Flo	ow Rate (s), veh/h/l	In				88		86		_			_		
Assigned Movel Adjusted Flow F Adjusted Satura Queue Service	ment Rate (<i>v</i> ation Flo Time (<u>c</u>	ow Rate (s), veh/h/lg s), s	In				88 1795		86 1598		1870	1828	1753	1781		
Assigned Movel Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl	ment Rate (<i>v</i> ation Flo Time (<u>c</u> learance	ow Rate (s), veh/h/lg s), s	In				88 1795 7.0		86 1598 7.7		1870 50.5	1828 29.1	1753 1.0	1781 9.6		
Assigned Movel Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g.	ment Rate (v ation Flo Time (g learance	ow Rate (s), veh/h/lg s), s	In				88 1795 7.0 7.0		86 1598 7.7 7.7		1870 50.5 50.5	1828 29.1 29.1	1753 1.0 1.0	9.6 9.6		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v	ment Rate (v ation Flo Time (g learance VC) veh/h	ow Rate (s), veh/h/l g s), s e Time (g c), s	In				88 1795 7.0 7.0 0.07		86 1598 7.7 7.7 0.07		1870 50.5 50.5 0.67 1245	1828 29.1 29.1 0.67	1753 1.0 1.0 0.83 428	9.6 9.6 0.86		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (<i>g.</i> Capacity (<i>c</i>), v Volume-to-Capa	ment Rate (v ation Flo Time (g learance //C) veh/h acity Ra	ow Rate (s), veh/h/l g s), s e Time (g c), s					88 1795 7.0 7.0 0.07 127		86 1598 7.7 7.7 0.07 113		1870 50.5 50.5 0.67 1245	1828 29.1 29.1 0.67 1217	1753 1.0 1.0 0.83 428	9.6 9.6 0.86 3050		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue	ment Rate (v ation Flo Time (g learance //C) veh/h acity Ra	ow Rate (s), veh/h/l gs), s e Time (gc), s)				88 1795 7.0 7.0 0.07 127 0.699		86 1598 7.7 7.7 0.07 113 0.767		1870 50.5 50.5 0.67 1245 0.615	1828 29.1 29.1 0.67 1217 0.620	1753 1.0 1.0 0.83 428 0.159	9.6 9.6 0.86 3050 0.357		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue	ment Rate (v Ation Flo Time (g learance //C) //eh/h acity Ra (Q), ft/ (Q), ve	ow Rate (s), veh/h/l gs), s e Time (gc), s utio (X)) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7		86 1598 7.7 7.7 0.07 113 0.767 145.6		1870 50.5 50.5 0.67 1245 0.615 356	1828 29.1 29.1 0.67 1217 0.620 347.3	1753 1.0 1.0 0.83 428 0.159 46.4	1781 9.6 9.6 0.86 3050 0.357 92.4		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Queue Storage	ment Rate (v ation Flo Time (g learance //C) reh/h acity Ra (Q), ft/ (Q), ve Ratio (ow Rate (s), veh/h/l g s), s e Time (g c), s witto (X) In (90 th percentile) eh/ln (90 th percentile) RQ) (90 th percentile)) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8		1870 50.5 50.5 0.67 1245 0.615 356 14.0	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9	1753 1.0 1.0 0.83 428 0.159 46.4 1.8	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6		
Assigned Movel Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g, Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (ment Rate (v ation Flo Time (g learance VC) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), se	ow Rate (s), veh/h/l gs), s e Time (gc), s titio (X) fin (90 th percentile) eh/ln (90 th percentile) RQ) (90 th percentile)) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49		1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00		
Assigned Movel Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g, Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del	ment Rate (v ation Flo Time (g learance VC) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s, lay (d 2	ow Rate (s), veh/h/l g s), s e Time (g c), s titio (X) In (90 th percentile) eh/ln (90 th percentile) RQ) (90 th percentile) /veh), s/veh) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2		1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De	ment Rate (v ation Flo Time (g learance //C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s, lay (d 2 elay (d	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) RQ) (90 th percentile) //veh), s/veh 3), s/veh) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3		1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1	1753 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.3		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (ment Rate (v ation Flo Time (g learance //C) //eh/h acity Ra (Q), ft/ (Q), ve (Q), so lay (d 2 elay (d d), s/ve	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) RQ) (90 th percentile) /veh), s/veh eh) ile)				88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8 0.0		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3 0.0		1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0 0.0	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6 0.2	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.3		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service)	ment Rate (v ation Flo Time (g learance VC) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s, lay (d 2 elay (d d), s/ve e (LOS)	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) (veh), s/veh a), s/veh eh) ile)	0.0			88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8 0.0 72.7		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3 0.0 76.6	12.4	1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0 0.0 12.3 B	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1 0.0 12.4	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6 0.2	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.3 0.0 2.6 A	A	
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g, Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service Approach Delay	ment Rate (v ation Flo Time (g learance //C) //eh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s, lay (d 2 elay (d d), s/ve e (LOS) y, s/veh	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) (veh), s/veh a), s/veh eh) ile)	0.0		12	88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8 0.0 72.7 E		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3 0.0 76.6 E	12.4	1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0 0.0 12.3 B	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1 0.0 12.4 B	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6 0.2 0.0 14.8	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.3 0.0 2.6 A		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service Approach Delay Intersection Delay (Incremental Delay (ment Rate (v ation Flo Time (g learance //C) reh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s lay (d 2 elay (d d), s/ve e (LOS) y, s/veh lay, s/veh	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) (veh), s/veh a), s/veh eh) ile)	0.0		12	88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8 0.0 72.7 E		86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3 0.0 76.6 E	12.4	1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0 0.0 12.3 B	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1 0.0 12.4 B	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6 0.2 0.0 14.8 B	1781 9.6 9.8 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.0 2.6 A		
Assigned Mover Adjusted Flow F Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue	ment Rate (v ation Flo Time (g learance //C) reh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s, lay (d 2 elay (d d), s/ve e (LOS) y, s/veh lay, s/ve sults	ow Rate (s), veh/h/l gs), s e Time (gc), s tio (X) In (90 th percentile) eh/ln (90 th percentile) veh), s/veh 3), s/veh eh // LOS) ile)	0.0	EB	12 B	88 1795 7.0 7.0 0.07 127 0.699 144.7 5.7 0.83 65.9 6.8 0.0 72.7 E	WE	86 1598 7.7 7.7 0.07 113 0.767 145.6 5.8 0.49 66.2 10.3 0.0 76.6 E	12.4	1870 50.5 50.5 0.67 1245 0.615 356 14.0 0.00 10.3 2.0 0.0 12.3 B	1828 29.1 29.1 0.67 1217 0.620 347.3 13.9 0.00 10.3 2.1 0.0 12.4 B	1753 1.0 1.0 0.83 428 0.159 46.4 1.8 0.29 14.6 0.2 0.0 14.8 B	1781 9.6 9.6 0.86 3050 0.357 92.4 3.6 0.00 2.3 0.0 2.6 A		

Copyright @ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 7/29/2020 5:40:43 PM

General Inforn	nation								Intersec	tion Inf	ormatio	n	U	4741	ja lj
Agency		Diane B. Zimmerma	an Traffi	c Engin	eering				Duration	, h	0.250			111	
Analyst		DBZ				Oct 1,	2020		Area Typ	е	Other				
Jurisdiction				Time F	eriod	PM Pe	eak		PHF		0.95		4		K.
Urban Street		Preston Highway		Analys	is Year	2021 N	No Build		Analysis	Period	1> 4:	30	7		
Intersection		Durrett Lane		File Na	ame	Presto	n PM 2	1 NB	.xus					1 1	r
Project Descrip	tion	1231 Durrett Lane											ħ	4144	17
Demand Infor					EB			, W			NB			SB	
Approach Move	ement			L	T	R	L		Γ R	L	Т	R	L	T	F
Demand (v), v	/eh/h						137	\perp	84		1425	96	124	1042	
						1 12				_					
Signal Informa		D (5:	_		17	1	8	\exists			l		1		
Cycle, s	145.0	Reference Phase	2			1 17	• ^e					1	2	3	
Offset, s	0	Reference Point	End	Green	23.8	91.3	14.1	0.0	0.0	0.0					~
Uncoordinated		Simult. Gap E/W	On	Yellow		3.6	3.6	0.0		0.0			>		~
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.0	0.0	0.0		5	6	7	
				- EDI		EDT.	MA		MOT	NIDI		NDT	0.01	_	0.0.7
Timer Results				EBI	-	EBT	WBI	-	WBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase								-	8			2	1		6
Case Number				_	-	_		+	9.0	_	-	8.3	1.0		4.0
Phase Duration		\		_	_	_		-	19.5	_	_	96.5	29.0	-	125.5
Change Period	, ,	7.		_	-	_		+	5.4	_	_	5.2	5.2	-	5.2
Max Allow Hea				\vdash		_		-	4.1			0.0	4.0	-	0.0
Queue Clearan		(- //		_	_			-	13.4		_		0.4		
Green Extension		(g e), S		_		_		-	0.7	_		0.0	_	-	0.0
Phase Call Pro				_	_	_		-	1.00				0.99	_	
Max Out Proba	ibility							_	0.00				0.00)	-
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	F
Assigned Move							3		18		2	12	1	6	
Adjusted Flow), veh/h					144		88		766	754	123	1034	
		ow Rate (s), veh/h/l	n				1795		1598		1870	1828	1753	1781	
Queue Service		. ,,					11.4		7.7		54.3	36.5	2.2	10.6	
		e Time (gε), s					11.4		7.7		54.3	36.5	2.2	10.6	
Green Ratio (g		, ,					0.10		0.10		0.63	0.63	0.81	0.83	
Capacity (c), v							175		156		1177	1151	424	2954	
Volume-to-Cap		itio (X)					0.825		0.569		0.651	0.655	0.290	0.350	
		/In (90 th percentile))				217.3		138.7		490.9	478.9	118.8	119.2	
	, .	eh/ln (90 th percent					8.6		5.5		19.3	19.2	4.6	4.7	
		RQ) (90 th percent					1.24		0.46		0.00	0.00	0.74	0.00	
Uniform Delay			,				64.2		62.5		15.8	15.8	22.3	3.2	
Incremental De							9.4		3.2		2.5	2.6	0.3	0.3	
Initial Queue D	, ,	,,					0.0		0.0		0.0	0.0	0.0	0.0	
Control Delay (,.					73.6		65.8		18.3	18.4	22.6	3.5	
Level of Service							Е		E		В	В	С	A	
Approach Dela	. ,			0.0			70.6	Т	E	18.4		В	5.5		Α
Intersection De	-					17							В		
	,,														
Multimodal Re	sults				EB			WE	3		NB			SB	
Multimodal Results								_							
Pedestrian LOS	S Score	/LOS		2.16	;	В	2.33		В	1.89	9	В	0.63	3	Α

Copyright @ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/1/2020 2:54:27 PM

		HCS	7 Sig	nalize	d Inte	ersect	ion R	esı	ılts Suı	nmar	/				
General Inforn	nation								Intersec	tion Info	ormatic	on	U	4144	J. L.
Agency		Diane B. Zimmerma	an Traffi	c Engine	eering				Duration		0.250			111	
Analyst		DBZ			is Date	Oct 1,	2020		Area Typ		Other				
Jurisdiction				Time F		PM Pe			PHF		0.95		→ 		*
Urban Street		Preston Highway			is Year	2021 E			Analysis	Period	1> 4:3	30	4		
Intersection		Durrett Lane		File Na		_	n PM 2	1 R x		Tonou	11 110				
Project Descrip	tion	1231 Durrett Lane		1 110 140		1 10010							- 5	4147	T+ (*
. 10,000 2000 1		1201 Bullott Earlo													
Demand Inform	mation				EB			V	/B	Т	NB			SB	
Approach Move	ement			L	Т	R	L	Τ.	T R	L	Т	R	L	Т	F
Demand (v), v	/eh/h						137		84		1425	127	154	1057	
Signal Informa	r			l	17	1	1	\exists			l		A _		
Cycle, s	145.0	Reference Phase	2			l tr	E	1				1	2	3	
Offset, s	0	Reference Point	End	Green	23.9	91.2	14.1	0.	0.0	0.0					Τ,
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	3.6	0.		0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.6	1.8	0.	0.0	0.0		5	6	7	
Times Been'				ED:		EDT I	\A\F		WET	NE		NDT	0.51		007
Timer Results				EBL		EBT	WBI	-	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase						_		+	8			2	1 1 0		6
Case Number					_			+	9.0	_		8.3	1.0	-	4.0
Phase Duration		\ -				-		\dashv	19.5	_		96.4	29.1	\rightarrow	125.5
Change Period		,.		_	_	-		+	5.4	_	-	5.2	5.2	-	5.2
Max Allow Hea		, ·		_	_	-		4.1 0.0			4.0 0.0 4.7				
Queue Clearan				_	_	-		+	13.4					\rightarrow	
Green Extension		(g e), S		_	_	-		\dashv	0.7	_	_	0.0	0.5	\rightarrow	0.0
Phase Call Pro				_	-	-		+	1.00	_	-		1.00	\rightarrow	
Max Out Proba	DIIITY							_	0.00		_		0.00)	
Movement Gro	oup Res	sults			EB			WI	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment						3		18		2	12	1	6	
Adjusted Flow	Rate (v), veh/h					144		88		768	752	147	1010	
		ow Rate (s), veh/h/l	n				1795		1598		1870	1816	1753	1781	
Queue Service	Time (g s), S					11.4		7.7		56.5	36.8	2.7	10.2	
Cycle Queue C	learanc	e Time (<i>g</i> ε), s					11.4		7.7		56.5	36.8	2.7	10.2	
Green Ratio (g							0.10		0.10		0.63	0.63	0.81	0.83	
Capacity (c), v	/eh/h						175		156		1176	1142	420	2954	
Volume-to-Cap		itio (X)					0.825		0.569		0.653	0.659	0.350	0.342	
Back of Queue	(Q), ft	/In (90 th percentile))				217.3		138.7		492.9	479.6	150.7	115.7	
	· /·	eh/ln (90 th percenti					8.6		5.5		19.4	19.2	5.8	4.6	
		RQ) (90 th percent	-				1.24		0.46		0.00	0.00	0.94	0.00	
Uniform Delay	(d 1), s	/veh					64.2		62.5		15.8	15.9	25.8	3.1	
Incremental De	, ,.						9.4		3.2		2.5	2.7	0.4	0.3	
Initial Queue D	- ,						0.0		0.0		0.0	0.0	0.0	0.0	
Control Delay (73.6		65.8		18.4	18.6	26.2	3.4	
Level of Service							Е		E		В	В	С	Α	
Approach Dela				0.0			70.6		E	18.5		В	6.3		Α
Intersection De						17							В		
Multimodal Re	sults				EB			WI	3		NB			SB	
Pedestrian LOS	Score	/LOS		2.16		В	2.33	\Box	В	1.89		В	0.63	3	Α
	core / LC							\rightarrow	F	1.84		В	1.54	1	В

Copyright $\ensuremath{@}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/1/2020 2:54:27 PM

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information	_						Site	Inforr	natio	n						
Analyst	Diane	Zimmei	rman				Inters	ection			Durre	ett Lane I	Entrance			
Agency/Co.	Diane	B Zimm	nerman T	raffic En	gineerin	g	Juriso	liction								
Date Performed	10/1/	20					East/\	West Stre	eet		Durre	ett Lane				
Analysis Year	2021						North	n/South :	Street		Entra	nce				
Time Analyzed	AM P	eak Build	d				Peak	Hour Fac	ctor		0.94					
Intersection Orientation	East-	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	1231	Durrett I	Lane													
Lanes																
				0744717		The Transfer of the Transfer o		4 ÷ € U								
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	bound			North	bound Southbound					
Арргоден	_															_
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Movement Priority	1U	1	2	3	4U	4	5	6	U	7	8	9	U	10	11	12
Movement Priority Number of Lanes	+	1			_	-		6	U		_	_	U	_	11 1	-
Movement Priority Number of Lanes Configuration	1U	1 0 LT	2	3	4U	4	5	6 0 TR	U	7	8	9	U	10 0	11	12
Movement Priority Number of Lanes Configuration Volume (veh/h)	1U	1 0 LT 0	2	3	4U	4	5	6	U	7	8	9	U	10 0	11 1	0 0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	1U	1 0 LT	2	3	4U	4	5	6 0 TR	U	7	8	9	U	10 0	11 1	12
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	1U	1 0 LT 0	2	3	4U	4	5	6 0 TR	U	7	8	9	U	10 0 0 0	11 1 LR	0 0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)	1U	1 0 LT 0	2	3	4U	4	5	6 0 TR	U	7	8	9	U	10 0 0 0	11 1	0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	1U	1 0 LT 0	2	3 0	4U	4	5	6 0 TR	U	7	8	9	U	10 0 0 0	11 1 LR	0 0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	10 0	1 0 LT 0 10	2	3 0	40 0	4	5	6 0 TR	U	7	8	9	U	10 0 0 0	11 1 LR	0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	10 0	1 0 LT 0 10	2	3 0	40 0	4	5	6 0 TR	U	7	8	9	U	10 0 0 0	11 1 LR	0 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H	10 0	1 0 LT 0 10	2	3 0	40 0	4	5	6 0 TR		7	8	9	U	0 0 0	11 1 LR	0 0
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	10 0	1 0 LT 0 10	2	3 0	40 0	4	5	6 0 TR		7	8	9	U	10 0 0 0	11 1 LR	122 0 0 100 100 100 100 100 100 100 100
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	10 0	1 0 LT 0 10	2	3 0	40 0	4	5	6 0 TR		7	8	9	U	7.1 6.40	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21	330	Undi	40 0	4	5	6 0 TR		7	8	9	U	7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21	330	Undi	40 0	4	5	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21	330	Undi	40 0	4	5	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21 0	330	Undi	40 0	4	5	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 100 100 100 100 100 100 100 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21 1 of Se 0 1400	330	Undi	40 0	4	5 1	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pollow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	1U 0	1 0 LT 0 10 10 4.1 4.20 2.2 2.21 1 of Se 0 1400 0.00	330	Undi	40 0	4	5 1	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pollow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	1U 0	1 0 LT 0 10 10 10 10 10 10 10 10 10 10 10 10 1	330	Undi	40 0	4	5 1	6 0 TR		7	8	9		7.1 6.40 3.5	11 1 LR	122 0 0 0 10 10 10 10 10 10 10 10 10 10 10

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TIM TWSC Version 7.9 Durrett Ent AM 21B.xtw

Generated: 10/1/2020 3:08:00 PM

		Н	CS7	Two-	-Way	Sto	o-Co	ntrol	Rep	ort						
General Information		_	_	_			Site	Inforr	natio	n	_	_	_	_	_	_
Analyst	Diane	Zimme	rman				Inters	ection			Durre	tt Lane I	Entrance			
Agency/Co.	Diane	B Zimm	erman T	raffic En	gineerin	g	Juriso	liction								
Date Performed	10/1/	20					East/	Nest Str	eet		Durre	tt Lane				
Analysis Year	2021						North	/South :	Street		Entra	nce				
Time Analyzed	PM P	eak Build	i				Peak	Hour Fac	tor		0.95					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	1231	Durrett	Lane													
Lanes																
				A 7 4 4 7 ↑ 7 C		ቀ ነገ		7 4 4 7 6								
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration	-	LT						TR							LR	⊢
Volume (veh/h)	-	61	220				221	0						0		0
Percent Heavy Vehicles (%)		10												0		10
Proportion Time Blocked	+														0	
Percent Grade (%) Right Turn Channelized															0	
Median Type Storage	+			Undi	l vided											
				Ondi	viueu											
Critical and Follow-up He	eadwa	-														_
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.20												6.40		
	+	2.2														6.30
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec)		2.21												3.51		3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and	d Leve	2.21 I of S	ervice													3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h)	d Leve	2.21 l of Se	ervice												0	3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)	d Leve	2.21 l of Se 64 1333	ervice												0	3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	d Leve	2.21 l of Se 64 1333 0.05	ervice												0	-
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	d Leve	2.21 l of Se 64 1333 0.05 0.2	ervice												0	3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	d Leve	2.21 of Se 64 1333 0.05 0.2 7.8	ervice												0	3.3
Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	d Leve	2.21 of So 64 1333 0.05 0.2 7.8 A	ervice .0												0	3.3

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TIM TWSC Version 7.9 Durrett Ent PM 21 B.xtw

Generated: 10/1/2020 3:09:29 PM