June 16, 2020

Traffic Impact Study

RaceTrac 11705 Dixie Highway (US 31W) Louisville, KY

Prepared for

Louisville Metro Planning Commission Kentucky Transportation Cabinet

Table of Contents

INTRODUCTION	2
Figure 1. Site Map	2
EXISTING CONDITIONS	2
Figure 2. Existing Peak Hour Volumes	3
FUTURE CONDITIONS	3
Figure 3. 2021 No Build Peak Hour Volumes	4
TRIP GENERATION	4
Table 1. Peak Hour Trips Generated by Site North	5
Figure 4. Trip Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	6
Figure 6. 2021 Build Peak Hour Volumes	7
ANALYSIS	7
Table 2. Peak Hour Level of Service	8
Figure 7. 2031 No Build Peak Hour Volumes	9
Figure 8. 2031 Build Peak Hour Volumes	10
Table 3. 2031 Peak Hour Level of Service	10
CONCLUSIONS	11
ADDENIDIV	4.3

INTRODUCTION

The site plan for RaceTrac shows a convenience store with 19 fueling positions (3 are diesel only) on Dixie Highway (US 31W) south of Flowervale Lane in Louisville, KY. **Figure 1** displays a map of the site. Access to the site will be from an entrance on Dixie Highway and an entrance on Flowervale Lane. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study, the impact area was defined to be the intersections of Dixie Highway with Flowervale Lane and the ramps of KY 841 (Gene Snyder); and the proposed entrances.

EXISTING CONDITIONS

Dixie Highway is a state-maintained road (US 31W) with an estimated 2020 ADT of 33,300 vehicles per day between KY 841 and KY 44, as estimated from the Kentucky Transportation Cabinet 2018 count at station 512. The road is a four-lane highway with twelve-foot lanes, an eleven-foot shoulder, and a two-way left turn lane through the study area. The speed limit is 50 mph. There is a sidewalk on the west side of the road. The intersections with Flowervale Lane, and KY 841 westbound ramps are controlled with a traffic signal. At the intersection of Flowervale Lane, there is a northbound right turn lane. At the intersection with KY 841 westbound ramps there is a northbound left turn lane and westbound dual left turn lanes.

Flowervale Lane is maintained by Louisville Metro with an estimated 2020 Average Annual Daily Traffic (AADT) volume of 6,500 vehicles per day between Dixie Highway and Deering Road as estimated from the Kentucky Transportation Cabinet 2019 count at station V68. The road has two twelve-foot lanes with a four-foot paved

shoulder. The speed limit is 35 mph. There are no sidewalks. At the intersection with Dixie Highway there is a right turn lane.

Peak hour traffic count for the intersections was obtained on January 25, 2017. The a.m. peak hour occurred between 7:00 and 8:00 and the p.m. peak hour occurred between 4:45 and 5:45 The thru volumes on Dixie were factored to 2020 using 0.5% annual growth and trip generation for 128 apartments on Moorman Road were included. The volumes for the KY 841 interchange were provided by Louisville Metro Traffic Engineering. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes. The Appendix contains the full count data.

Figure 2. Existing Peak Hour Volumes

FUTURE CONDITIONS

The project completion date is 2021. An annual growth rate of 0.5 percent was applied to the 2020 volumes. This was determined by the historical growth at KYTC stations 512. **Figure 3** displays the 2021 No Build peak hour volumes.

Figure 3. 2021 No Build Peak Hour Volumes

TRIP GENERATION

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 10th Edition contains trip generation rates for a wide range of developments. The land use "Super Convenience Market/Gas Station" (960) was used for the 16 pumps. The trip generation results are listed in **Table 1**. The trips were assigned to the highway network with the percentages shown in **Figure 5** shows the trips generated by this development and distributed throughout the road network during the peak hours. **Figure 6** displays the individual turning movements for the peak hours when the development is completed.

Table 1. Peak Hour Trips Generated by Site North

	A.M.	Peak I	lour	P.M.	Peak I	lour
Land Use	Trips	In	Out	Trips	In	Out
Gas Station with Convenience Market (16 fueling locations)	367	184	183	449	225	224
Pass-by Trips	205	103	102	279	140	139
New Trips	162	81	81	170	85	85
3 Diesel Only Pumps Truck fueling locations	36	18	18	36	18	18

Figure 5. Peak Hour Trips Generated by Site

Figure 6. 2021 Build Peak Hour Volumes

ANALYSIS

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service". Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst. Level of Service results depend upon the facility that is analyzed. In this case, the Level of Service is based upon the total delay experienced for lanes at stop-controlled intersections.

To evaluate the impact of the proposed development, the vehicle delays at the intersections were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 6th edition. Future delays and Level of Service were determined for the intersections using the HCS Streets (version 7.8.5) software. The delays and Level of Service are summarized in **Table 2**. Trip generation was used for the volumes on the existing opposing driveways.

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Approach	2020	2021	2021	2020	2021	2021
Дрргоасп	Existing	No Build	Build	Existing	No Build	Build
Dixie Highway at Flowervale Lane	В	В	В	С	С	С
	18.3	18.3	19.8	25.4	25.4	33.9
Moorman Road Eastbound	D 46.8	D 46.8	D 45.3	E 67.2	E 67.1	E 56.6
	40.8 D	40.8 D	45.5 D	67.2 E	67.1 E	50.0 E
Flowervale Lane Westbound	46.4	46.3	46.6	60.0	60.0	60.4
Divis I limbered Northborned	В	В	В	В	В	В
Dixie Highway Northbound	17.0	17.2	18.7	14.3	14.4	19.7
Dixie Highway Southbound	Α	Α	Α	С	С	D
	7.2	7.3	7.5	24.8	24.9	36.6
Dixie Highway at KY 841 Eastbound Ramp		0				_
KY 841 Eastbound Ramp Eastbound	C 18.8	C 18.9	C 19.6	F 79.2	F 80.7	F 87.4
	C	C	C	79.2 D	D	07.4 D
Dixie Highway at KY 841 Westbound Ramp	27.5	27.8	30.6	36.2	36.4	37.7
I// 044 Month aread Down Month aread	D	D	D	D	D	D
KY 841 Westbound Ramp Westbound	47.7	47.7	47.1	50.4	50.5	51.0
Dixie Highway Northbound	В	В	С	В	В	В
	18.4	18.8	22.9	17.1	17.2	19.8
Dixie Highway Southbound	C	C	C	D 42.7	D	D
Dixie Highway at Entrance	28.1	28.6	31.7	42.7	43.3	44.5
			С			Е
Thornton's Entrance Eastbound			24.9			45.1
RaceTrac Entrance Westbound			D			Е
Nace trac Entrance Westbound			34.7			46.1
Dixie Highway Northbound			В			С
			10.8			20.8
Dixie Highway Southbound			C 17.6			C 15.5
Flowervale Lane at Entrance			17.0			13.3
			Α			Α
Flowervale Lane Eastbound (Left)			8.1			7.9
Flowervale Lane Westbound (Left)			Α			Α
Tiowervale Lane Westbound (Len)			7.6			8.2
Entrance Northbound			В			C
			13.6 C			19.8
Dairy Queen Entrance Southbound			15.3			B 10.7

Key: Level of Service, Delay in seconds per vehicle

The entrances were evaluated for turn lanes using the Kentucky Transportation Cabinet <u>Highway Design Guidance Manual</u> dated March, 2017. The Kentucky Transportation Cabinet policy requires analysis of 2031, or ten years beyond completion. An annual growth rate of 0.5 percent was applied to the 2021 No Build for the 2031 No Build volumes shown in **Figure 7**. The site volumes were added for the 2031 Build volumes in **Figure 8**. The resulting delays and Level of Service are summarized in **Table 3**. Using the volumes in Figure 8, a northbound right-turn lane will be required at the entrance on Dixie Highway.

Figure 7. 2031 No Build Peak Hour Volumes

Figure 8. 2031 Build Peak Hour Volumes

Table 3. 2031 Peak Hour Level of Service

		A.M.			P.M.	
Approach	2020	2031	2031	2020	2031	2031
	Existing	No Build	Build	Existing	No Build	Build
Dixie Highway at Flowervale Lane	B	B	B	C	C	D
	18.3	19.2	20.7	25.4	26.8	36.7
Moorman Road Eastbound	D	D	D	E	E	E
	46.8	46.2	44.8	67.2	66.5	55.9
Flowervale Lane Westbound	D	D	D	E	E	E
	46.4	46.2	46.4	60.0	59.6	61.1
Dixie Highway Northbound	B	B	C	B	B	C
	17.0	18.8	20.5	14.3	15.4	21.3

		A.M.			P.M.	
Approach	2020	2031	2031	2020	2031	2031
Approach	Existing	No Build	Build	Existing	No Build	Build
Dixie Highway Southbound	Α	Α	Α	С	С	D
	7.2	7.5	8.0	24.8	26.8	40.9
Dixie Highway at KY 841 Eastbound Ramp						
KY 841 Eastbound Ramp Eastbound	С	С	С	F	F	F
	18.8	19.9	20.8	79.2	104.5	114.1
Dixie Highway at KY 841 Westbound Ramp	C	С	С	D	D	D
	27.5	31.6	33.8	36.2	42.8	43.0
KY 841 Westbound Ramp Westbound	D	D	D	D 50.4	D 54.4	D
·	47.7	47.4 C	46.8 C	50.4	51.4 C	51.4 C
Dixie Highway Northbound	B 18.4	24.2	27.9	B 17.1	24.7	25.1
	16.4 C	24.2 C	27.9 C	17.1 D	24.7 F	25.1 F
Dixie Highway Southbound	28.1	33.2	34.1	42.7	56.0	56.0
Dixie Highway at Entrance	20.1	33.2	34.1	72.1	30.0	30.0
			D			F
Thornton's Entrance Eastbound			28.4			53.8
D T E			Е			Е
RaceTrac Entrance Westbound			39.7			45.4
Divis Highway Northhaund			В			С
Dixie Highway Northbound			11.1			23.0
Dixie Highway Southbound			С			С
			18.9			16.4
Flowervale Lane at Entrance						
Flowervale Lane Eastbound (Left)			Α			Α
2010			8.1			8.0
Flowervale Lane Westbound (Left)			Α			Α
(==,			7.6			8.2
Entrance Northbound			B			C 21.4
			13.9 C			21.4 B
Dairy Queen Entrance Southbound			15.7			10.9
			15.7			10.9

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2031, there will be an impact to the existing highway network. A right-turn lane will be required at the entrance on Dixie Highway.

APPENDIX

Traffic Counts

KIPDA

11520 Commonwealth Drive Louisville, KY 40299

File Name: US 31W & Moorman Rd

Site Code : Start Date : 1/25/2017 Page No : 1

								_								Pag	ge No	: 1			
			10.04144							ed- cars - tr	ucks - pe	dal bikes		,					D 1		
			US 31W rom North					wervale rom Ea					US 31W rom Sou					loorman From We			
Start Time	Right	Thru			App. Total	Right	Thru			App. Total	Right	Thru		U-Turns	App. Total	Right	Thru			App. Total	Int. Total
07:00 AM	11	169	11	0	191	74	10	10	0-141113	94	7	342	2	0-141113	351	1	3	21	0-141113	25	661
07:15 AM	10	192	10	ő	212	65	4	11	Ö	80	10	367	ō	ŏ	377	4	3	14	ŏ	21	690
07:30 AM	23	173	18	0	214	57	5	19	0	81	7	365	6	Ō	378	2	8	16	0	26	699
07:45 AM	10	173	22	0	205	37	10	18	0	65	6	283	2	0	291	5	5	16	0	26	587
Total	54	707	61	0	822	233	29	58	0	320	30	1357	10	0	1397	12	19	67	0	98	2637
08:00 AM	40	470	40		202	00	0	40		64	40	200			200		7	25		00	500
08:00 AM 08:15 AM	13 9	172 175	18 22	0	203 206	36 62	2	13 14	0	51 79	10 16	286 282	4	0	300 301	6	7 8	25 15	0	38 25	592 611
08:15 AM 08:30 AM	7	152	37	0	196	71	7	21	0	99	11	282 276	2	0	289	2	9	10	0	25	606
08:45 AM	8	150	30	0	188	53	7	21	0	81	19	250	1	0	270	4	7	13	0	24	563
Total	37	649	107	0	793	222	19	69	0	310	56	1094	10	0	1160	15	31	63	0	109	2372
	• •							-		0.01	-						• •	-			2012
09:00 AM	14	136	23	0	173	41	6	13	0	60	7	211	2	0	220	5	3	11	0	19	472
09:15 AM	12	149	17	0	178	22	5	8	0	35	13	184	2	0	199	7	4	6	0	17	429
09:30 AM	9	147	28	0	184	32	1	14	0	47	5	204	4	0	213	4	3	13	0	20	464
09:45 AM	11	128	16	0	155	30	4		0	42	11	201	2	0	214	3		15	0	23	434
Total	46	560	84	0	690	125	16	43	0	184	36	800	10	0	846	19	15	45	0	79	1799
10:00 AM	10	153	15	0	178	31	5	8	0	44	14	192	1	0	207	4	2	9	0	15	444
10:15 AM	12	137	13	0	162	31	3	13	Ō	47	3	187	Ó	Ō	190	4	5	11	0	20	419
10:30 AM	10	136	12	0	158	28	4	9	0	41	10	180	4	0	194	3	1	11	0	15	408
10:45 AM	9	150	16	0	175	13	5	8	0	26	10	183	4	0	197	2	3	12	0	17	415
Total	41	576	56	0	673	103	17	38	0	158	37	742	9	0	788	13	11	43	0	67	1686
11:00 AM	10	176	17	0	203	20	1	10	0	31	16	151	1	0	168	3	1	7	0	11	413
11:15 AM	14	157	14	0	185	30	Ó	16	0	46	13	172	0	0	185	6	2	14	0	22	438
11:30 AM	13	159	23	ő	195	31	4	14	0	49	10	193	1	ő	204	2	3	13	0	18	466
11:45 AM	13	157	24	ō	194	26	3	18	Ö	47	8	207	2	Ö	217	7	3	20	Ö	30	488
Total	50	649	78	0	777	107	8	58	0	173	47	723	4	0	774	18	9	54	0	81	1805
12:00 PM	12	213	16	0	241	26		44	0	38	16	186	7	0	209	3		40	0	441	502
12:00 PM	12	193	16	0	221	32	8	11 9	0	49	12	189	3	0	209	4	6	10 10	0	14 20	494
12:30 PM	20	175	23	0	218	29	6	17	0	52	12	204	1	0	217	4	7	15	0	26	513
12:45 PM	17	170	23	0	208	29	2	12	0	36	12	204	2	0	217	4	6	8	0	18	481
Total	61	751	76	0	888	109	17	49	0	175	52	784	13	0	849	15	20	43	0	78	1990
				_					-					-					-		
01:00 PM	14	197	21	0	232	28	2	3	0	33	13	215	3	0	231	2	7	19	0	28	524
01:15 PM	11	200	29	0	240	25	5	11	0	41	10	198	3	0	211	6	6	10	0	22	514
01:30 PM	6	144	23	0	173	24	4	8	0	36	17	197	0	0	214	2	9	15	0	26	449
01:45 PM	12	170 711	93	0	202 847	29 106	2	9	0	40	13	195 805	0	0	208 864	2	5	13 57	0	20 96	470
Total	43	/11	93	0	847	106	13	31	0	150	53	805	6	0	864	12	27	5/	0	96	1957

File Name : US 31W & Moorman Rd Site Code : Start Date : 1/25/2017 Page No : 2

										ed- cars - ti	rucks - pe	edal bikes									
			US 31V				Fle	owervale l	Ln				US 31W					oorman F			
			From No					From East					rom South					rom Wes			
Start Tim	e Righ	Thru	Left	U-Turns	App. Total	Right	Thru	Left l	J-Turns	App. Total	Right	Thru	Left U	J-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
02:00 PI				0	237	28	7	13	0	48	14	202	2	0	218	2	7	16	0	25	528
02:15 PI		216		0	258	19	2	12	0	33	10	226	3	0	239	1	4	16	0	21	551
02:30 PI	VI 15			0	305	31	4	12	0	47	13	217	4	0	234	5	15	12	0	32	618
02:45 PI			40	0	306	32	6	9	0	47	14	218	7	0	239	3	7	7	0	17	609
Tota	al 76	905	125	0	1106	110	19	46	0	175	51	863	16	0	930	11	33	51	0	95	2306
03:00 PI	vi 15	290	36	0	341	31	10	14	0	55	13	196	1	0	210	5	5	20	0	30	636
03:15 PI				0	357	22	2	10	0	34	27	219	4	0	250	10	8	17	0	35	676
03:30 PI			56	0	385	26	4	15	0	45	21	245	4	0	270	15	15	21	0	51	751
03:45 PI	VI 14			0	388	44	6	28	0	78	21	259	2	0	282	1	11	20	0	32	780
Tota	al 72	1230	169	0	1471	123	22	67	0	212	82	919	11	0	1012	31	39	78	0	148	2843
04:00 PI	VI 19			0	399	39	9	31	0	79	15	242	5	0	262	6	15	10	0	31	771
04:15 PI	VI 13	380	50	0	443	32	6	18	0	56	23	302	5	0	330	6	6	21	0	33	862
04:30 PI				0	454	36	6	20	0	62	17	283	4	0	304	10	21	17	0	48	868
04:45 PI				0	441	35	8	17	0	60	25	318	0	0	343	4	18	13	0	35	879
Tota	al 76	1446	215	0	1737	142	29	86	0	257	80	1145	14	0	1239	26	60	61	0	147	3380
05:00 PI	M 22	397	59	0	478	54	10	20	0	84	17	314	4	0	335	2	11	10	0	23	920
05:15 PI	VI 26	427	67	0	520	33	5	27	0	65	31	269	3	0	303	5	8	11	0	24	912
05:30 PI	VI 18	396	55	0	469	48	5	24	0	77	13	304	3	0	320	9	6	18	0	33	899
05:45 PI	VI 18	344	65	0	427	47	6	15	0	68	23	227	0	0	250	1	12	17	0	30	775
Tota	al 84	1564	246	0	1894	182	26	86	0	294	84	1114	10	0	1208	17	37	56	0	110	3506
06:00 PI	VI 16		45	0	367	44	1	26	0	71	15	236	2	0	253	6	10	18	0	34	725
06:15 PI			47	0	343	41	3	30	0	74	19	204	1	0	224	2	10	8	0	20	661
06:30 PI				0	323	41	7	7	0	55	12	189	4	0	205	4	7	18	0	29	612
06:45 PI				0	272	34	6	19	0	59	16	172	4	0	192	2	6	12	0	20	543
Tota	al 71	1065	169	0	1305	160	17	82	0	259	62	801	11	0	874	14	33	56	0	103	2541
Grand Total				0	13003	1722	232	713	0	2667	670	11147	124	0	11941	203	334	674	0	1211	28822
Apprch 9				0		64.6	8.7	26.7	0		5.6	93.4	1	0		16.8	27.6	55.7	0		
Total 9				0	45.1	6	0.8	2.5	0	9.3	2.3	38.7	0.4	0	41.4	0.7	1.2	2.3	0	4.2	
car			1459	0	12490	1702	225	685	0	2612	634	10642	117	0	11393	184	323	640	0	1147	27642
% car			98.6	0	96.1	98.8	97	96.1	0	97.9	94.6	95.5	94.4	0	95.4	90.6	96.7	95	0	94.7	95.9
truck				0	512	20	7	27	0	54	35	504	7	0	546	19	11	34	0	64	1176
% truck				0	3.9	1.2	3	3.8	0	2	5.2	4.5	5.6	0	4.6	9.4	3.3	5	0	5.3	4.1
pedal bike				0	1	0	0	. 1	0	1	1	1	0	0	2	0	0	0	0	0	4
% pedal bike	s C	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0	0	0	0	0

Louisville Metro Government Department of Public Works Traffic Engineering & Operations

File Name: Dixie Hwy & KY 841 WB Ramps

Site Code : Start Date : 3/26/2015 Page No : 3

			Dixie Hw rom Nor					1 WB Of From Ea					Dixie Hw rom Sou					1 WB Or			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From (7:00 AM	to 09:45	AM - P	eak 1 of 1																
Peak Hour for Ent	tire Inters	ection Be	gins at 0	7:00 AM	1																
07:00 AM	1	132	0	0	133	39	0	131	0	170	0	110	74	0	184	0	0	0	0	0	487
07:15 AM	3	128	0	0	131	48	0	153	0	201	0	110	61	0	171	0	0	0	0	0	503
07:30 AM	3	117	0	0	120	36	0	136	0	172	0	100	66	0	166	0	0	0	0	0	458
07:45 AM	2	110	0	0	112	55	0	104	0	159	0	107	56	0	163	0	0	0	0	0	434
Total Volume	9	487	0	0	496	178	0	524	0	702	0	427	257	0	684	0	0	0	0	0	1882
% App. Total	1.8	98.2	0	0		25.4	0	74.6	0		0	62.4	37.6	0		0	0	0	0		
PHF	.750	.922	.000	.000	.932	.809	.000	.856	.000	.873	.000	.970	.868	.000	.929	.000	.000	.000	.000	.000	.935
Peak Hour Analys Peak Hour for Ent 01:00 PM 01:15 PM 01:30 PM 01:45 PM Total Volume						54 56 52 55 217	0 0 0 0	93 100 80 92 365	0 0 0 0	147 156 132 147	0 0 0 0	118 149 145 125 537	19 25 25 33 102	0 0 0 0	137 174 170 158 639	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	479 504 493 503 1979
% App. Total	4.2	95.8	0	0		37.3	0	62.7	0		0	84	16	0		0	0	0	0		
PHF	.667	.945	.000	.000	.957	.969	.000	.913	.000	.933	.000	.901	.773	.000	.918	.000	.000	.000	.000	.000	.982
Peak Hour Analys Peak Hour for Ent 05:00 PM						106	0	271	0	377	0	183	48	0	231	0	0	0	0	0	901
05:15 PM	12	270	0	0	282	127	0	220	0	347	0	190	42	0	232	0	0	0	0	0	861
05:30 PM	10	262	0	Ō	272	105	Ō	215	Ō	320	Ö	178	41	0	219	ō	0	0	Ō	0	811
05:45 PM	12	219	0	0	231	117	0	226	0	343	0	173	31	0	204	0	0	0	0	0	778
Total Volume	46	1032	0	0	1078	455	0	932	0	1387	0	724	162	0	886	0	0	0	0	0	3351
% App. Total	4.3	95.7	0	0		32.8	0	67.2	0		0	81.7	18.3	0		0	0	0	0		
PHF	.958	.918	.000	.000	.920	.896	.000	.860	.000	.920	.000	.953	.844	.000	.955	.000	.000	.000	.000	.000	.930

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 09/03/201 through 09/05/2019

 Site names:
 056C21
 Seasonal Factor Grp:
 3

 County:
 Jefferson
 Daily Factor Grp:
 3

 Funct Class:
 U Principal Arterial - Other
 Axle Factor Grp:
 14

 Location:
 056-US-0031W -121@ .153 From: ??? To: ???
 Growth Factor Grp:
 14

[Sı	ın, Sep 1,	2019	M	on, Sep 2,	2019	Τι	ле, Sep 3,	2019	We	ed, Sep 4,	2019	Th	u, Sep 5,	2019	F	ri, Sep 6,	2019	S	at, Sep 7,	2019
	Road	Pos	Neg	Road	Pos	Neg	Road	Pos	Neg	Road	Pos	Neg	Road	Pos	Neg	Road	Pos	Neg	Road	Pos	Neg
00:00										143	143		163	163							
01:00										100	100		149	149							
02:00										139	139		104	104							
03:00										108	108		98	98							
04:00										162	162		201	201							
05:00										305	305		284	284							
06:00										537	537		552	552							
07:00										701	701		722	722							
08:00										663	663		703	703							
09:00										670	670		567	567							
10:00										557	557		527	527							
11:00							627	627		603	603										
12:00							676	676		618	618										
13:00							686	686		640	640										
14:00							840	840		897	897										
15:00							1,225	1,225		1,181	1,181										
16:00							1,332	1,332		1,330	1,330										
17:00							1,335	1,335		1,328	1,328										
18:00							985	985		1,013	1,013										
19:00							690	690		645	645										
20:00							594	594		558	558										
21:00							397	397		444	444										
22:00							275	275		291	291										
23:00							215	215		234	234										
Total							9,877	9,877		13,867	13,867		4,070	4,070							
AM Peak Vol										701	701										
AM Peak Fct										1	1										
AM Peak Hr										7: 00	7: 00										
PM Peak Vol							1,335	1,335		1,330	1,330										
PM Peak Fct							1	1		1	1										
PM Peak Hr							17: 00	17: 00		16: 00	16: 00										
Seasonal Fct							.961	.961		.961	.961		.961	.961							
Daily Fct							.944	.944		.944	.944		.922	.922							
Axle Fct							.481	.481		.481	.481		.481	.481							
Pulse Fct							2.000	2.000		2.000	2.000		2.000	2.000							

Created 06/10/2020 6:10 AM ROAD AADT 12,098 NDIR AADT 0 PDIR AADT 12,098 DV03S: Page 1 of 1

HCS Reports

		HCS	7 Sig	nalize	d Inte	ersect	ion R	esul	ts Sur	nmar	y				
General Inform	nation							10	ntersect	tion Infe	ormatic	n		411	يا مل
Agency		Diane B. Zimmerma	an Traffi	c Engin	eering				Ouration,	h	0.250			4+4	
Analyst		DBZ		Analys	is Date	6/3/20	20	A	rea Typ	е	Other		<i>≛</i>		
Jurisdiction				Time F	Period	AM Pe	ak	F	PHF		0.94		♦ -♦	*	÷
Urban Street		Dixie Highway		Analys	is Year	2020		A	nalysis	Period	1> 7:0	00	7		
Intersection		Flowervale		File Na	ame	Flower	vale AN	Л 20.xu	IS					5++2	*
Project Descrip	tion	RaceTrac											- B	4144	\$+ C
Demand Infor	mation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				99	19	26	58	29	233	14	1377	30	61	718	64
											1011				
Signal Informa	ation							$\overline{}$	2			↑			
Cycle, s	120.0	Reference Phase	2	1	15	1243.		~	ē				V		
Offset, s	0	Reference Point	End		,)		<u></u>					1	2	3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.0	73.1 5.1	21.2 3.6	0.0	0.0	_				-5-
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	
. Oros Wode	, ixou	Simula Gup 14/0	Oil		0.0	10.0	1.0	0.0	10.0	0.0					
Timer Results				EBI		EBT	WBI		WBT	NBI		NBT	SBI		SBT
	ed Phase Jumber Duration, s e Period, (Y+R c), s				_	4	VVD	-	8	5	-	2	1	-	6
	е			_	_	_				_	_		_	_	
Case Number				_	_	8.0		-	7.0	1.1	_	3.0	1.1	-	4.0
					-	27.8		_	27.8	8.8	-	80.1	12.1	-	83.3
	ge Period, (Y+R c), s				\rightarrow	6.6		_	6.6	6.5	-	7.0	6.5	_	7.0
	Allow Headway (<i>MAH</i>), s				-	5.2		_	5.2	5.0	$\overline{}$	0.0	5.0	-	0.0
Queue Clearan	ie Clearance Time (g s), s					13.1			19.3	2.4			3.9		
Green Extension	n Time	(ge), s				2.5		\perp	1.9	0.0		0.0	0.3		0.0
Phase Call Pro	bability					1.00			1.00	0.39	9		0.93	3	
Max Out Proba	bility				(0.07			0.36	0.00)		0.00)	
Movement Gro	ement Group Results oach Movement				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow), veh/h			153			93	248	15	1465	32	79	513	498
	<u> </u>	ow Rate (s), veh/h/	ln		1488			1515	1585	1795	1781	1598	1795	1870	1816
Queue Service		, ,,			4.9			0.0	17.3	0.4	32.8	1.0	1.9	10.2	11.3
Cycle Queue C		- ,,			11.1			6.3	17.3	0.4	32.8	1.0	1.9	10.2	11.3
Green Ratio (g		c mile (g c), o			0.18			0.18	0.22	0.63	0.61	0.61	0.66	0.64	0.64
					314			318	354	390	2170	973	266	1190	1155
Capacity (c), v		atio (V)			0.488				0.700	-				_	_
Volume-to-Cap			`					0.291	-	-	0.675		0.297	0.431	0.431
	· /·	/In (90 th percentile			176.2			111.4	267.7	6.1	417.7	14.4	30.3	129.1	138.1
		eh/ln (90 th percent		\vdash	6.9			4.4	10.5	0.2	16.4	0.6	1.2	5.1	5.5
		RQ) (90 th percent	tile)		0.00			0.37	0.88	0.05	0.42	0.07	0.14	0.13	0.14
					45.1			43.1	42.9	8.8	15.6	9.3	12.8	5.4	6.3
	form Delay (d 1), s/veh remental Delay (d 2), s/veh				1.7			0.7	4.4	0.1	1.7	0.1	0.7	0.9	0.9
	al Queue Delay (d 3), s/veh				0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	rol Delay (d), s/veh				46.8			43.8	47.3	8.8	17.3	9.4	13.5	6.3	7.2
Level of Service	el of Service (LOS)				D			D	D	Α	В	Α	В	Α	Α
Approach Dela	roach Delay, s/veh / LOS			46.8	3	D	46.4		D	17.0)	В	7.2		Α
Intersection De	rsection Delay, s/veh / LOS					18	.3						В		
	nodal Results				ER			W/R			NR			SB	
Multimodal Re		/1.08		2.46	EB	В	2.31	WB	В	1.89	NB	В	1.66	SB	В

Copyright $\ensuremath{\texttt{@}}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:17:57 PM

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmar	y				
General Inform	nation								Intersec	tion Inf	ormatio	n		411	Ja lu
Agency		Diane B. Zimmerma	an Traffi	c Engin	eering			1	Duration	, h	0.250			4+4	
Analyst		DBZ		Analys	is Date	6/3/20	20		Area Typ	е	Other		±, →		
Jurisdiction				Time F	Period	AM P	eak	1	PHF		0.94		♦♦		→
Urban Street		Dixie Highway		Analys	is Year	2021	No Build	i l	Analysis	Period	1> 7:0	00	3		
Intersection		Flowervale		File Na	ame	Flowe	rvale Al	л 21 N	B.xus					5 f f f	
Project Descript	tion	RaceTrac											1	4144	14
Demand Inform	nation				EB			WE	1		NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	1	T	R
				100	19	26	58	29	_	14	1384		61	722	64
Demand (v), v	en/m			100	19	20	30	29	234	14	1304	30	01	122	04
Signal Informa	tion		,		7	1211		1 2	2	\top	l	Ĺ			_
Cycle, s	120.0	Reference Phase	2		7		51	, ⊨	Ĕ			>	Ψ.		↔
Offset, s	0	Reference Point	End	Green	23	3.2	73.0	21.3	3 0.0	0.0		1	2	3	¥ 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	5.1	3.6	0.0	0.0					→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	- 6
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phase	e			_	_	4	_	_	8	5		2	1	_	6
Case Number				_	-	8.0	-	-	7.0	1.1	_	3.0	1.1	_	4.0
Phase Duration	<u>, </u>			_	_	27.9	_	_	27.9	8.8	-	80.0	12.1	-	83.3
Change Period,		,,			_	6.6		_	6.6	6.5	$\overline{}$	7.0	6.5	-	7.0
Max Allow Head						5.2		_	5.2	5.0	$\overline{}$	0.0	5.0	-	0.0
Queue Clearan	ce Time	e (g s), s				13.2		_	19.4	2.4			3.9	-	
Green Extensio	n Time	(g e), S			\perp	2.6		\perp	1.9	0.0		0.0	0.3		0.0
Phase Call Prob	bability					1.00		_	1.00	0.39			0.93	3	
Max Out Probat	bility					80.0			0.37	0.00)		0.00)	
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F), veh/h			154			93	249	15	1472	32	79	516	501
		ow Rate (s), veh/h/l	n		1487			1516	_	1795	1781	1598	1795	1870	1816
Queue Service		. ,,			5.0			0.0	17.4	0.4	33.1	1.0	1.9	10.2	11.3
Cycle Queue Cl					11.2			6.3	17.4	0.4	33.1	1.0	1.9	10.2	11.3
Green Ratio (g.		- /o (g ·), 0			0.18			0.18		0.63	0.61	0.61	0.65	0.64	0.64
Capacity (c), v					315			319	355	388	2167	972	264	1188	1154
Volume-to-Capa		atio (X)			0.490			0.290	_	0.038	0.679	0.033	0.299	0.434	0.434
<u>.</u>		/In (90 th percentile))		177.3			111.4	_	6.1	421.6	14.4	30.3	129.3	138.5
		eh/ln (90 th percenti			7.0			4.4	10.6	0.2	16.6	0.6	1.2	5.1	5.5
	. ,.	RQ) (90 th percent	,		0.00			0.37	0.88	0.05	0.42	0.07	0.14	0.13	0.14
					45.1			43.1	42.9	8.8	15.7	9.4	13.0	5.4	6.3
	iform Delay (d ₁), s/veh remental Delay (d ₂), s/veh							0.7	4.4	0.1	1.7	0.1	0.7	0.9	0.9
Initial Queue De					0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (46.8			43.8	47.3	8.9	17.4	9.4	13.6	6.3	7.2
Level of Service					D			D	D	А	В	Α	В	A	A
	proach Delay, s/veh / LOS				3	D	46.3		D	17.2		В	7.3		Α
Intersection Del							3.3						В		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.46	3	В	2.31		В	1.89)	В	1.66	3	В
Bicycle LOS Sc	ore / LO	OS		0.74		Α	1.05	5	Α	1.74	1	В	1.23	3	Α

Diane B. Zimmerman

Copyright © 2020 University of Florida, All Rights Reserved.

Traffic Engineering, LLC.

HCS™ Streets Version 7.8.5

Page 17

		HCS	7 Sig	nalize	d Inte	ersec	tion R	Result	ts Sur	nmar	у				
Canaral Informati	i							1.		lian Ind	4i -			4 444	s. U
General Informati	_	Diana B. Zimmanna	T66	- Fi-				-	ntersec		,		- 1	411	
Agency	$\overline{}$	Diane B. Zimmerma	ıı ıraffı	4		lum 44	2000	-	Duration,		0.250		- 2		
Analyst	\rightarrow	DBZ		-		Jun 16		-	Area Typ	e	Other		-		•
Jurisdiction		B		Time F		AM Pe		<u>_</u>	PHF	<u> </u>	0.94		- 1		*
Urban Street	$\overline{}$	Dixie Highway				2021 I			Analysis	Period	1> 7:0)0	_ E		
Intersection	\rightarrow	Flowervale		File Na	ame	Flowe	rvale AN	И 21 В.	xus				-	ጎተተሰ	
Project Description	n	RaceTrac												NINT	P. D.
Demand Informat	tion				EB			WB			NB			SB	
Approach Moveme				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/				100	19	26	128	29	251	14	1401		103	726	64
Demand (v), ven	/11			100	10	20	120	20	201	17	1401	30	103	120	04
Signal Information	n				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				R	\top	П	†			
	20.0	Reference Phase	2	1	21,	7242		3	€		•	`_	❤		
	0	Reference Point	End	C)	2.0	71.2			0.0		1	2	3	Y
	No	Simult. Gap E/W	On	Green Yellow		0.0	71.3 5.1	22.7 3.6	0.0	0.0	-				\(\rightarrow\)
	\rightarrow	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI	L	WBT	NBI	.	NBT	SBI	.	SBT
Assigned Phase					\neg	4			8	5		2	1	\neg	6
Case Number						8.0			7.0	1.1		3.0	1.1		4.0
Phase Duration, s	se Duration, s					29.3			29.3	8.8		78.3	12.4	-	81.9
Change Period, ()	se Duration, s nge Period, (Y+R c), s					6.6			6.6	6.5		7.0	6.5		7.0
Max Allow Headwa	ay (N	/AH), s			\neg	5.2		\neg	5.2	5.0	\neg	0.0	5.0	\neg	0.0
Queue Clearance					-	12.9			20.5	2.4			5.4		
Green Extension T					\neg	3.1		\neg	2.1	0.0	\neg	0.0	0.5	\neg	0.0
Phase Call Probab		, , , , , , , , , , , , , , , , , , , ,			-	1.00			1.00	0.39			0.99	,	
Max Out Probabilit	ty				(0.10			0.56	0.00			0.00		
Movement Group	Res	ults			EB			WB			NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Moveme	ent			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow Rate), veh/h			154			167	267	15	1490	32	131	508	493
		w Rate (s), veh/h/l	n		1497			1428	1585	1795	1781	1598	1795	1870	1817
Queue Service Tim		. , , ,			0.0			2.0	18.5	0.4	35.0	1.0	3.4	9.2	10.3
Cycle Queue Clear					10.9			13.0	18.5	0.4	35.0	1.0	3.4	9.2	10.3
Green Ratio (g/C)		, - ,,			0.19			0.19	0.24	0.61	0.59	0.59	0.64	0.62	0.62
Capacity (c), veh/					333			324	378	391	2116	949	256	1167	1134
Volume-to-Capacit		tio (X)			0.463			0.515		0.038	0.704	0.034	0.510	0.435	-
		In (90 th percentile)			174.5			188.2	-	6.4	448.9	15.1	58.1	117.2	125.
		h/ln (90 th percenti			6.9			7.5	11.2	0.3	17.7	0.6	2.3	4.6	5.0
		RQ) (90 th percent			0.00			0.62	0.93	0.05	0.45	0.07	0.26	0.12	0.13
			,		43.8			44.8	41.9	9.4	17.0	10.1	15.6	5.0	5.8
	form Delay (d 1), s/veh remental Delay (d 2), s/veh							1.8	4.8	0.1	2.0	0.1	1.7	0.9	0.9
	al Queue Delay (d ²), s/veh							0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d),					0.0 45.3			46.6	46.7	9.4	19.0	10.1	17.3	5.8	6.7
	el of Service (LOS)				D			D	D	A	В	В	В	A	A
	roach Delay, s/veh / LOS					D	46.6		D	18.7		В	7.5		Α
11	roach Delay, s/veh / LOS rsection Delay, s/veh / LOS						9.8						В		
	ection Delay, s/veh / LOS														
	modal Results														
Multimodal Resul Pedestrian LOS So				2.46	EB	В	2.30	WB	В	1.89	NB	В	1.66	SB	В

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:17:57 PM

		нсѕ	7 Sig	nalize	d Inte	ersec	tion F	Resu	lts Sur	nmar	у				
0	- 41								14	·· 1 <i>e</i>	41			4744	V T
General Inform	nation	la: 5.7	T 60						Intersec		_		- 1	111	P (
Agency		Diane B. Zimmerma	an Traffi	_		1		$\overline{}$	Duration		0.250		- 2		
Analyst		DBZ				Jun 18		_	Area Typ	е	Other				
Jurisdiction				Time F		AM Pe			PHF		0.94				7
Urban Street		Dixie Highway				2031 I			Analysis	Period	1> 7:0	00	- T		2
Intersection		Flowervale		File Na	ame	Flowe	rvale Al	M 31 N	IB.xus					5 † † ሶ	
Project Descrip	tion	RaceTrac											1	1144	F (
Demand Inforr	notion				EB			WE	.		NB			SB	
				-	T	R	+ -	T	_		T	R	+ -	T	R
Approach Move				105	20	27	61	31	R	15	+	-	64	758	68
Demand (v), v	en/n			105	20	21	01	31	246	15	1455	32	64	/50	00
Signal Informa	tion							$\overline{}$	5_		П	↑			
Cycle, s	120.0	Reference Phase	2	1	E	7243		3	€		•	`_	₩.		
Offset, s	0	Reference Point	End	0	()	10.4	70.4			100		1	2	3	¥ 4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.0	72.1 5.1	3.6	_	0.0					→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	_	0.0		5	6	7	8
, cree meas	Tintou	ominana cap rac	0.11		10.0	10.0	11.0	10.0	10.0	10.0					
Timer Results				EBL		EBT	WB	L	WBT	NBI		NBT	SBI	-	SBT
Assigned Phase	<u> </u>					4			8	5		2	1		6
Case Number	e Number se Duration, s					8.0			7.0	1.1		3.0	1.1		4.0
	se Number se Duration, s unge Period, (Y+R c), s					28.8		\neg	28.8	9.0		79.1	12.1		82.3
		c). S				6.6			6.6	6.5	-	7.0	6.5	-	7.0
Max Allow Head	, ,	,,				5.2		_	5.2	5.0	-	0.0	5.0	_	0.0
Queue Clearan		,.				13.8			20.2	2.4	-	0.0	4.0	\rightarrow	0.0
Green Extension		(-)				2.7		_	1.9	0.0	_	0.0	0.3	_	0.0
Phase Call Pro		(90),0				1.00			1.00	0.41	-	0.0	0.94	-	0.0
Max Out Proba					_	0.10		\neg	0.48	0.00	_		0.00	_	
					ED			NA/ED			NID			0.0	
Movement Gro	•	sults			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I		·		\vdash	162		_	98	262	16	1548	34	83	542	527
		ow Rate (s), veh/h/l	n		1485			1514		1795	1781	1598	1795	1870	1816
Queue Service					5.2		_	0.0	18.2	0.4	36.8	1.0	2.0	10.8	12.1
Cycle Queue C		e iime (g c), s			11.8			6.6	18.2	0.4	36.8	1.0	2.0	10.8	12.1
Green Ratio (g					0.18			0.18	_	0.62	0.60	0.60	0.65	0.63	0.63
Capacity (c), v					325			330	367	368	2140	960	243	1173	1139
Volume-to-Capa					0.497			0.297	_	0.043	0.723	0.035	0.341	0.462	0.463
		/In (90 th percentile)			183.5			116.8	_	6.7	466.8	15.8	33.6	131.1	141.4
	, , ,	eh/ln (90 th percenti			7.2			4.6	11.1	0.3	18.4	0.6	1.3	5.2	5.7
		RQ) (90 th percent	ile)		0.00			0.38		0.05	0.47	0.07	0.15	0.13	0.14
Uniform Delay	` ''				44.6			42.5		9.2	16.9	9.8	14.8	5.4	6.3
Incremental De					1.7			0.7	4.9	0.1	2.2	0.1	0.9	1.0	1.0
Initial Queue De					0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (46.2			43.2	_	9.3	19.1	9.8	15.7	6.4	7.3
Level of Service					D			D	D	Α	В	A	В	A	A
Approach Delay	, ,			46.2	2	D	46.2	2	D	18.8	3	В	7.5		Α
Intersection De	lay, s/ve	eh / LOS				19	9.2						В		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.46	-	В	2.30	_	В	1.89	-	В	1.66	-	В
Bicycle LOS So	ore / LC	OS		0.75		Α	1.08	8	Α	1.81		В	1.27	7	Α

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:17:57 PM

		HCS	7 Sig	nalize	d Int	ersec	tion R	Resul	lts Su	nmar	у				
General Inform	nation	I						$\overline{}$			0.250 Other 0.94 riod 1>7:00 NB SB L T R L T 15 1472 32 106 762 NBL NBT SBL S 5 2 1 1.1 3.0 1.1 4				
Agency		Diane B. Zimmerma	an Traff					\rightarrow		,	-		-		
Analyst		DBZ								e		r	->		
Jurisdiction						$\overline{}$		\rightarrow			-		- * - *		
Urban Street		Dixie Highway		_				_		Period	1> 7:	00	2		
Intersection		Flowervale		File Na	ame	Flowe	rvale AN	И 31 B	.xus				SB R L T 32 106 762 NBT SBL 2 1 3.0 1.1 7.4 12.6 7.0 6.5 0.0 5.6 0.0 0.5 0.99 0.00		
Project Descrip	tion	RaceTrac			Time Period AM Peak PHF 0.94 Analysis Year 2031 Build Analysis Period 1>7:00 File Name Flowervale AM 31 B.xus Flowervale AM 31										
Demand Inform	nation				EB			WE	3	1	NB			SB	
Approach Move	ement			L		□ R	L	_		L		R		_	Т
Demand (v), v				_	-	_	-	-	\rightarrow	-	_	NB SB T R L T T 1472 32 106 762 NBT SBL 2 1 3.0 1.1 77.4 12.6 8 7.0 6.5 0.0 5.6 0.0 0.5 0.99 0.00	-		
												NB SB T R L T T T T T T T T T T T T T T T T T			
Signal Informa		D (D)		ł	1			3	\succeq	Ation, h O.250 a Type Other O.94 lysis Period NB R L T R L T R 263 15 1472 32 106 7 O.0 O.0 O.0 O.0 O.0 O.0 O.0	7				
Cycle, s	120.0	Reference Phase	2		5		50	7 R	6.1			1	Y_2	3	\prec
Offset, s	0	Reference Point	End	Green	2.5	3.6			5 0.0	NB SB	,				
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5		_				0.250 Other 0.94 iod 1>7:00 NB SB L T R L T 15 1472 32 106 762 NBL NBT SBL SE 5 2 1 6 1.1 3.0 1.1 4. 9.0 77.4 12.6 81 6.5 7.0 6.5 7. 5.0 0.0 0.0 5.0 0. 2.4 5.6 0.0 0.0 0.5 0. 0.41 0.99 0.00 NB SB	7			
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	
Timer Results				EDI		EDT	\A/RI		WPT	NIDI		NDT	CDI		CB.
Assigned Phase	<u> </u>			EDI	-		WDI	-		_	-		_	-	
Case Number					+			\rightarrow		_			_		
Phase Duration					_			_			-			3	
Change Period		c) s								_	-			$\overline{}$	
Max Allow Head		,·		_			_	_			_			_	
Queue Clearan				_	+		_	\rightarrow		_	-	0.0		$\overline{}$	0.0
Green Extension		(-)		_	_		_	_		_	-	0.0		_	0.0
Phase Call Pro		(9 0), 3		_	_		_	+		_	\rightarrow	0.0		$\overline{}$	0.0
Max Out Proba					_			_	0.69					_	
Movement Gro		sults								_		_		1	
Approach Move				_	_		R L T R L T R L T F F F F F F F F F F F F F F F F F F								
Assigned Move				7	_	14	3	_		_		_	<u> </u>		_
Adjusted Flow I		<i>'</i>		_	_		_	-	_	_	_				-
· ·		ow Rate (s), veh/h/l	ln		T										
Queue Service				_			_	_	263	-					
Cycle Queue C		e Time (g ε), s			11.5			13.4	_	_	T R L T SBL SI SI SI SI SI SI SI SI	11			
Green Ratio (g				_	0.20		-	0.20	-	0.61		NBT SBL S 2 1 106 762 NBT SBL S 3 1 106 8 8 7.0 0.0 5.0 6.5 0.0 0.5 66 0.0 0.5 66 0.0 0.5 66 0.0 0.5 66 0.0 0.5 16 0.0	0.		
Capacity (c), v		#:- / X/\			343			334	390	371		_			11
Volume-to-Capa		Itio (X) /In (90 th percentile)	\		0.471 180.8			0.517 192.2	-	0.043 7.1	0.750 499.2		_	SBL T 706 762 8BL 1 1.1 1.1 1.2.6 6.5 5.0 5.6 0.5 0.99 0.00 8B T 6 6 5 535 95 1870 6 9.9 6 9.9 64 0.62 7 1153 67 0.464 1.1 120.6 0 4.7 144 0.12 1.0 0 0.0 0.6 6.0 0 0.0 0.6 6.0 0 0.0 0.6 6.0 0.0 0	0. ⁴
	, ,	eh/ln (90 th percentile)			7.1			7.6	11.7	0.3	19.7	0.7		SBL T 706 762 SBL 1 1.1 1.1 1.2.6 6.5 5.0 5.6 0.5 0.99 0.00 SB T 6 6 9.9 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6 9.0 6	5
	` ''	RQ) (90 th percent			0.00			0.63	_	0.05	0.50	0.08	0.34	SB T 6 762 BL 1	0.
Uniform Delay			uio)		43.4			44.2	_	9.7	18.3	10.5	18.4	SB T 762 SB T 66 535 1870 9.9 9.9 0.62 1153 0.464 120.6 4.7 0.12 5.0 1.0 0.0 6.0 A	5
Incremental De	. ,,				1.4			1.8	5.3	0.1	2.5	0.1	2.2		1
Initial Queue De					0.0			0.0	0.0	0.0	0.0	0.0	0.0		0
Control Delay (• •	,.			44.8			46.0	46.7	9.8	20.8	10.6	20.6	SBL 1 1.1 12.6 6.5 5.0 5.6 0.5 0.99 0.00 SBL T 1 6 135 535 795 1870 3.6 9.9 3.6 9.9 3.6 9.9 3.6 1153 567 0.464 5.1 120.6 3.0 4.7 344 0.12 8.4 5.0 2.2 1.0 0.0 0.0 0.6 6.0	6
Level of Service					D			D	D	A	С	В			
Approach Delay				44.8		D	46.4		D	20.5		С	_		Α
Intersection De).7						С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS				2.46	$\overline{}$	В	2.30	-	В	1.89	$\overline{}$	В	1.66	$\overline{}$	В
Bicycle LOS So	ore / LC	OS		0.75	5	Α	1.23	3	Α	1.82	2	В	1.31		Α

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:17:57 P

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	y				
General Inform	nation							$\overline{}$	Intersec		ormatic	n	- 6	411	يا مل
Agency		Diane B. Zimmerma	an Traffi	_					Duration	, h	0.250				
Analyst		DBZ			is Date		5, 2020	_	Area Typ	е	Other		<i>∆</i> . →		
Jurisdiction				Time F	Period	PM P	eak		PHF		0.98				*
Urban Street		Dixie Highway		Analys	is Year	2020		/	Analysis	Period	1> 4:4	15	37		
Intersection		Flowervale		File Na	ame	Flowe	rvale Pl	M 20.x	us					httr	
Project Descrip	tion	RaceTrac											7	বাক্স	11
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			72	43	28	88	28	170	24	1223	86	235	1610	119
Signal Informa	tion					1211			2		-	†			
Cycle, s	150.0	Reference Phase	2	1	20	200		3	£			`_	V		
Offset, s	0	Reference Point	End)	1	<u></u>					1	2	3	Y
Uncoordinated	No	Simult. Gap E/W	On	Green		4.7	98.4	18.5	_	0.0					4
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	3.5	0.0	5.1 1.9	3.6	0.0	0.0) 5	6	7	Y
Torce Mode	Tixeu	Simult. Gap 14/5	Oil	INCU	10.0	10.0	1.0	3.0	10.0	10.0				- 1	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	Number e Duration, s					4		\perp	8	5		2	1		6
Case Number	e Number se Duration, s					8.0		_	7.0	1.1	-	3.0	1.1	_	4.0
Phase Duration						25.1		_	25.1	14.8	-	05.4	19.5	-	110.0
						6.6		_	6.6	6.5		7.0	6.5		7.0
Max Allow Head	dway (/	<i>MAH</i>), s				5.2			5.2	5.0		0.0	5.0		0.0
Queue Clearan	ce Time	e (g s), s				15.1			16.6	2.6			8.2		
Green Extensio	n Time	(g e), S				2.1			1.9	0.1		0.0	1.2		0.0
Phase Call Prob	bability					1.00			1.00	0.64	ł		1.00)	
Max Out Probal	bility					0.09			0.14	0.00)		0.00)	
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F	Rate (v), veh/h			146			118	173	24	1248	88	247	912	907
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	ln		1593			1239	1585	1795	1781	1598	1795	1870	1825
Queue Service					0.0			1.5	14.6	0.6	27.9	3.0	6.2	55.7	57.0
Cycle Queue C					13.1			14.6	14.6	0.6	27.9	3.0	6.2	55.7	57.0
Green Ratio (g		, _ //			0.12			0.12	0.21	0.71	0.66	0.66	0.74	0.69	0.69
Capacity (c), v					233			195	333	224	2335	1048	415	1285	1254
Volume-to-Capa		atio (X)			0.627			0.606	_	0.110	0.534	0.084	0.596	0.710	0.723
		/In (90 th percentile))		219.5			186.1	_	14.7	370.3	46.5	91.2	765.7	750.7
		eh/ln (90 th percent			8.6			7.4	9.1	0.6	14.6	1.8	3.6	30.1	30.0
		RQ) (90 th percent			0.00			0.61	0.76	0.11	0.37	0.21	0.41	0.77	0.76
Uniform Delay (,		63.3			64.2	52.5	17.2	13.7	9.4	11.2	24.7	24.7
Incremental De					3.9			4.3	1.8	0.3	0.9	0.2	1.0	1.8	1.9
Initial Queue De		,,			0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (**			67.2			68.4	54.3	17.5	14.6	9.6	12.3	26.5	26.6
Level of Service					Е			Е	D	В	В	Α	В	С	С
Approach Delay				67.2		E	60.0		E	14.3		В	24.8		С
Intersection Del							5.4						C		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS	Score	/ LOS		2.47	<u> </u>	В	2.32	2	В	1.89)	В	1.65	5	В
Bicycle LOS Sc	ore / L (OS		0.73	3	Α	0.97	7	Α	1.61		В	2.14	1	В

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:51:26 PM

		нсѕ	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
0	- 47								1-4	· · · · · · · · · · · ·	41			4744	K T
General Inforn	nation	D: D 7	T (6					\rightarrow	Intersec		_		- 1	111	2 4
Agency		Diane B. Zimmerma	an Traffi	_		1	- 0000	_	Duration,	,	0.250		- E		
Analyst		DBZ				Jun 1			Area Typ	е	Other				
Jurisdiction		5		Time F		PM P			PHF		0.98		_=		*
Urban Street		Dixie Highway			sis Year	-	No Build		Analysis	Period	1> 4:4	45	2		
Intersection		Flowervale		File Na	ame	Flowe	rvale Pl	M 21 N	B.xus				- 1	ጎተተሰ	
Project Descrip	tion	RaceTrac											n	N I WY	r n
Demand Inform	mation				EB			WE	₹		NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v				72	43	28	88	28		24	1229		236	1618	120
Demand (v), v	CIVII			12	10	20	00	20		27	1220	00	200	1010	120
Signal Informa	ation				I L.			\top	5_	\top		↑			
Cycle, s	150.0	Reference Phase	2	1	E	7243		3	Ē		•	`_	₩.		
Offset, s	0	Reference Point	End	Craa	0.0	1 7	<u>``</u>		2 00	0.0		1	2	3	¥ 4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow	-	0.0	98.3	18.6 3.6	0.0	0.0					→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	8
	,														
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	e					4		\neg	8	5		2	1		6
Case Number	se Number					8.0			7.0	1.1		3.0	1.1		4.0
Phase Duration	ase Duration, s					25.2		\neg	25.2	14.8	3 1	105.3	19.5	5	110.0
Change Period						6.6			6.6	6.5		7.0	6.5		7.0
Max Allow Hea	dway (/	MAH), s				5.2		\neg	5.2	5.0		0.0	5.0	\neg	0.0
Queue Clearan						15.1			16.6	2.6			8.3		
Green Extension		, - ,			\neg	2.1		\neg	1.9	0.1		0.0	1.2	\neg	0.0
Phase Call Pro		(0)				1.00			1.00	0.64	1		1.00		
Max Out Proba						0.09			0.15	0.00			0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v), veh/h			146			118	174	24	1254	88	248	917	912
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1592			1240	1585	1795	1781	1598	1795	1870	1825
Queue Service	Time (g s), S			0.0			1.5	14.6	0.6	28.1	3.0	6.3	56.2	57.5
Cycle Queue C	learanc	e Time (<i>g ε</i>), s			13.1			14.6	14.6	0.6	28.1	3.0	6.3	56.2	57.5
Green Ratio (g	7/C)				0.12			0.12	0.21	0.71	0.66	0.66	0.74	0.69	0.69
Capacity (c), v	/eh/h				233			196	334	222	2334	1047	412	1284	1253
Volume-to-Cap	acity Ra	ntio (X)			0.625			0.604	0.523	0.110	0.537	0.084	0.602	0.714	0.728
Back of Queue	(Q), ft	/In (90 th percentile))		219.5			186.1	232.1	14.9	373	46.5	93.3	770.3	755.5
Back of Queue	(Q), ve	eh/ln (90 th percenti	le)		8.6			7.4	9.1	0.6	14.7	1.8	3.7	30.3	30.2
Queue Storage	Ratio (RQ) (90 th percent	ile)		0.00			0.61	0.76	0.11	0.37	0.21	0.42	0.77	0.77
Uniform Delay	(d 1), s	/veh			63.2			64.1	52.5	17.4	13.7	9.4	11.4	24.8	24.8
Incremental De	lay (d 2), s/veh			3.9			4.2	1.8	0.3	0.9	0.2	1.0	1.8	1.9
Initial Queue D					0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh			67.1			68.3	54.3	17.8	14.6	9.6	12.5	26.6	26.7
Level of Service					E			Е	D	В	В	Α	В	С	С
Approach Dela	y, s/veh	/ LOS		67.1		E	60.0)	E	14.4	1	В	24.9)	С
Intersection De	lay, s/ve	eh / LOS				25	5.4						С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		2.47	7	В	2.32	2	В	1.89)	В	1.65	5	В
Bicycle LOS So	ore / L C	os .		0.73	3	Α	0.97	7	Α	1.61		В	2.15	5	В

HCS™ Streets Version 7.8.5

Generated: 6/15/2020 3:51:26 PM

Copyright © 2020 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	d Inte	ersect	ion R	esul	ts Sur	nmar	<u> </u>				
General Inform	ation							-	Intersect		1		- 6	411	\$ L
Agency		Diane B. Zimmerma	an Traffi					1	Duration,	h	0.250				
Analyst		DBZ		Analys	is Date	Jun 15	, 2020	_	Area Typ	e	Other		<i>z</i> , →		
Jurisdiction				Time F	Period	PM Pe	ak	- 1	PHF		0.98		♦ - ♦		-
Urban Street		Dixie Highway		Analys	is Year	2021 E	Build		Analysis	Period	1> 4:4	45	7		
Intersection		Flowervale		File Na	ame	Flower	vale Pl	Л 21 B	.xus					5 f f č	
Project Descript	tion	RaceTrac											1	4144	24
Demand Inforn	nation				EB			WE	3		NB			SB	
Approach Move				L	Т	R	L	T	R	L	T	T R	L	T	R
Demand (v), v				72	43	28	176	28		24	1257	_	282	1617	120
Demand (V), V	CII/II			12	43	20	170	20	100	24	1201	00	202	1017	120
Signal Informa					7,	J.J.,	111	3			l	Ĺ			_
Cycle, s	150.0	Reference Phase	2		8		50	, H	Ĕ			>	Y		←
Offset, s	0	Reference Point	End	Green	8.3	4.7	89.8	27.	1 0.0	0.0		1	2	3	<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	_	0.0	5.1	3.6	0.0	0.0					→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	_
Timer Results				EBL	-	EBT	WBI	-	WBT	NBI	-	NBT	SBI	_	SBT
Assigned Phase	e Number se Duration, s					4		_	8	5		2	1	\rightarrow	6
Case Number	Number e Duration, s					8.0			7.0	1.1		3.0	1.1		4.0
Phase Duration					;	33.7			33.7	14.8	3	96.8	19.5	5 ′	101.5
Change Period,	e Duration, s ge Period, (Y+R c), s					6.6			6.6	6.5		7.0	6.5		7.0
Max Allow Head	Duration, s					5.2			5.2	5.0		0.0	5.0		0.0
Queue Clearan	ce Time	e (g s), s				14.1			26.4	2.7			11.4	1	
Green Extensio	n Time	(ge),s			\neg	2.7			0.6	0.0		0.0	1.0		0.0
Phase Call Prob	pability	, -			-	1.00			1.00	0.64			1.00)	
Max Out Probal	bility					0.11			1.00	0.00)		0.24	1	
Movement Gro	un Bos	eulto.			EB			WB			NB			SB	
	•	Suits			Т						T	В	.	T	Гр
Approach Move				L		R	L	T	R	L		R	L	_	R
Assigned Move		\ 1.0		7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F		, .			146			208	192	24	1283	88	295	911	905
		ow Rate (s), veh/h/l	n		1599			1269	_	1795	1781	1598	1795	1870	1825
Queue Service		- ,			0.0			12.3	15.1	0.7	33.9	3.5	9.4	63.7	65.0
Cycle Queue C		e ſime (<i>g c</i>), s			12.1			24.4	15.1	0.7	33.9	3.5	9.4	63.7	65.0
Green Ratio (g.					0.18			0.18		0.65	0.60	0.60	0.69	0.63	0.63
Capacity (c), v					325			274	423	195	2132	957	366	1178	1150
Volume-to-Capa		<u> </u>			0.449			0.760	_	0.126	0.601	0.092	0.807	0.773	0.787
		In (90 th percentile)			203			312.7		17.6	457.7	56.7	188.5	907.4	888.2
		eh/In (90 th percent			8.0			12.4	9.3	0.7	18.0	2.2	7.5	35.7	35.5
Queue Storage	Ratio (RQ) (90 th percent	tile)		0.00			1.03	0.77	0.13	0.46	0.26	0.86	0.91	0.90
Uniform Delay (d 1), s	/veh			55.2			61.0	45.8	23.4	18.9	12.8	19.8	36.1	35.9
Incremental De	lay (d 2), s/veh			1.4			11.7	1.1	0.4	1.3	0.2	5.0	2.5	2.7
Initial Queue De	elay (d	з), s/veh			0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh			56.6			72.8	46.9	23.8	20.1	13.0	24.7	38.6	38.6
Level of Service					Е			Е	D	С	С	В	С	D	D
Approach Delay				56.6		E	60.4		E	19.7		В	36.6	3	D
Intersection Del						33							С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/ LOS		2.47		В	2.31		В	1.90)	В	1.67	7	В

HCS™ Streets Version 7.8.5

Generated: 6/16/2020 11:16:29 AM

		нсѕ	7 Sig	nalize	d In	tersec	tion	Resi	ılts S	Sun	nmar	/				
General Informat	tion								Inter	rsect	ion Inf	ormatic	n	Į.	4444	ja lj
Agency		Diane B. Zimmerma	an Traffi	c Engine	eering				Dura	ation,	h	0.250		12	411	
Analyst		DBZ		Analys	is Dat	e Jun 1	5, 2020)	Area	а Тур	е	Other				
Jurisdiction				Time F	eriod	PM P	eak		PHF	:		0.98		⊕ ◆	*	→
Urban Street		Dixie Highway		Analys	is Yea	r 2031	No Bui	ld	Analy	lysis l	Period	1> 4:4	15	7		
Intersection		Flowervale		File Na	ame	Flowe	ervale F	PM 31	NB.xu	us					5 t t ?	
Project Descriptio	on	RaceTrac												h	বাক্প	1
Demand Informa	ation				EB			١٨	/B			NB			SB	
Approach Movem				L	T	R	L	_	т	R	L	T	R	L	T	R
Demand (v), veh				76	45	30	93	\rightarrow	\rightarrow	180	24	1292	-	248	1701	126
Demand (v), ven	1/11			70	40	30	33			100	24	1232	. 31	240	1701	120
Signal Information	on				7	~ 2JJ	R		_2_		\top	l	Ĺ			_
Cycle, s 1	50.0	Reference Phase	2		5		- R	ra Hi	ĕ				>	Y	_	↔
Offset, s	0	Reference Point	End	Green	8.3	4.7	97.4		0.5	0.0	0.0		1		3	N A
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	5.1	3.		0.0	0.0		< △			→
Force Mode F	ixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.	0	0.0	0.0		5	6	7	:
										_			N.D.T.			0.00
Timer Results				EBL	-	EBT	WE	3L	WB	-	NBI	-	NBT	SBI	-	SBT
Assigned Phase				_	-	4	-	-	8	-	5	_	2	1	_	6
Case Number	nase Duration, s					8.0	-	-	7.0	_	1.1		3.0	1.1		4.0
,	ase Duration, s ange Period, (Y+R c), s					26.1	-	\rightarrow	26.1	-	14.8	\rightarrow	04.4	19.5	\rightarrow	109.0
					-	6.6	-	-	6.6	-	6.5	-	7.0	6.5	_	7.0
Max Allow Headw		·		_	-	5.2	-	-	5.2	-	5.0	_	0.0	5.0	-	0.0
Queue Clearance				_	-	15.8	-	-	17.6	_	2.6	-	0.0	8.8	$\overline{}$	0.0
Green Extension		(g e), S		_	_	1.00		-	2.0	-	0.1	\rightarrow	0.0	1.2	$\overline{}$	0.0
Phase Call Proba Max Out Probabili	_				-	0.13		-	0.21	-	0.00	\rightarrow		0.00	$\overline{}$	
Wax Out 1 Tobabii	iity					0.10			0.2		0.00			0.00		
Movement Group	p Res	ults			EB			W	В			NB			SB	
Approach Movem	nent			L	Т	R	L	T	F	R	L	Т	R	L	Т	R
Assigned Moveme	ent			7	4	14	3	8	1	18	5	2	12	1	6	16
Adjusted Flow Ra	ate (v), veh/h			154			12	6 18	84	24	1318	93	261	961	960
Adjusted Saturation	on Flo	w Rate (s), veh/h/l	n		1590			123	1 15	585	1795	1781	1598	1795	1870	1825
Queue Service Tir	me (g	1 s), S			0.0			1.7	7 15	5.4	0.6	30.9	3.2	6.8	61.1	63.2
Cycle Queue Clea	arance	e Time (<i>g</i> ℴ), s			13.8			15.	6 15	5.4	0.6	30.9	3.2	6.8	61.1	63.2
Green Ratio (g/C)				0.13			0.1	3 0.	.22	0.70	0.65	0.65	0.74	0.68	0.68
Capacity (c), veh					243			20	2 3	344	205	2311	1037	389	1272	1242
Volume-to-Capac	ity Ra	tio (X)			0.633	3		0.62	20 0.5	534	0.119	0.570	0.090	0.670	0.756	0.773
		In (90 th percentile)			229			195	.1 24	11.8	17.1	407.9	50.8	122.8	820.3	812.9
Back of Queue (0	Q), ve	h/ln (90 th percent	ile)		9.0			7.7	$\overline{}$	9.5	0.7	16.1	2.0	4.9	32.3	32.5
Queue Storage R	Ratio (RQ) (90 th percent	tile)		0.00	-		0.6	_	.79	0.13	0.41	0.23	0.56	0.82	0.83
Uniform Delay (d	1), s/	veh			62.7			63.	7 52	2.0	20.3	14.7	9.8	14.2	26.4	26.5
Incremental Delay	y (d 2), s/veh			3.8			4.4	1 1	1.8	0.4	1.0	0.2	1.2	1.8	2.1
Initial Queue Dela		, .			0.0			0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d		eh			66.5			68.	0 53	3.8	20.7	15.7	10.0	15.4	28.2	28.6
Level of Service (LOS)				E			E] [D	С	В	Α	В	С	С
Approach Delay, s	s/veh	LOS		66.5		Е	59	.6	Е		15.4		В	26.8	3	С
Intersection Delay	y, s/ve	h/LOS				2	6.8							С		
Multimodal Resu		(1.00		0.17	EB			W			4.00	NB		4.65	SB	
Pedestrian LOS S				2.47	-	В	2.3	\rightarrow	В	_	1.89	$\overline{}$	В	1.65	-	В
Bicycle LOS Scor	re / LC	15		0.74		Α	1.0	00	Α		1.67		В	2.23	5	В

HCS™ Streets Version 7.8.5

Generated: 6/16/2020 11:36:28 AM

Copyright © 2020 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	d Inte	ersect	tion R	esul	ts Sur	nmar	y				
General Inforn	nation								Intersec	tion Info	ormatic	n		4744	ja lu
Agency		Diane B. Zimmerma	ın Traffi	c Engin	eering				Duration,	, h	0.250			***	
Analyst		DBZ		Analys	is Date	Jun 15	5, 2020		Area Typ	е	Other		.5. →		
Jurisdiction				Time F	Period	PM Pe	eak		PHF		0.98		♦ - ♦		÷
Urban Street		Dixie Highway		Analys	is Year	2031 E	Build	/	Analysis	Period	1> 4:4	15	3		
Intersection		Flowervale		File Na	ame	Flower	rvale PN	И 31 B	.xus		-			5 f f c	
Project Descrip	tion	RaceTrac											ħ	4144	24
Demand Inforr	nation				EB			WE	3		NB			SB	
Approach Move				L	T	R	L	T	R	1	T	T R	L	T	R
Demand (v), v				76	45	30	186	30	_	24	1320		294	1700	126
Signal Informa		,		l	7.	J2115 1		3	\succeq		Į	Ĺ	-4-		_
Cycle, s	150.0	Reference Phase	2		5		1 5 17	7 3	6.			≥	Y	3	↔ .
Offset, s	0	Reference Point	End	Green	8.3	4.7	88.7	28.2	2 0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	0.0	5.1	3.6	0.0	0.0		\ 4			7
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	1.9	3.0	0.0	0.0		5	6	7	:
Timer Results				EBI		EBT	WBI		WBT	NBI	_	NBT	SBI		SBT
Assigned Phase	<u> </u>					4			8	5		2	1		6
Case Number						8.0			7.0	1.1		3.0	1.1	_	4.0
				_	-	34.8		_	34.8	14.8		95.7	19.5	,	100.4
	e Number se Duration, s nge Period, (Y+R c), s				_	6.6			6.6	6.5	_	7.0	6.5	\rightarrow	7.0
Max Allow Hea	•	**		_	\rightarrow	5.2	_	_	5.2	5.0	-	0.0	5.0	-	0.0
Queue Clearan		·			\rightarrow	14.8			28.1	2.7	-	0.0	12.2	$\overline{}$	0.0
Green Extension		(- //		_	$\overline{}$	2.8		_	0.1	0.0	_	0.0	0.8		0.0
Phase Call Pro		(g e), s		_	\rightarrow	1.00	_	_	1.00	0.64	$\overline{}$	0.0	1.00	$\overline{}$	0.0
Max Out Proba					-	0.15			1.00	0.00	_		0.54	_	
Movement Gro	•	ults			EB			WB			NB			SB	
Approach Move				L	Т	R	느	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I					154		$oxed{oxed}$	220	201	24	1347	93	308	956	954
•		ow Rate (s), veh/h/l	n		1598			1260	_	1795	1781	1598	1795	1870	1825
Queue Service		- ,.			0.0		$oxed{oxed}$	13.3	15.8	0.7	37.3	3.8	10.2	69.3	71.4
Cycle Queue C		e Time (<i>g</i> ℴ), s			12.8			26.1	15.8	0.7	37.3	3.8	10.2	69.3	71.4
Green Ratio (g					0.19			0.19	_	0.65	0.59	0.59	0.68	0.62	0.62
Capacity (c), v					337			282	436	179	2105	944	344	1164	1136
Volume-to-Cap					0.458			0.783	\rightarrow	0.137	0.640	0.098	0.894	0.821	0.840
	, ,,,	In (90 th percentile)			211.3			333.3		20.1	500.7	61.8	231.3	970.7	958.7
		eh/ln (90 th percenti			8.3			13.2	$\overline{}$	0.8	19.7	2.5	9.2	38.2	38.3
		RQ) (90 th percent	ile)		0.00			1.09	0.80	0.15	0.50	0.28	1.05	0.97	0.97
Uniform Delay					54.5			60.8	45.2	27.0	20.2	13.3	23.3	39.6	39.6
Incremental De		<i>'</i> '			1.4			14.0	_	0.5	1.5	0.2	8.8	2.5	2.9
Initial Queue De					0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (55.9			74.7	46.2	27.5	21.7	13.5	32.0	42.1	42.5
Level of Service					E		$oxed{oxed}$	E	D	С	С	В	С	D	D
Approach Delay				55.9)	E	61.1		Е	21.3	3	С	40.9	9	D
Intersection De	lay, s/ve	eh / LOS				36	5.7						D		
Multimodal Bo	eulte				EB			WP			NR			SB	
Multimodal Re		/1.08		2.47	EB	В	2.31	WB	В	1.90	NB	В	1.67	SB	В

Copyright ${\small \circledcirc}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 6/19/2020 5:49:02 PM

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	1						_
Analyst	DBZ						Inters	ection			KY 84	1 EB Lef	t			_
Agency/Co.	Diane	B Zimm	erman 1	raffic En	gineerin	q	Jurisc	liction								
Date Performed	6/15/	2020					East/	West Str	eet		KY 84	1 EB				
Analysis Year	2020						North	n/South :	Street		Dixie	Highway	/			
Time Analyzed	AM P	eak					Peak	Hour Fac	tor		0.94					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Race1	- Frac														
Lanes																
				74 4 Y 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1 4 Y r Street: No		4 + 4 4 + 4								
Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	L
Number of Lanes		1	0	0		0	0	0	0	0	2	0	0	0	2	L
Configuration		L									Т				T	L
Volume (veh/h)		50									725				725	L
Percent Heavy Vehicles (%)		1														L
Proportion Time Blocked																L
Percent Grade (%)			0													
Right Turn Channelized																
Median Type Storage				Left	Only				<u> </u>				1			
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5														Г
Critical Headway (sec)		6.82														
Base Follow-Up Headway (sec)		3.5														
Follow-Up Headway (sec)		3.51														
Delay, Queue Length, and	Leve		ervice													
Flow Rate, v (veh/h)		53														
Capacity, c (veh/h)		315														
v/c Ratio		0.17														
95% Queue Length, Q ₉₅ (veh)		0.6														
Control Delay (s/veh)		18.8														
Level of Service (LOS)		С														
Approach Delay (s/veh)			3.8													
Approach LOS			0													

General Information							Site	Inforr	natio	า						
Analyst	DBZ						Inters	ection			KY 84	1 EB Lef	t			
Agency/Co.	Diane	B Zimm	nerman 1	Traffic En	gineerin	g	Juriso	liction								
Date Performed	6/15/	2020					East/	Nest Stre	eet		KY 84	1 EB				
Analysis Year	2021						North	/South S	Street		Dixie	Highway	/			
Time Analyzed	AM P	eak No E	Build				Peak	Hour Fac	tor		0.94					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Race1	Ггас														
Lanes																
				↑ ↑ ↑ ↑ ↑ ↑			† † r	14 4 Y 1								
Vehicle Volumes and Adj	justme	nts														
Approach	\bot	Eastb	_			Westl	_			North	_			South		_
	U	L	_	-	U	L	_							_	_	L
	_															L
	+		0	0		0	0	0	0	0		0	0	0	_	L
		_													_	H
	+										729				729	H
		1														L
	+															
Percent Grade (%)			U													_
Diaba Tura Channalinad													1			_
Right Turn Channelized				Loft	Only											_
Median Type Storage				Left	Only								'			
Median Type Storage Critical and Follow-up H	eadwa	-		Left	Only						ı					
Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	7.5		Left	Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	7.5 6.82		Left	Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadwa	7.5 6.82 3.5		Left	Only											
Date Performed G15/2020																
Site Information																
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)		7.5 6.82 3.5 3.51 I of Se	ervice		Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.82 3.5 3.51 l of Se 53 313	ervice		Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.82 3.5 3.51 l of Se 53 313 0.17	ervice		Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.82 3.5 3.51 of Se 53 313 0.17 0.6	ervice		Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.82 3.5 3.51 I of Se 53 313 0.17 0.6 18.9	ervice		Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Qos (veh) Control Delay (s/veh) Level of Service (LOS)		7.5 6.82 3.5 3.51 of Se 53 313 0.17 0.6 18.9			Only											
Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Qos (veh) Control Delay (s/veh) Level of Service (LOS)		7.5 6.82 3.5 3.51 I of Se 53 313 0.17 0.6 18.9			Only											

		Н	CS7	Two-	-Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Infor	matio	n						
Analyst	DBZ						Inters	ection			KY 84	11 EB Let	t			
Agency/Co.	Diane	B Zimm	nerman 1	raffic En	gineerin	g	Juriso	diction								
Date Performed	6/15/	2020					East/	West Str	eet		KY 84	11 EB				
Analysis Year	2021						North	n/South:	Street		Dixie	Highwa	v			
Time Analyzed	AM P	eak Build	d				Peak	Hour Fa	ctor		0.94					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Race	Ггас														
Lanes																
Valida Valenca and a la	i			7 4 4 Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A h	↑↑ ↑ 수 Ƴ r Street: Nor	† † r	× + + + + + + + + + + + + + + + + + + +								
Vehicle Volumes and Ad	justme															
Approach	+		ound				bound				bound				nbound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	+	10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes	+	1	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration	+	L									T				T	⊢
Volume (veh/h)	+-	50									749				763	₩
Percent Heavy Vehicles (%)	+	1													\vdash	⊢
Proportion Time Blocked	+-															
Percent Grade (%)	+		0													
Right Turn Channelized	+-															
Median Type Storage				Lеπ	Only								1			
Critical and Follow-up H	leadwa	-														
Base Critical Headway (sec)		7.5													\perp	
Critical Headway (sec)		6.82													\vdash	
Base Follow-Up Headway (sec)		3.5													\perp	
Follow-Up Headway (sec)		3.51														
Delay, Queue Length, ar	nd Leve	l of Se	ervice	1												
Flow Rate, v (veh/h)		53														
Capacity, c (veh/h)		300														
v/c Ratio		0.18														
95% Queue Length, Q ₉₅ (veh)		0.6														
Control Delay (s/veh)		19.6														
Level of Service (LOS)		С														
Approach Delay (s/veh)		19	9.6													
Approach LOS		(С													

HCS TOW TWSC Version 7.8.5 KY 841 EB AM 21 B.xtw

Generated: 6/15/2020 4:59:24 PM

		Н	CS7	Two-	-Wa <u>y</u>	Stop	J-CU	ntroi	Rep	ort _						
General Information							Site	Inform	natio	1						
Analyst	DBZ						Inters	ection			KY 84	1 EB Lef	t			
Agency/Co.	Diane	B Zimm	erman T	raffic En	gineerin	g	Jurisd	liction								
Date Performed	6/15/2						East/\	West Str	eet		KY 84	1 EB				
Analysis Year	2031						North	/South	Street		Dixie	Highwa	У			
Time Analyzed	AM P	eak No E	Build				Peak	Hour Fac	ctor		0.94					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	RaceT	rac														
Lanes																
				7 4 4 X → Y ∩		1 † Y Street: Nor	† † r	* ← \								
Vehicle Volumes and Adj	ustme	nts														
Approach	\perp	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	\perp	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration	\perp	L									T				T	
Volume (veh/h)		53									766		_		766	
Percent Heavy Vehicles (%)	\perp	1														
Proportion Time Blocked	\vdash															
Percent Grade (%)	\vdash	- ()													
Right Turn Channelized													1			
					Only								1			
Median Type Storage				Left	Only											
Critical and Follow-up Ho	eadway			Left	Only											
Critical and Follow-up Ho	eadway	7.5		Left	Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec)	eadway	7.5 6.82		Left	Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadway	7.5 6.82 3.5		Left	Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.82 3.5 3.51			Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and		7.5 6.82 3.5 3.51	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h)		7.5 6.82 3.5 3.51 l of Se	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.82 3.5 3.51 l of S6 56 297	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.82 3.5 3.51 l of Se 56 297 0.19	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.82 3.5 3.51 l of Se 56 297 0.19 0.7	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 6.82 3.5 3.51 I of Se 56 297 0.19 0.7 19.9	ervice		Only											
Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 6.82 3.5 3.51 of S6 297 0.19 0.7 19.9	ervice 0.9		Only											

HCS TMJ TWSC Version 7.8.5 KY 841 EB AM 31 NB.xtw

Copyright © 2020 University of Florida. All Rights Reserved.

												_				
General Information							Site	Inforr	natio	1						
Analyst	DBZ						Inters	ection			KY 84	1 EB Lef	t			
Agency/Co.	Diane	B Zimm	erman 1	raffic En	gineerin	g	Jurisc	liction								
Date Performed	6/15/	2020					East/	Nest Stre	eet		KY 84	1 EB				
Analysis Year	2031						North	/South S	Street		Dixie	Highway	/			
Time Analyzed	AM P	eak Build	d				Peak	Hour Fac	tor		0.94					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Race	Trac														
Lanes																
				*Y↑ * ^				7 ★ ❤ Y ↑								
	justme															
	1	_	_					_			_	_			_	
	U	_	-	_	U	_	_		_			-	-	_	_	⊢
	+		_	_		_	_			_					_	⊢
	+	_	0	0		0	0	0	0	0		0	0	0	_	H
	+-															H
	+					-					/86				800	H
	+-	1														H
·	+															
		,	U													_
	+								l .							_
Right Turn Channelized				1 -64	Ombo											
Right Turn Channelized Median Type Storage				Left	Only								1			
Agency/Co. Diane 8 Zimmerman Traffic Engineering Jurisdiction Date Performed 6/15/2020 East/West Street KY 841 E8 Analysis Year 2031 North/South Street Dixe Highway Time Analyzed AM Peak Build Peak Hour Factor 0.94 Intersection Orientation North-South Analysis Time Period (hrs) 0.25 Project Description RaceTrac Lanes Vehicle Volumes and Adjustments Vehicle Volumes and Adjustments Approach Eastbound Westbound Northbound Southbound Movement U L T R U																
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	7.5		Left	Only								1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	7.5 6.82		Left	Only								1			
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadwa	7.5 6.82 3.5		Left	Only											
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 6.82 3.5 3.51			Only											
Site Information																
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		7.5 6.82 3.5 3.51	ervice		Only											
Site Information																
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 6.82 3.5 3.51 l of Se 56 284	ervice		Only											
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 6.82 3.5 3.51 l of Se 56 284 0.20	ervice		Only											
Site Information																
Site Information																
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh) Level of Service (LOS)		7.5 6.82 3.5 3.51 of Se 284 0.20 0.7 20.8 C			Only											

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort							
General Information	_						Site	Infori	natio	n						_	
Analyst	DBZ						Inters	ection			KY 84	11 EB Let	ft				
Agency/Co.	Diane	B Zimm	nerman	Fraffic En	gineerin	g	Juriso	liction									
Date Performed	6/15/	2020					East/	West Str	eet		KY 841 EB						
Analysis Year	2020						North	n/South	Street		Dixie	Highwa	у				
Time Analyzed	PM P	eak					Peak	Hour Fa	ctor		0.93						
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25						
Project Description	Race	Ггас															
Lanes																	
				7 4 4 Y ↑ ≯ ſ		† † † *Y r Street: Nor		* * *									
Vehicle Volumes and Adj	justme	nts															
Approach		Eastb	ound			Westl	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	Ļ	
Number of Lanes		1	0	0		0	0	0	0	0	2	0	0	0	2	(
Configuration		L									Т	_			Т	╙	
Volume (veh/h)	-	50									875				1675	┡	
Percent Heavy Vehicles (%)		1										_				╙	
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized	-																
Median Type Storage				Left	Only								1			_	
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.5														┖	
Critical Headway (sec)		6.82															
Base Follow-Up Headway (sec)		3.5										_	_		_	L	
Follow-Up Headway (sec)		3.51															
Delay, Queue Length, an	d Leve	l of S	ervice	•													
Flow Rate, v (veh/h)	T	54														Г	
Capacity, c (veh/h)		98															
··/- P-+:-		0.55															
v/c Ratio	T T	2.5															
95% Queue Length, Q ₉₅ (veh)																	
		79.2	L	L	L	L	L	L		L	L						
95% Queue Length, Q ₉₅ (veh)		79.2 F															
95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		F	9.2														

			C31		TTG	0.01	o-Co	1100	ricp	010						
General Information							Site	Inform	natio	1						_
Analyst	DBZ						Inters	ection			KY 84	1 EB Lef	t			
Agency/Co.	Diane	B Zimm	erman 1	raffic En	gineerin	g	Jurisd	liction								
Date Performed	6/15/						East/\	West Str	eet		KY 84	1 EB				
Analysis Year	2021						North	n/South :	Street		Dixie	Highwa	У			
Time Analyzed	PM Pe	eak No E	Build				Peak	Hour Fac	tor		0.93					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	RaceT	rac														
Lanes																
				↑ 4		↑↑ ↑ ቍ ጕ • Street: Nor	† † ř th-South	4 + ₩ + K								
Vehicle Volumes and Adj	ustme	nts														
Vehicle Volumes and Adj Approach	ustme		ound			Westl	oound			North	bound			South	bound	
	ustme U		ound T	R	U	Westl	oound T	R	U	North L	bound T	R	U	South	bound	R
Approach		Eastb		12	U			R 9	U 1U	L 1	T 2	R 3	U 4U	L 4	T 5	6
Approach Movement		Eastb	T	_	U	L	T	_		L	T 2 2	_	-	L	5 2	_
Approach Movement Priority Number of Lanes Configuration		Eastb L 10 1	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)		Eastb L 10 1 L 50	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2	3	4U	L 4	5 2	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		Eastb L 10 1	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked		Eastb L 10 1 L 50 1	T 11 0	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)		Eastb L 10 1 L 50	T 11 0	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized		Eastb L 10 1 L 50 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	U	Eastb L 10 1 L 50 1	T 11 0	12 0	U	L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	U	Eastb L 10 1 L 50 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho	U	Eastb L 10 1 L 50 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho	U	Eastb L 10 1 L 50 1 (7.5 6.82	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	U	Eastb L 10 1 L 50 1 (T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadwa	Eastb L 10 1 L 50 1 (7.5 6.82 3.5 3.51	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadwa	Eastb L 10 1 L 50 1 (7.5 6.82 3.5 3.51	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadwa	Eastb L 10 1 L 50 1 (7.5 6.82 3.5 3.51	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	eadwa	Eastb L 10 1 L 50 1 (7.5 6.82 3.51 L of See	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and	eadwa	Eastb L 10 1 L 50 1 7.5 6.82 3.5 3.51 l of Se	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	eadwa	Eastb L 10 1 L 50 1 7.5 6.82 3.5 3.51 l of Se 97	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pollay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	eadwa	Eastb L 10 1 L 50 1 7.5 6.82 3.5 3.51 l of Se 54 97 0.55 2.5 80.7	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Ho Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	eadwa	Eastb L 10 1 L 50 1 7.5 6.82 3.5 3.51 l of Se 97 0.55 2.5 80.7 F	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U 0	L 4	T 5 2 T	6

HCS TMJ TWSC Version 7.8.5 KY 841 EB PM 21 NB.xtw

Generated: 6/15/2020 5:04:18 PM

			CS/	Two-	-vvay	Stop	o-Co	ntrol	кер	ort							
General Information							Site	Inform	natio	n							
Analyst	DBZ						Inters	section			KY 84	1 EB Lef	t			_	
Agency/Co.	Diane	B Zimm	erman 1	Fraffic En	gineerin	g	Jurisc	diction									
Date Performed	6/15/2	2020					East/	West Str	eet		KY 841 EB						
Analysis Year	2021						North	n/South :	Street		Dixie Highway						
Time Analyzed	PM Pe	ak Build	i				Peak	Hour Fac	tor		0.93						
Intersection Orientation	North-	-South					Analy	sis Time	Period (hrs)	0.25						
Project Description	RaceTr	rac															
Lanes																	
				1 4 4 Y ↑ Y ſ		↑↑ ↑◆~ r Street: Nor		74444									
Vehicle Volumes and Adj	justmer																
Approach	 		ound				bound				bound				bound		
		L	T	R	lυ	L	T	l R	U	L	T	R	U	L	T		
Movement	U		_	40		_	_		411			_	411			$\overline{}$	
Priority	U	10	11	12		7	8	9	1U	1	2	3	4U	4	5	⊢	
Priority Number of Lanes	U	10	_	12		_	_	9	1U 0	1 0	2	3	4U 0	0	2	⊢	
Priority Number of Lanes Configuration	U	10 1 L	11	-		7	8	_			2 T	_	_	_	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h)	U	10 1 L	11	-		7	8	_			2	_	_	_	2	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	U	10 1 L	11	-		7	8	_			2 T	_	_	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	U	10 1 L 50 1	11 0	-		7	8	_			2 T	_	_	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)	U	10 1 L 50 1	11	-		7	8	_			2 T	_	_	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked		10 1 L 50 1	11 0	0	Only	7	8	_			2 T	0	_	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage		10 1 L 50 1	11 0	0	Only	7	8	_			2 T	0	0	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized		10 1 L 50 1	11 0	0	Only	7	8	_			2 T	0	0	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H		10 1 L 50 1	11 0	0	Only	7	8	_			2 T	0	0	-	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Heave (Sec)		10 1 L 50 1	11 0	0	Only	7	8	_			2 T	0	0	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Hease Critical Headway (sec) Critical Headway (sec)		10 1 L 50 1 /s 7.5 6.82	11 0	0	Only	7	8	_			2 T	0	0	-	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	eadway	10 1 L 50 1 /s 7.5 6.82 3.5 3.51	11 0	Left	Only	7	8	_			2 T	0	0	-	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	eadway	10 1 L 50 1 /s 7.5 6.82 3.5 3.51	11 0	Left	Only	7	8	_			2 T	0	0	-	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an	eadway	10 1 L 50 1 /S 7.5 6.82 3.5 3.51 of Se	11 0	Left	Only	7	8	_			2 T	0	0	-	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)	eadway	10 1 L 50 1 /s 7.5 6.82 3.5 3.51 of Se 54	11 0	Left	Only	7	8	_			2 T	0	0	_	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)	eadway	10 1 L 50 1 7.5 6.82 3.5 3.51 of Se 54 93	11 0	Left	Only	7	8	_			2 T	0	0	_	2 T		
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	eadway	10 1 L 50 1 7.5 6.82 3.5 3.51 of Se 54 93 0.58	11 0	Left	Only	7	8	_			2 T	0	0	_	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	eadway	10 1 L 50 1 7.5 6.82 3.5 3.51 of S6 54 93 0.58 2.7	11 0	Left	Only	7	8	_		_	2 T	0	0	_	2 T	⊢	
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	eadway	10 1 L 50 1 7.5 6.82 3.5 3.51 of Se 93 0.58 2.7 87.4 F	11 0	Left	Only	7	8	_		_	2 T	0	0	_	2 T		

		Н	CS7	Two-	-Way	Sto	o-Co	ntrol	l Rep	ort						
General Information	_	_	_			_	Site	Infori	matio	n		_		_		
Analyst	DBZ						Inters	ection			KY 84	I1 EB Lef	it			
Agency/Co.	-	B Zimm	nerman T	Fraffic En	gineerin	a		diction								
Date Performed	6/15/							West Str	eet		KY 84	11 EB				
Analysis Year	2031						North	n/South	Street		Dixie	Highwa	y			
Time Analyzed	PM P	eak No E	Build				Peak	Hour Fa	ctor		0.93					
Intersection Orientation	North	n-South					Analy	sis Time	Period ([hrs)	0.25					
Project Description	Race1															
Lanes																
				14 *Y 1 7 C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes	-	1	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration	_	L									T				T	L
Volume (veh/h)	+	53									925				1769	<u> </u>
Percent Heavy Vehicles (%)	+-	1		_											_	_
Proportion Time Blocked	+															
Percent Grade (%)	+		0													
Right Turn Channelized	+			1 - 6	0-1-											
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadwa	_														
Base Critical Headway (sec)	1	7.5														
Critical Headway (sec)		6.82														
Base Follow-Up Headway (sec)		3.5														
Follow-Up Headway (sec)		3.51														
Delay, Queue Length, an	d Leve	l of S	ervice	1												
Flow Rate, v (veh/h)		57														
Capacity, c (veh/h)		87														
v/c Ratio		0.66														
95% Queue Length, Q ₉₅ (veh)		3.1														
Control Delay (s/veh)		104.5														L
Level of Service (LOS)		F														
Approach Delay (s/veh)			4.5													
Approach LOS			F													

HCSTM TWSC Version 7.8.5 KY 841 EB PM 31 NB.xtw Generated: 6/15/2020 5:07:04 PM

General Information							Sito	Infor	natio	,							
									natio	1							
Analyst	DBZ						_	ection			KY 841 EB Left						
Agency/Co.	+		erman 1	raffic En	gineerin	g		liction			10/044 50						
Date Performed	6/15/2	2020					_	West Str			KY 841 EB						
Analysis Year	2031						_	n/South			_	Highway	/				
Time Analyzed	-	ak Build	1				_	Hour Fa			0.93						
Intersection Orientation	North-					Analy	sis Time	Period (hrs)	0.25							
Project Description	RaceTr	rac														_	
Lanes																	
				744747		↑↑ ↑ • Y r Street: Nor		V									
Vehicle Volumes and Adj	ustmer	nts															
Approach		Eastb					oound				bound			South			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	-	
Movement Priority	U	L 10	T 11	12	U	L 7	T 8	9	1U	L 1	T 2	3	4U	L 4	T 5		
Movement Priority Number of Lanes	U	L 10	T	_	U	L	T	_		L	T 2 2			L	T 5		
Movement Priority Number of Lanes Configuration	U	10 1 L	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h)	U	L 10 1 L 53	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2	3	4U	L 4	T 5		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	U	10 1 L	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	U	L 10 1 L 53	T 11 0	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)	U	L 10 1 L 53	T 11	12	U	L 7	T 8	9	1U	L 1	T 2 2 T	3	4U	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	U	L 10 1 L 53	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage		L 10 1 L 53 1	T 11 0	12 0	Only	L 7	T 8	9	1U	L 1	T 2 2 T	3 0	4U	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Heaves		L 10 1 L 53 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Hollow-up Hollo		L 10 1 L 53 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Home Base Critical Headway (sec) Critical Headway (sec)		L 10 1 L 53 1	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)		L 10 1 L 53 1 (v 7.5 6.82 3.5	T 11 0	12 0		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	eadway	L 10 1 L 53 1 (v 75 7.5 6.82 3.5 3.51	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of Se	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of S6	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Hollow-up Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of Se 57 83	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	eadway	L 10 1 L 53 1 C C C C C C C C C C C C C C C C C C	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of Se 57 83 0.69 3.3	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, an Flow Rate, v (veh/h) V/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of Se 57 83 0.69 3.3	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	eadway	L 10 1 L 53 1 (v 7.5 6.82 3.5 3.51 of Se 57 83 0.69 3.3	T 11 0	Left		L 7	T 8	9	1U	L 1	T 2 2 T	3 0	40 0	L 4	T 5 2 T		

			7 Sig													
General Inform	nation								Inte	ersect	ion Infe	ormatic	n	l J	41441	ja lj
Agency	iution	Diane B. Zimmerma	n Traffi	c Engine	erina				-	ation,		0.250	···	┨	41	
Analyst		DBZ	arr rrain	_		6/3/20	20		-	a Typ		Other				
Jurisdiction		552		Time F		AM Pe			PHF			0.94		→ -÷		,
Urban Street		Dixie Highway		-	is Year	-	Jak		-		Period	1> 7:0)n	-4		-
Intersection		KY 841 WB		File Na		-	rvale AN	1.20		alysis	Cilou	1- 7.0	,,,			
Project Descript	tion	RaceTrac		T IIC INC	iiiic	liowe	i vaic Ai	120	.xus					- 4	া † †	3+ (*
1 Toject Descrip	tion	Nace Hac														
Demand Inform	nation				EB			٧	VB			NB		$\overline{}$	SB	
Approach Move	ment			L	Т	R	L	Т	тТ	R	L	Т	R	L	Т	R
Demand (v), v							525	†		225	275	500			500	50
,,																
Signal Informa	tion					ŢŢ	1 8	\top			\top					
Cycle, s	120.0	Reference Phase	2]	54	R4	2	1						4	_	
Offset, s	0	Reference Point	End	Green	27.8	47.0	25.1	0.	0	0.0	0.0		1	2	3	=
Uncoordinated	No	Simult. Gap E/W	On	Yellow		5.1	3.6	0		0.0	0.0	-				>
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0.		0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI	_]	WE	вт	NBL	-	NBT	SBI	-	SBT
Assigned Phase	е								8	3	5		2			6
Case Number								\neg	9.0	0	1.0		4.0			8.3
Phase Duration	, s							\neg	31.	.7	34.3		88.3			54.0
Change Period,	(Y+R	c), S							6.0	6	6.5		7.0			7.0
Max Allow Head	dway (/	<i>МАН</i>), s						\neg	5.2	2	5.0		0.0			0.0
Queue Clearan	ce Time	(gs), s							20.	.3	25.2	:				
Green Extensio	n Time	(ge), s						\neg	4.8	8	2.6		0.0			0.0
Phase Call Prob	bability							\neg	1.0	00	1.00					
Max Out Probal	bility								0.1	14	0.49					
Movement Gro	up Res	sults			EB			W	В			NB			SB	
Approach Move				L	Т	R	L	Т	_	R	L	Т	R	L	Т	R
Assigned Move							3		_	18	5	2			6	16
Adjusted Flow F), veh/h					559		_	239	645	1173			297	289
		ow Rate (s), veh/h/l	n				1730		\rightarrow	585	1795	1781			1870	181
Queue Service							18.3		_	16.9	23.2	19.7			14.9	13.8
Cycle Queue C		- /-					18.3		_	16.9	23.2	19.7			14.9	13.8
Green Ratio (g		(30),0					0.21		_	0.21	0.64	0.68			0.39	0.39
Capacity (c), v							724		$\overline{}$	332	700	2412			732	709
Volume-to-Capa		tio (X)					0.771		_	.722	0.922	0.486			0.405	_
<u>.</u>		In (90 th percentile)					295.6		\rightarrow	61.8	405.3	244.6			237.2	228
		eh/In (90 th percenti					11.6		-	10.3	16.1	9.6			9.3	9.1
	,,	RQ) (90 th percent					0.59		_	0.52	1.35	0.00			0.00	0.0
Uniform Delay (, , , ,					44.7		-	14.2	20.4	9.9			26.4	26.4
Incremental De							2.7		-	4.2	12.4	0.5			1.7	1.7
Initial Queue De	, ,	,,					0.0		_	0.0	0.0	0.0			0.0	0.0
Control Delay (47.5		_	18.4	32.8	10.4			28.1	28.
Level of Service							D D		$\overline{}$	D	C	B			C C	C C
Approach Delay				0.0			47.7		D	_	18.4	_	В	28.1		С
Intersection Delay				0.0		27			U		10.4			C 20.		
micraection Del	ay, ə/ve					21	.0							<u> </u>		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS		/LOS		2.32		В	2.16		В	3	1.87	_	В	1.41		A
PECESIDAD LUS						_	2.10	- 1	ט		1.07	- 1	_	1.7		

HCS™ Streets Version 7.8.5

		HCS	/ Sigi	nalize	a inte	ersect	tion R	es	uits S	Sun	nmar	y				
General Inform	ation								Inter	rsect	ion Infe	ormatic	n .		14741	ЬL
Agency	iution	Diane B. Zimmerma	n Traffi	c Engine	erina				-	ation,		0.250		┦	41	
Analyst		DBZ	maill		is Date	6/3/20	20		-	a Type		Other		- J		
Jurisdiction		002		Time F		AM Pe		_	PHF			0.94		- →		*_
Urban Street		Divio Highwoy					No Build				Period	1> 7:0	20			-
Intersection		Dixie Highway KY 841 WB		File Na		-	rvale AN				renou	1-7.0	JU			
Project Descrip	tion	RaceTrac		File Na	ine	Flowe	vale Al	121	IND.XU	15				- 4	1	20 6
Project Descrip	lion	Racerrac														
Demand Inforn	nation				EB			V	VB			NB			SB	
Approach Move				L	T	R	L	_	T	R	1	T	R	L	T	R
Demand (v), v						<u> </u>	528		\rightarrow	226	276	502	+ '`	-	502	50
Demana (v), v	011/11						020	ė		220	270	002			002	
Signal Informa	tion					ŢŢ	K	T			\top					
Cycle, s	120.0	Reference Phase	2	1	54		2	\dashv						4		
Offset, s	0	Reference Point	End	Crass	20.2	16.4	25.0	1	0	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		46.4 5.1	25.2 3.6	0.		0.0	0.0	_				5
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0	-	0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI	. 1	WB	ВТ	NBI	.	NBT	SB	L	SBT
Assigned Phase	e							\neg	8		5		2			6
Case Number								\neg	9.0)	1.0		4.0			8.3
Phase Duration	. S							\neg	31.8	-	34.8	-	88.2		-	53.4
Change Period,		c). s							6.6	_	6.5	_	7.0			7.0
Max Allow Head	•							\neg	5.2	-	5.0		0.0			0.0
Queue Clearan									20.4	-	25.8					
Green Extensio								\neg	4.9	_	2.5	_	0.0			0.0
Phase Call Prof		(90),0						\dashv	1.00	-	1.00	\rightarrow	0.0			0.0
Max Out Probal									0.14	-	0.56	_				
Movement Gro	un Res	ults			EB			W	B			NB			SB	
Approach Move	•	·uito		L	T	R	L			R	L	T	R	L	T	R
Assigned Move						- 1	3	÷.	\rightarrow	18	5	2	- 1	-	6	16
Adjusted Flow F) veh/h		\vdash			562		\rightarrow	240	648	1179		_	298	290
		ow Rate (s), veh/h/l	n	\vdash			1730		\rightarrow	585	1795	1781			1870	181
Queue Service							18.4		\rightarrow	6.9	23.8	19.9			15.0	14.0
Cycle Queue C		, ,		\vdash			18.4		\rightarrow	6.9	23.8	19.9			15.0	14.0
Green Ratio (g		5 mile (g t), 5					0.21		_	.21	0.64	0.68			0.39	0.39
Capacity (c), v				\vdash			727		\rightarrow	333	702	2409			724	700
Volume-to-Capa		tio (X)					0.772		\rightarrow	721	0.924	0.490			0.411	0.41
		In (90 th percentile)					297.2		\rightarrow	32.7	416.2	246.3			239.5	231
		eh/In (90 th percenti					11.7		\rightarrow	0.3	16.5	9.7			9.4	9.3
		RQ) (90 th percent					0.59		\rightarrow	.53	1.39	0.00			0.00	0.0
Uniform Delay (<u> </u>		()				44.7		\rightarrow	4.1	21.1	10.0			26.8	26.8
Incremental De							2.8		\rightarrow	1.2	12.8	0.5			1.7	1.8
							0.0		-	0.0	0.0	0.0			0.0	0.0
	al Queue Delay (d ȝ), s/veh						47.4		\rightarrow	8.3	33.8	10.5			28.5	28.
Level of Service		211					47.4 D		\rightarrow	0.3 D	33.6 C	10.5 B			26.5 C	20.
		/1.08		0.0			47.7		D	-	18.8		В	28.		C
Approach Delay				0.0		27			U		10.8	·	D		0	C
Intersection Del	ay, s/ve	iii / LUS				27	.0							С		
Multimodal Re	eulte				EB			W	B			NB			SB	
		/1.08		2.32		В	2.16	_	В		1.87		В	1.4		A
Pedestrian LOS				- 4.0/			- 2.10	- 1	D	- 1	1.0/			III 1.4		\sim

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	rsect	tion R	esi	ults Su	mmar	у				
0	- 41								lutana a	4: l£	4 : -			4744	K II
General Inform	iation	D: D 7:	T 60						Intersec		_		- 1	41	
Agency		Diane B. Zimmerma	an iram			1 45	- 0000		Duration		0.250		-		
Analyst		DBZ			is Date	-			Area Ty	oe	Other		-		<u>.</u>
Jurisdiction		D		Time F		AM Pe			PHF	<u> </u>	0.94		- 3		-
Urban Street		Dixie Highway		— <u> </u>	is Year	-			Analysis	Period	1> 7:0	00			
Intersection		KY 841 WB		File Na	ıme	Flowe	rvale AN	121	B.xus				- 4	<u>ጎተተ</u>	
Project Descrip	tion	RaceTrac												4144	P C
Demand Inform	nation				EB			١٨	VB		NB			SB	
Approach Move				L	Т	R	L	_	T R	L	T	R	L	T	R
Demand (v), v					<u> </u>	1	554	+	226	_	+	+ '`	-	510	50
Demand (v), v	CII/II						334	-	220	200	310			310	30
Signal Informa	tion					Ų	1 6			\neg	_				
Cycle, s	120.0	Reference Phase	2	1	5.4		2	7					4		
Offset, s	0	Reference Point	End		<u>`</u> ↑↑	1000	100.0	1				1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		42.9 5.1	3.6	0.		0.0					5-
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0.		0.0		5	6	7	
T GIGG IIIGGG	1 1/10 0	omiana cap inc	011	1.100	10.0	110	7 0.0	10.	- 10.0	10.0					
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SBI		SBT
Assigned Phase	e							_	8	5		2			6
Case Number								_	9.0	1.0		4.0			8.3
Phase Duration	S				_			_	32.8	37.3	-	87.2		_	49.9
Change Period,		c) s			-			\rightarrow	6.6	6.5	\rightarrow	7.0		_	7.0
Max Allow Head		**			_			\rightarrow	5.2	5.0	-	0.0		_	0.0
Queue Clearan				_	_				21.3	29.5	-	0.0		_	0.0
Green Extensio		(-).		_	_			-	4.9	1.3	-	0.0	_	_	0.0
Phase Call Prof		(90),0			_			\rightarrow	1.00	1.00	$\overline{}$	0.0		_	0.0
Max Out Probal								_	0.18	1.00	\rightarrow			_	
Movement Gro	up Res	ults		<u> </u>	EB			WI	В		NB			SB	
Approach Move	ment			L	Т	R	L	Т		L	Т	R	L	T	R
Assigned Move	ment						3		18	5	2			6	16
Adjusted Flow F	Rate (v), veh/h					589		240	673	1191			302	294
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n				1730		1585	1795	1781			1870	1811
Queue Service	Time (g	g s), S					19.3		16.8	27.5	22.4			15.2	14.9
Cycle Queue C	learanc	e Time (<i>g c</i>), s					19.3		16.8	27.5	22.4			15.2	14.9
Green Ratio (g							0.22		0.22	0.63	0.67			0.36	0.36
Capacity (c), v							755		346	712	2380			670	648
Volume-to-Capa							0.781		0.695	0.945	0.500			0.451	0.453
		In (90 th percentile)					309.9		259	490.6	288.7			256.1	246.8
Back of Queue	(Q), ve	eh/In (90 th percenti	le)				12.2		10.2	19.5	11.4			10.1	9.9
Queue Storage	Ratio (RQ) (90 th percent	tile)				0.62		0.52	1.64	0.00			0.00	0.00
Uniform Delay ((d 1), s	/veh					44.2		43.2	24.8	12.0			29.5	29.5
Incremental De	lay (d 2), s/veh					3.1		3.6	16.3	0.5			2.2	2.3
Initial Queue De	elay (d	з), s/veh					0.0		0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/ve	eh					47.3		46.8	41.1	12.5			31.7	31.8
	(LOS)						D		D	D	В			С	С
Level of Service	el of Service (LOS)						47.1		D	22.9)	С	31.7	7	С
	roach Delay, s/veh / LOS					20	0.0						C		
Approach Delay	roach Delay, s/veh / LOS section Delay, s/veh / LOS					30	1.0						C		
Approach Delay Intersection Del	lay, s/ve					30	7.0								
Approach Delay	lay, s/ve	h / LOS		2.32	EB	В	2.16	WI	ВВ	1.87	NB	В	1.4	SB	A

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	ersec	tion R	es	ults S	Sun	nmar	У				
Canaral Inform	ation								Inton		ian Inf	ti -			الماليات	Is U
General Inform	ation	Diana D. Zimanana	T66	- Fi							ion Info	_	n	- 1	41	
Agency		Diane B. Zimmerma	an Iraπi			Lun 47	- 0000		Dura			0.250		-		
Analyst		DBZ		<u> </u>		Jun 16			Area	туре	е	Other		-	. !	
Jurisdiction		District Histories		Time P		AM Pe		_	PHF		D11	0.94		- 3		-
Urban Street		Dixie Highway				$\overline{}$	No Build				Period	1> 7:0)()			
Intersection		KY 841 WB		File Na	me	Flowe	rvale AN	/1 31	NB.xu	IS .				- 4	<u>ነተተ</u>	
Project Descrip	tion	RaceTrac	_		_	_			_		_	_	_		ነጻነቀዮ	M [I]
Demand Inforr	nation				EB			V	VB			NB			SB	
Approach Move				L	T	R	L	T	T	R	L	T	R	L	T	R
Demand (v), v				-		 	555	+		238	290	528	+ '`	+-	528	53
Demand (v), v	CII/II						333	-	4	200	230	320			320	- 55
Signal Informa	tion					ŢŢ	1 8	J								
Cycle, s	120.0	Reference Phase	2	1	EA		2	\exists						4		
Offset, s	0	Reference Point	End	1	<u>`</u>	<u> </u>	100.0	1	_	0.0			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		41.7 5.1	26.3 3.6	0		0.0	0.0					<u> </u>
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0		_	0.0	0.0		5	6	7	5
													•			
Timer Results				EBL		EBT	WBI		WB ⁻	т	NBL		NBT	SB	L	SBT
Assigned Phase	e								8		5		2		$\overline{}$	6
Case Number									9.0		1.0		4.0			8.3
Phase Duration	. S							\neg	32.9	-	38.4	_	87.1		\neg	48.7
Change Period		c). S							6.6	-	6.5	_	7.0			7.0
Max Allow Head					_				5.2	-	5.0	_	0.0		_	0.0
Queue Clearan									21.3	-	31.3	\rightarrow				
Green Extension		1 - 7			_				5.0	_	0.6	_	0.0		_	0.0
Phase Call Pro		(90),0							1.00	-	1.00	$\overline{}$	0.0			0.0
Max Out Proba									0.18	-	1.00	_			_	
THE COLL TODA	y										1100					
Movement Gro	up Res	ults			EB			W	'B	\neg		NB			SB	
Approach Move	ement			L	Т	R	L	Т	· F	R	L	Т	R	L	T	R
Assigned Move	ment						3		1	8	5	2			6	16
Adjusted Flow I	Rate (v), veh/h					590		25	53	681	1240			313	305
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n				1730		15	85	1795	1781			1870	1810
Queue Service	Time (g	g s), S					19.3		17	7.8	29.3	23.5			15.9	15.8
Cycle Queue C	learanc	e Time (<i>g</i> ∊), s					19.3		17	7.8	29.3	23.5			15.9	15.8
Green Ratio (g	/C)						0.22		0.	22	0.63	0.67			0.35	0.35
Capacity (c), v	/eh/h						758		34	47	712	2377			651	630
Volume-to-Capa		tio (X)					0.779		0.7	729	0.957	0.522			0.482	0.484
Back of Queue	(Q), ft/	In (90 th percentile)	1				310		27	4.4	526.7	297.9			270.9	260.8
		eh/In (90 th percenti		\Box			12.2		10	0.8	20.9	11.7			10.7	10.4
	, ,	RQ) (90 th percent					0.62		$\overline{}$	55	1.76	0.00			0.00	0.00
Uniform Delay							44.1		43	3.5	26.9	12.1			30.6	30.7
Incremental De							3.0		-	.4	18.4	0.6			2.5	2.6
Initial Queue De		,.					0.0		_	.0	0.0	0.0			0.0	0.0
Control Delay (,,					47.1		\rightarrow	7.9	45.3	12.7			33.2	33.3
Level of Service							D		$\overline{}$	D	D	В			C	C
Approach Delay		/LOS		0.0			47.4				24.2		С	33.		C
Intersection De				5.5		31	.6							C		
	, 0, 70															
Multimodal Re	sults				EB			W	'B			NB			SB	
		/LOS		2.32		В	2.16	_	В		1.87		В	1.4		Α
Pedestrian LOS	strian LOS Score / LOS					-										

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	ersect	tion R	esu	ılts Sur	nmar	У				
General Inforn	nation								Intersec	tion Inf	ormatic	n.		4441	ьų
	lation	Diana B. Zimmarma	n Troffi	o Engin	ooring			-	Duration		0.250	,11	- 1	41	
Agency		Diane B. Zimmerma	an Iraii	-		Lun 15	2000	-			-		- 2		
Analyst		DBZ		<u> </u>	is Date	-	,		Area Typ	e	Other		-	. !	*_
Jurisdiction		Divio Highway		Time F		2031 E				Dorind	0.94	10	- 3		-
Urban Street		Dixie Highway KY 841 WB		-	is Year	-	rvale AN	1 24 1	Analysis	Period	1 / 1:0)O	_ B		
Intersection	tion.	RaceTrac		File Na	ame	Flower	rvale Al	1311	5.xus				- 4	ጎተተ	2.6
Project Descrip	lion	Racerrac													F. (1)
Demand Inforr	nation				EB			W	'B		NB			SB	
Approach Move				L	T	R	L	T		1	T	T R	L	T	R
Demand (v), v					<u> </u>	<u> </u>	581	 	238	302	536	+ '`	1	536	53
Demand (), v	011/11						001		200	002	000			000	
Signal Informa	ition					ŢŢ.	1 8	$\overline{}$		\neg					
Cycle, s	120.0	Reference Phase	2	1	54	RA.	2	\dashv					4		
Offset, s	0	Reference Point	End	Green	31.7	41.0	27.2	0.0	0.0	0.0		1	2	3	_
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		5.1	3.6	0.0		0.0	-				>
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0.0		0.0		5	6	7	
Timer Results				EBL	.	EBT	WBI		WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	e								8	5		2			6
Case Number								\neg	9.0	1.0		4.0			8.3
Phase Duration	ı, s							\neg	33.8	38.2	2	86.2		\neg	48.0
Change Period	(Y+R	c), S						\neg	6.6	6.5		7.0			7.0
Max Allow Hea	•	*						\neg	5.2	5.0		0.0		\neg	0.0
Queue Clearan		,,						\neg	22.2	33.3	3				
Green Extension		, ,			-			\neg	5.1	0.0		0.0		\neg	0.0
Phase Call Pro		(3-7,-						\neg	1.00	1.00	\rightarrow				
Max Out Proba								士	0.22	1.00	\rightarrow				
Movement Gro	oun Res	ults			EB			WE	3		NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	T	R
Assigned Move							3		18	5	2	- ' `		6	16
Adjusted Flow I) veh/h					618		253	705	1252			318	309
•		ow Rate (s), veh/h/l	n				1730		1585	1795	1781			1870	1811
Queue Service		, ,,					20.2		17.6	31.3	26.0			16.2	16.2
Cycle Queue C		, ,					20.2		17.6	31.3	26.0			16.2	16.2
Green Ratio (g		(30),0					0.23		0.23	0.64	0.66			0.34	0.34
Capacity (c), v							785		360	722	2349			639	619
Volume-to-Cap		tio (X)					0.787		0.704	0.978	0.533			0.497	0.499
		In (90 th percentile))				322.8		270.3	578.2	340.8			277.5	267.5
Back of Queue		eh/In (90 th percent					12.7		10.6	22.9	13.4			10.9	10.7
	, .	RQ) (90 th percent					0.65		0.54	1.93	0.00			0.00	0.00
Back of Queue		, , , , , , , , , , , , , , , , , , ,					43.7		42.7	29.0	14.3			31.3	31.3
Back of Queue Queue Storage		/veh					3.4		3.8	22.0	0.6			2.8	2.9
Back of Queue Queue Storage Uniform Delay	(d 1), s						0.0		0.0	0.0	0.0			0.0	0.0
Back of Queue Queue Storage Uniform Delay Incremental De	(d 1), s. lay (d 2), s/veh					0.0		0.0	-10	- 10				_
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De	(d ₁), s. lay (d ₂ elay (d), s/veh 3), s/veh					$\overline{}$		46.4	50.9	14.9			_	34.2
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De Control Delay ((d 1), s. lay (d 2 elay (d d), s/ve), s/veh 3), s/veh eh					47.0		46.4 D	50.9 D	14.9 B			34.1	-
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Do Control Delay (Level of Service	(d 1), s, lay (d 2 elay (d d), s/ve e (LOS)), s/veh 3), s/veh eh		0.0			47.0 D		D	D	В	С	34.1	34.1 C	С
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De Control Delay (Level of Service Approach Delay	(d 1), s. lay (d 2 elay (d d), s/ve e (LOS) y, s/veh), s/veh 3), s/veh eh / LOS		0.0		33	47.0 D 46.8				В	С	34.1 C	34.1 C	
Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De Control Delay (Level of Service Approach Delay Intersection De	(d1), salay (d2) elay (d d), s/ve e (LOS) y, s/veh), s/veh 3), s/veh eh / LOS		0.0		33	47.0 D 46.8		D D	D	В			34.1 C	С
Back of Queue	(d 1), s. lay (d 2 elay (d d), s/ve e (LOS) y, s/veh lay, s/ve), s/veh 3), s/veh eh / LOS		0.0	EB	33 B	47.0 D 46.8	WE	D D	D	B NB			34.1 C	

Copyright ${\small \circledcirc}$ 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

											,		
							Interse	ction Inf	ormatic	n	_	147441	يا دل
Diane B. Zimmerma	an Traffi						Duratio	ո, h	0.250				
DBZ		Analys	is Date	Jun 15	5, 2020		Area Ty	ре	Other		.5. →		· L
		Time P	eriod	PM Pe	eak		PHF		0.98		÷		- ;-
Dixie Highway		Analys	is Year	2020			Analysi	s Period	1> 4:4	15	72		
KY 841 WB		File Na	me	Flower	rvale PN	1 20.	xus					ካተተ	
RaceTrac											7	14144	21
			EB			W	/B		NB			SB	
		L	Т	R	L	T	ГВ	Ī	Т	R	L	Т	R
					975		47	175	750			1050	50
					3								
Reference Phase	2	1	5.4	1	2	7					4		
	_	<u> </u>			-	1				1	2	3	
						_							5
· · · · · · · · · · · · · · · · · · ·			-								6	7	~
Simult. Gap 19/5	Oil	Reu	3.0	1.8	3.0	10.0	J [0.0	[0.0		3	8	- 1	
		EBL	. .	EBT	WBI	-	WBT	NB	L	NBT	SB	L	SBT
						\perp	8	5		2			6
						_	9.0	1.0		4.0			7.3
							59.8	24.0) !	90.2			66.1
c), S							6.6	6.5		7.0			7.0
<i>MAH</i>), s							5.2	5.0		0.0			0.0
e (g s), s							44.6	16.8	3				
(g e), s						\neg	8.6	0.8		0.0			0.0
						Т	1.00	1.00)				
							0.56	0.4	1				
sults			EB			WE	3	_	NB			SB	
		L	Т	R	L	Т	R		Т	R	L	Т	R
			-		3		-	5				_	16
), veh/h					995		485	283	1212			1071	51
	n						_	-				_	1610
· ,,					-		_	-				_	3.0
					$\overline{}$		_	_				_	3.0
J					-		_	_				_	0.39
					-		-	-				_	634
atio (X)					$\overline{}$			_				_	0.08
)	\vdash			-		\rightarrow	-					52.8
					$\overline{}$		\rightarrow	-					2.1
					-			-				_	0.00
, , ,	,				43.8		_		11.1			39.4	28.4
					3.7			13.8	1.2			4.0	0.2
					0.0		0.0	0.0	0.0			0.0	0.0
					47.5			38.0	12.3			43.4	28.7
					D		E	D	В			D	С
		0.0			-			-		В	42.7		D
				36									
// 00			_			_		-	NB				
/LOS		2.33	1	В	2.33		В	1.9	1	В	1.4	1 I	Α
	Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S c), s MAH), s e (gs), s (ge), s sults y), veh/h ow Rate (s), veh/h/l gs), s e Time (gc), s atio (X) t/in (90 th percentile) reh/in (90 th percentile)	Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap N/S On simult. Gap N/S On c), s MAH), s e (g s), s e (g s), s (g e), s sults y), veh/h ow Rate (s), veh/h/ln g s), s ex Time (g c), s atio (X) t/ln (90 th percentile) eh/ln (90 th percentile) f(RQ) (90 th percentile) s/veh g), s/veh eh h/LOS	Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap N/S On Red	Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap E/W On Simult. Gap N/S On EBL	Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap N/S On EBL EBT	RaceTrac	Reference Phase 2 Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap E/W On Simult. Gap N/S On Red 3.0 1.9 3.0 0.1	Reference Phase 2 Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap E/W On Simult. Gap E/W On Red 3.0 1.9 3.0 0.0	Reference Phase 2 Reference Phase 3.0 1.9 3.0 0.0	Reference Phase 2 Reference Point End Simult. Gap R/N On Red 3.0 1.9 3.0 0.0	RY 841 WB RaceTrac	Reference Phase 2 Reference Phase 2 Reference Phase 2 Reference Point End Simult. Gap E/W On Simult. Gap E/W On Simult. Gap E/W On Red 3.0 1.9 3.0 0	Reference Phase 2 Reference Phase 2 Reference Phase 2 Reference Phase 3.0 1.9 3.0 1.0 4.0 1.0

HCS™ Streets Version 7.8.5

		нсѕ	7 Sig	nalize	d Inte	ersect	ion R	esı	ults S	Sun	nmar	/				
Canaval Inform									ludan		ian luf.	4:			14741	s t
General Inform	lation	Diana B. Zimmarma	n Troffi	o Engine	orina				-		ion Info			- 1	111	
Agency		Diane B. Zimmerma	an naill			lup 45	2000		Durat			0.250 Other		- 2		
Analyst		DBZ				Jun 18			Area PHF	туре	В	0.98		-		<u>.</u> _
Jurisdiction		Divis History		Time P		PM Pe					D = =i = =i	+	15	- 4		-
Urban Street		Dixie Highway		Analys		-	No Build				Period	1> 4:4	45	- E		
Intersection	· · · · ·	KY 841 WB		File Na	me	Flowe	rvale PN	121	NB.xu	IS				- 4	111	
Project Descrip	lion	RaceTrac													14.14.1	r II
Demand Inform	nation				EB			۱۸	/B			NB			SB	
Approach Move				L	T	R	L	_	т	R	L	T	R	1	T	R
Demand (v), v						IX	980	\vdash	_	477	176	754	+ '`	+-	1055	50
Demand (v), v	CHIT						000			7//	170	704			1000	00
Signal Informa	tion					Ų	8	T								
Cycle, s	150.0	Reference Phase	2	1	E4	•••	2	\exists						4		
Offset, s	0	Reference Point	End	Crass	177	50.7	F0.4	1		0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		58.7	53.4 3.6	0.		0.0	0.0	_	< /			>
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0.	-	0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI	.	WB ²	Т	NBL		NBT	SB	L	SBT
Assigned Phase	e							\neg	8	\neg	5		2			6
Case Number								\neg	9.0		1.0		4.0			7.3
Phase Duration	, s							\neg	60.0		24.2		90.0		\neg	65.7
Change Period,	(Y+R	c), S						\dashv	6.6		6.5		7.0			7.0
Max Allow Head					\neg			\neg	5.2		5.0		0.0		\neg	0.0
Queue Clearan								\dashv	44.8	3	17.0					
Green Extensio		(- /-			\top			\neg	8.6	-	0.8		0.0		\neg	0.0
Phase Call Prof		(3-7/-						\dashv	1.00	-	1.00					
Max Out Probal								ユ	0.57	-	0.52	_				
Movement Gro	up Res	sults			EB			WI	В			NB			SB	
Approach Move	ment			L	Т	R	L	Т	F	R	L	Т	R	L	Т	R
Assigned Move	ment						3		1	8	5	2			6	16
Adjusted Flow F	Rate (v), veh/h					1000		48	87	284	1218			1077	51
		ow Rate (s), veh/h/l	n				1730		15	85	1795	1781			1781	1610
Queue Service		, ,,					39.3		42	2.8	15.0	23.4			39.5	3.0
Cycle Queue C							39.3		42	2.8	15.0	23.4			39.5	3.0
Green Ratio (g		,,		\Box			0.36		0.3	36	0.52	0.55			0.39	0.39
Capacity (c), v							1232		$\overline{}$	64	328	1970			1395	631
Volume-to-Capa		atio (X)					0.812		\rightarrow	363	0.866	0.618			0.772	0.08
·		/In (90 th percentile)					575.5		\rightarrow	9.1	207.9	237			579.2	53.1
	. ,.	eh/ln (90 th percenti					22.7		\rightarrow	1.0	8.3	9.3			22.8	2.1
		RQ) (90 th percent					0.00		\rightarrow	00	1.54	0.00			0.00	0.00
Uniform Delay (,				43.8		\rightarrow	1.9	23.9	11.0			39.8	28.7
Incremental De							3.8		\rightarrow	1.6	14.7	1.2			4.2	0.3
Initial Queue De							0.0		$\overline{}$.0	0.0	0.0			0.0	0.0
Control Delay (,.					47.5		\rightarrow	3.5	38.6	12.2			44.0	28.9
Level of Service							D		\rightarrow	E	D	В			D	C
Approach Delay				0.0			50.5	П	D		17.2		В	43.		D
Intersection Del				3.3		36					.,,,			D TO.		
Multimodal Da	oulto.				EP			10//	B			NID			SB	
Multimodal Re				2.33	EB	В	2.33	WI	ВВ		1.91	NB	В	1.4		Α
Pedestrian LOS	Cases	// 00														

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	ersect	tion R	es	ults	Sun	nmar	У				
General Inform	ation								Inte	react	ion Infe	ormatio	\n		INTEL	ьų
Agency	lation	Diane B. Zimmerma	n Traffi	c Engine	ering			_	-	ation.		0.250		┨┸	111	
Analyst		DBZ	ali italii			Jun 18	5 2020		-	a Typ		Other		- 2		
Jurisdiction		002		Time F		PM Pe		_	PHF			0.98		-		<u>. </u>
Urban Street		Divio Highway		_		_					Period	1> 4:4	15	- 3		-
Intersection		Dixie Highway KY 841 WB		File Na		-	rvale PN	1 21			renou	17 4.4	+0	-		
Project Descrip	tion	RaceTrac		File Na	ine	riowe	I vale Pi	/1 2 1	D.XUS	•				- ₹	া † †	20
Project Descrip	lion	Racerrac														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move				L	T	R	1	_	T	R	1	T	R	L	T	R
Demand (v), v					<u> </u>	· · ·	1006		\rightarrow	477	187	762	+ '`	-	1063	
Demana (v), v	011/11						1000	ė			107	102		_	1000	- 00
Signal Informa	tion					ŢŢ	8	T			\top					
Cycle, s	150.0	Reference Phase	2	1	5.4		⊌	\dashv						4		
Offset, s	0	Reference Point	End	Crass	10.4	<u>``</u>	EO F	1		0.0	0.0		1	2	3	-
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		58.0 5.1	53.5 3.6	0.		0.0	0.0					5
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0	$\overline{}$	0.0	0.0		5	6	7	
															, ,	
Timer Results				EBL		EBT	WBI	. \top	WE	3Т	NBI		NBT	SB	L	SBT
Assigned Phase								\neg	8		5		2			6
Case Number								\neg	9.0	0	1.0		4.0			7.3
Phase Duration	. S							\neg	60.	-	24.9	-	89.9		-	65.0
Change Period,		c). s							6.6	_	6.5	\rightarrow	7.0			7.0
Max Allow Head	•							\neg	5.2	-	5.0		0.0			0.0
Queue Clearan									44.	-	17.6	3				
Green Extensio								\neg	8.8	-	0.8		0.0		_	0.0
Phase Call Prof		(9°), 0						_	1.0	-	1.00		0.0			0.0
Max Out Probal									0.5	-	0.72	-				
Movement Gro	un Res	ults			EB			W	R			NB			SB	
Approach Move	•			L	T	R	L	Т	_	R	L	T	R	L	T	R
Assigned Move				-		-1	3	·	\rightarrow	18	5	2	- 1		6	16
Adjusted Flow F) veh/h					1027	_	\rightarrow	187	305	1243			1085	51
		ow Rate (s), veh/h/l	n	\vdash			1730		-	585	1795	1781		_	1781	161
Queue Service		, ,,					40.7		\rightarrow	2.8	15.6	23.6			40.3	3.0
Cycle Queue C		,					40.7		\rightarrow	2.8	15.6	23.6			40.3	3.0
Green Ratio (g		5 Tillio (9 c), 5		-			0.36		_	0.36	0.52	0.55			0.39	0.39
Capacity (c), v				\vdash			1234		$\overline{}$	566	330	1968		_	1377	623
Volume-to-Capa		tio (X)					0.832		-	.861	0.925	0.632			0.787	0.08
		In (90 th percentile)					596.4		\rightarrow	08.1	273.7	230.2			591.1	53.
		eh/In (90 th percentile)					23.5		\rightarrow	3.9	10.9	9.1			23.3	2.1
		RQ) (90 th percent					0.00		\rightarrow	.99	2.03	0.00			0.00	0.00
Uniform Delay (, , , ,	()				44.1		\rightarrow	4.8	29.7	10.5			40.6	29.
Incremental De							4.4		\rightarrow	1.5	22.7	1.3			4.6	0.3
							0.0		-	0.0	0.0	0.0			0.0	0.0
	al Queue Delay (d 3), s/veh						48.6		\rightarrow	66.2	52.4	11.8			45.2	29.4
Level of Service		211					46.6 D		$\overline{}$	6.2 E	52.4 D	11.6 B			45.2 D	29.4 C
Approach Delay		/1.08		0.0			51.0		D	-	ر 19.8		В	44.		D
				0.0		07			U		19.8	,	D		J	U
Intersection Del	ay, s/ve	ii / LUS				3/	. .7							D		
Multimodal Re	eulte				EB			W	B			NB			SB	
		/1.08		2.33		В	2.33	_	В		1.91		В	1.4		A
Pedestrian LOS				= Z.JJ			· Z.JJ	- 1	- 13		1.87		D	= 1.4		\sim

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	ersect	tion R	esı	ılts S	umma	ry				
General Inform	nation								Inters	ection In	formati	on	_ 6	14741	الم ال
Agency		Diane B. Zimmerma	an Traffi	c Engine	eering				Durati	on, h	0.250)	-		
Analyst		DBZ		Analys	is Date	Jun 15	5, 2020		Area 1	уре	Othe	r	±, →		
Jurisdiction				Time F	eriod	PM Pe	eak		PHF		0.98		÷		5
Urban Street		Dixie Highway		Analys	is Year	2031 N	No Build		Analys	is Period	1> 4:	45			
Intersection		KY 841 WB		File Na	ıme	Flowe	rvale PN	131	B.xus					5++	
Project Descript	tion	RaceTrac												MINT	\$* (T
Demand Inforn	nation				EB			۱۸	/B		NB			SB	
Approach Move				L	T	R	L	_		₹ L	T	R	L	T	R
				-		N	1056	-	5	_	_	K	-	1117	53
Demand (v), v	en/n						1056	-	5	71 19	5 601			1117	53
Signal Informa	tion					11	8	$\overline{+}$		\Box					
Cycle, s	150.0	Reference Phase	2		54	N↑	\ \C	1					1		
Offset, s	0	Reference Point	End	Green	21.7	53.0	55.2	0.	0 0	0 0.0		1	2	3	_
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	5.1	3.6	0.				< /	1		>
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	0.				5	6	7	
Timer Results	_			EBL		EBT	WBL		WBT	NE	-	NBT	SBI	L	SBT
Assigned Phase Case Number	е							+	9.0	1.	\rightarrow	4.0			7.3
				_				+		_	_		-	_	
Phase Duration		`		_	_			-	61.8	28	$\overline{}$	88.2	⊢	_	60.0
Change Period,	•	*-			_			-	6.6	6.	$\overline{}$	7.0	-		7.0
Max Allow Head								_	5.2	5.	$\overline{}$	0.0	\vdash		0.0
Queue Clearan		, - ,						4	47.1	22	.3				
Green Extensio	n Time	(g e), S						_	8.1	0.)	0.0			0.0
Phase Call Prob	bability							\perp	1.00	1.0	0				
Max Out Probal	bility								0.70	1.0	0				
Movement Gro	up Res	sults			EB			WI	3	$\overline{}$	NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				_			3	·	18	-	2		<u> </u>	6	16
Adjusted Flow F		\ veh/h		-			1078		51	_	1306		_	1140	54
-			In	-			1730		158	-				1781	1610
-		ow Rate (s), veh/h/	11.1						100	1/90	-		_	_	1010
LILIBITIO CONTICO		7. \ e					$\overline{}$		15	1 20 a	27.3				2/
Queue Service							42.9		45.	-	27.3			45.7	3.4
Cycle Queue C	learanc						42.9 42.9		45.	1 20.3	27.3			45.7	3.4
Cycle Queue C Green Ratio (<i>g</i> .	learanc						42.9 42.9 0.37		45. 0.3	1 20.3 7 0.51	27.3 0.54			45.7 0.35	3.4 0.35
Cycle Queue Congreen Ratio (g. Capacity (c), v	learance /C) reh/h	e Time (<i>g c</i>), s					42.9 42.9 0.37 1273		45. 0.3 583	1 20.3 7 0.51 3 332	27.3 0.54 1928			45.7 0.35 1258	3.4 0.35 569
Cycle Queue Court Green Ratio (go Capacity (c), v Volume-to-Capa	learance /C) reh/h acity Ra	e Time (g c), s					42.9 42.9 0.37 1273 0.847		45. 0.3 583 0.87	1 20.3 7 0.51 3 332 7 0.962	27.3 0.54 1928 0.677			45.7 0.35 1258 0.906	3.4 0.35 569 0.098
Cycle Queue C Green Ratio (<i>g</i> Capacity (<i>c</i>), v Volume-to-Capa Back of Queue	learance /C) /eh/h acity Ra	e Time (g_c), s tio (X)					42.9 42.9 0.37 1273 0.847 626.9		45. 0.3 58: 0.87 643	1 20.3 7 0.51 3 332 7 0.962 8 448.6	27.3 0.54 1928 0.677 250.3			45.7 0.35 1258 0.906 691.2	3.4 0.35 569 0.099 60.6
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue	learance /C) /eh/h acity Ra (Q), ft/	e Time (g_c), s Itio (X) In (90 th percentile eh/in (90 th percent	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7		45. 0.3 583 0.87 643 25.	20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8	27.3 0.54 1928 0.677 250.3 9.9			45.7 0.35 1258 0.906 691.2 27.2	3.4 0.35 569 0.098 60.6 2.4
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage	learance /C) /eh/h acity Ra (Q), ft/ (Q), ve Ratio (e Time (gc), s tio (X) In (90 th percentile eh/ln (90 th percent RQ) (90 th percen	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00		45. 0.3 58: 0.87 643 25. 2.1	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32	27.3 0.54 1928 0.677 250.3 9.9 0.00			45.7 0.35 1258 0.906 691.2 27.2 0.00	3.4 0.35 569 0.099 60.6 2.4 0.00
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (learance //C) //eh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s	e Time (gc), s Itio (X) In (90 th percentile eh/in (90 th percent RQ) (90 th percent/veh	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5		45. 0.3 583 0.87 643 25. 2.1 44.	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6			45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1	3.4 0.35 569 0.098 60.6 2.4 0.00 32.5
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental De	learance /C) /eh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s. lay (d2)	e Time ($g c$), s tio (X) In (90 th percentile eh/ln (90 th percent RQ) (90 th percen /veh), s/veh	ile)				42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1		45. 0.3 58: 0.87 643 25. 2.1 44.	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5			45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De	learance //C) reh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), se lay (d 2 elay (d	e Time ($g c$), s Itio (X) In (90 th percentile eh/ln (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0		45. 0.3 58: 0.87 643 25. 2.1 44.	1 20.3 7 0.51 8 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5			45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue Del Control Delay (learance //C) //ch/h //h //city Ra //c (Q), ft/ //c (Q), ve //c Ratio (//c / / / / / / / / / / / //c / / / / /	e Time ($g c$), s Itio (X) In (90 th percentile eh/In (90 th percent RQ) (90 th percen I/veh), s/veh 3), s/veh eh	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6		45. 0.3 583 0.87 643 25. 2.1 44. 13. 0.0	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1			45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3 0.0
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service	learance //C) //eh/h acity Ra (Q), fu (Q), ve Ratio ((d1), s lay (d2 elay (dd), s/ve e (LOS)	e Time ($g c$), s Intio (X) In (90 th percentile eh/In (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh eh	ile)				42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6 D		45. 0.3 58: 0.87 643 25. 2.1 44.	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0 7 0.962 1 3.32 2 38.5 2 33.8	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1			45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service	learance //C) //eh/h acity Ra (Q), fu (Q), ve Ratio ((d1), s lay (d2 elay (dd), s/ve e (LOS)	e Time ($g c$), s Intio (X) In (90 th percentile eh/In (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh eh	ile)	0.0			42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6		45. 0.3 583 0.87 643 25. 2.1 44. 13. 0.0	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1	C	56.0	45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3 0.0
Cycle Queue C Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De	learance //C) /eh/h acity Ra (Q), ft/ (Q), ve Ratio ((d1), s, lay (d2 elay (dd), s/ve e (LOS) y, s/veh	e Time ($g \circ$), s Intio (X) In (90 th percentile eh/in (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh eh	ile)	0.0		42	42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6 D		45. 0.3 58: 0.87 643 25. 2.1 44. 13. 0.0	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0 7 0.962 1 3.32 2 38.5 2 33.8	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1	C	56.0 D	45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1	3.4 0.35 569 0.098 60.6 2.4 0.00 32.5 0.3 0.0
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental De Initial Queue De Control Delay (Level of Service Approach Delay Intersection Del	learance //C) //eh/h //eacity Ra //c (Q), ft/ (Q), ve Ratio ((Q), ve Ratio ((Q), s/ve elay (d), s/ve //eacity Ra	e Time ($g \circ$), s Intio (X) In (90 th percentile eh/in (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh eh	ile)	0.0		42	42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6 D		45. 0.3 58: 0.87 643 25. 2.1 44. 13. 0.0 57.	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0 7 0.962 1 3.32 2 38.5 2 33.8	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1 B	C		45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1 E	3.4 0.35 569 0.099 60.6 2.4 0.00 32.5 0.3 0.0 32.8
Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental De Initial Queue De Control Delay (Level of Service Approach Delay	learance //C) //eh/h //eacity Ra //c (Q), ft/ (Q), ve Ratio ((d /), s, //lay (d / 2) //elay (d / d), s/ve //elay (s/ve) //elay	e Time ($g c$), s Intio (X) In (90 th percentile eh/in (90 th percent RQ) (90 th percent/veh), s/veh 3), s/veh eh / LOS eh / LOS	ile)	0.0	EB	42 B	42.9 42.9 0.37 1273 0.847 626.9 24.7 0.00 43.5 5.1 0.0 48.6 D	WI	45. 0.3 58: 0.87 643 25. 2.1 44. 13. 0.0 57.	1 20.3 7 0.51 3 332 7 0.962 8 448.6 3 17.8 1 3.32 2 38.5 2 33.8 0.0 7 0.962 1 3.32 2 38.5 2 33.8	27.3 0.54 1928 0.677 250.3 9.9 0.00 11.6 1.5 0.0 13.1 B	C		45.7 0.35 1258 0.906 691.2 27.2 0.00 46.1 10.9 0.0 57.1 E	3.4 0.35 569 0.095 60.6 2.4 0.00 32.5 0.3 0.0

HCS™ Streets Version 7.8.5

		HCS	7 Sig	nalize	d Inte	ersec	tion R	es	uits	Sur	nmar	У				
General Inform	ation								Inte	ersect	ion Inf	ormatio	n		14741	ЬL
Agency	iution	Diane B. Zimmerma	an Traffi	c Engine	erina				-	ration,		0.250		┨	TIT	
Analyst		DBZ	all Italii			Jun 1	5 2020		-	ea Typ		Other		- P		
Jurisdiction		DUZ		Time F		PM Pe		_	PH			0.98		-		-
Urban Street		Divio Highway		_		_			-		Period	1> 4:4	15			-
Intersection		Dixie Highway KY 841 WB		File Na		-	rvale PN	1 21			renou	17 4.4	+0			
	tion			File Na	ine	Flowe	I vale Pi	/131	D.XU	us				- ₹	1 1 1 2 2 2	20 6
Project Descrip	uon	RaceTrac												-		
Demand Inforn	nation				EB		$\overline{}$	V	VB			NB		$\overline{}$	SB	
Approach Move				L	T	R	1 -	_	T	R	L	T	R	T	T	R
Demand (v), v						'`	1056	-	•	501	196	801	1	1	1117	53
Demana (v), v	CHATT						1000	ė		001	100	001			1117	
Signal Informa	tion					ĮĮĮ.	1 8	I								
Cycle, s	150.0	Reference Phase	2	1	5.4		∠ ∠	\dashv						4		
Offset, s	0	Reference Point	End	Crass	24.7	52.0	EEO	1	0	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		53.0 5.1	55.2 3.6		.0	0.0	0.0			1		5
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	1.9	3.0	\rightarrow	.0	0.0	0.0		5	6	7	
Timer Results				EBL		EBT	WBI	_	W	/BT	NBI	_	NBT	SB	L	SBT
Assigned Phase	9							\neg	8	8	5	\neg	2			6
Case Number									9	0.0	1.0		4.0			7.3
Phase Duration	. S									1.8	28.2	-	88.2			60.0
Change Period,		c). S								6.6	6.5	_	7.0			7.0
Max Allow Head	•									5.2	5.0	-	0.0			0.0
Queue Clearan										7.1	22.3	$\overline{}$	0.0			
Green Extensio										3.1	0.0	-	0.0			0.0
Phase Call Prof		(90),0								.00	1.00	\rightarrow	0.0			0.0
Max Out Probal										.70	1.00	-				
Movement Gro	un Res	ults			EB			W	/B			NB			SB	
Approach Move	•	, unto		L	T	R	L	т	_	R	L	T	R	L	T	R
Assigned Move						- 1 \	3		\dashv	18	5	2		-	6	16
Adjusted Flow F) veh/h		\vdash			1078		+	511	320	1306		_	1140	54
		ow Rate (s), veh/h/l	n	\vdash			1730		\rightarrow	1585	1795	1781		_	1781	161
Queue Service							42.9		\rightarrow	45.1	20.3	27.2			45.7	3.4
Cycle Queue C				\vdash			42.9		\rightarrow	45.1	20.3	27.2			45.7	3.4
Green Ratio (g		o mile (g c), 3					0.37		\rightarrow	0.37	0.51	0.54			0.35	0.3
Capacity (c), v							1273		$\overline{}$	583	332	1928			1258	569
Volume-to-Capa		tio (X)					0.847		\rightarrow	0.877	0.962	0.677			0.906	0.09
		/In (90 th percentile)					626.9		\rightarrow	643.8	462.6				691.2	60.0
		eh/In (90 th percenti					24.7		\rightarrow	25.3	18.4	9.8			27.2	2.4
		RQ) (90 th percent					0.00		\rightarrow	2.11	3.43	0.00			0.00	0.00
Uniform Delay (, , , ,	iiie)				43.5		-	44.2	40.9	11.5			46.1	32.
							5.1		\rightarrow	13.2	33.6	1.5			10.9	0.3
Incremental De							-		-	_					_	-
	al Queue Delay (d 3), s/veh						0.0			0.0	0.0	0.0			0.0	0.0
Control Delay (48.6			57.4	74.4	13.0			57.1	32.8
Level of Service				0.0			D 51.4			E	E 25.1	В		50	E	_ C
Approach Delay				0.0			51.4		L	D	25.1		С	56.	U L	E
Intersection Del	ay, s/ve	en / LOS				43	3.0							D		
Multimodal Re	sults				EB			W	B			NB			SB	
Pedestrian LOS		/LOS		2.33		В	2.33	_		В	1.91		В	1.4		Α
		os .				_				F	1.33	\rightarrow	A	1.4	-	A

HCS™ Streets Version 7.8.5

Generated: 6/16/2020 11:38:37 AM

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information	_	_	_	_	_		Site	Inforr	natio	n	_	_	_	_	_	
Analyst	DBZ						Inters	ection			Dixie	Entrance				
Agency/Co.	Diane	e B Zimm	erman 1	raffic En	aineerin	a	Juriso	liction								
Date Performed	6/16/					_	East/	West Stre	eet		Entra	nce				
Analysis Year	2021						North	n/South S	Street		Dixie	Highway	/			
Time Analyzed	AM P	eak					_	Hour Fac			0.94					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Race	Trac														
Lanes																
				7447777		ገ ጎ ተ ተ ተ ፕ		14474								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	\perp	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		1	0	1	0	1	2	1	0	1	2	0
Configuration		L		R		L		R		L	Т	R		L	Т	TR
Volume (veh/h)		23		126		24		118	0	126	1315	134	0	54	698	113
Percent Heavy Vehicles (%)		5		5		5		5	3	5			3	22		
Proportion Time Blocked	_															
Percent Grade (%)	\bot))									
Right Turn Channelized	-	N	lo			N	lo			N	lo					
Median Type Storage				Left	Only								1			_
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.60		7.00		7.60		7.00		4.20				4.54		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.55		3.35		3.55		3.35		2.25				2.42		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		24		134		26		126		134				57		
Capacity, c (veh/h)		66		564		57		375		757				342		
v/c Ratio		0.37		0.24		0.44		0.33		0.18				0.17		
95% Queue Length, Q ₉₅ (veh)		1.4		0.9		1.7		1.4		0.6				0.6		
Control Delay (s/veh)		88.1		13.4		110.4		19.3		10.8				17.6		
Level of Service (LOS)		F		В		F		С		В				С		
Approach Delay (s/veh)			1.9			34	1.7			0	.9			1	.1	
Approach LOS		(0			[)									

HCSTM TWSC Version 7.8.5 Dixie Ent AM 21.xtw

Generated: 6/16/2020 10:59:27 AM

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	DBZ	Intersection	Dixie Entrance
Agency/Co.	Diane B Zimmerman Traffic Engineering	Jurisdiction	
Date Performed	6/16/2020	East/West Street	Entrance
Analysis Year	2031	North/South Street	Dixie Highway
Time Analyzed	AM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Race Trac		
Lanes			

Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		1	0	1		1	0	1	0	1	2	1	0	1	2	0	
Configuration		L		R		L		R		L	Т	R		L	Т	TR	
Volume (veh/h)		23		126		24		118	0	126	1389	134	0	54	738	113	
Percent Heavy Vehicles (%)		5		5		5		5	3	5			3	22			
Proportion Time Blocked																	
Percent Grade (%)		()			(
Right Turn Channelized		N	lo			N	lo			N	lo						
Median Type Storage				Left	Only								1				
Critical and Follow-up Ho	eadwa	ys															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1			
Critical Headway (sec)		7.60		7.00		7.60		7.00		4.20				4.54			
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)		3.55		3.35		3.55		3.35		2.25				2.42			
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		24		134		26		126		134				57			
Capacity, c (veh/h)		57		546		51		353		729				316			
v/c Ratio		0.43		0.25		0.50		0.36		0.18				0.18			
95% Queue Length, Q ₉₅ (veh)		1.6		1.0		1.9		1.6		0.7				0.7			
Control Delay (s/veh)		109.0		13.7		133.3		20.7		11.1				18.9			
Level of Service (LOS)		F		В		F		С		В				С			
Approach Delay (s/veh)		28	3.4		39.7					0	.8		1.1				
Approach LOS		[)		E												

HCSTM TWSC Version 7.8.5 Dixie Ent AM 31.xtw

Generated: 6/16/2020 11:00:44 AM

		Н	CS7	Two-	-Way	Sto	o-Co	ntrol	Rep	ort									
General Information	_	_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_				
Analyst	DBZ						Inters	ection			Dixie	Entrance							
Agency/Co.	Diane	B Zimm	nerman 1	raffic En	aineerin	a		liction											
Date Performed	6/16/	2020					East/	West Stre	eet		Entra	nce							
Analysis Year	2021						North	n/South :	Street		Dixie	Highwa	у						
Time Analyzed	PM P	eak					Peak	Hour Fac	ctor		0.98								
Intersection Orientation	North	n-South					Analy	sis Time	Period ((hrs)	0.25								
Project Description	Race	Trac																	
Lanes																			
				744X+1	ብግ	ገ † † ተ ቀ ፕ r Street: Nor	111	7 4 4 7											
Vehicle Volumes and Ad	justme	nts																	
Approach		Eastb	ound			Westl	oound			North	bound			South	bound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R			
Priority	\bot	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes	+	1	0	1		1	0	1	0	1	2	1	0	1	2	0			
Configuration	+	L		R		L		R		L	T	R		L	T	TR			
Volume (veh/h)	+	18		103		12		72	0	104	1277	86	0	57	1649	92			
Percent Heavy Vehicles (%)	+-	5		5		5		5	3	5			3	21					
Proportion Time Blocked Percent Grade (%)	+		0				0												
Right Turn Channelized	+		lo				lo				No								
Median Type Storage	+	- 1	10	Left	Only						1 0		<u>1 </u>						
Critical and Follow-up H	eadwa	vs		Leit	Offiny								<u>'</u>						
Base Critical Headway (sec)	T	7.5		6.9		7.5		6.9		4.1	П		П	4.1	П				
Critical Headway (sec)		7.60		7.00		7.60		7.00		4.20				4.52					
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2					
Follow-Up Headway (sec)		3.55		3.35		3.55		3.35		2.25				2.41					
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)	T	18		105		12		73		106	Π		Г	58	Π				
Capacity, c (veh/h)		40		281		26		404		333				400					
v/c Ratio		0.46		0.37		0.46		0.18		0.32				0.15					
95% Queue Length, Q ₉₅ (veh)		1.6		1.7		1.4		0.7		1.3				0.5					
Control Delay (s/veh)		158.5		25.3		227.3		15.9		20.8				15.5					
Level of Service (LOS)		F		D		F		С		С				С					
Approach Delay (s/veh)		4	5.1		46.1					1	.5		0.5						
Approach LOS			E				E												

			CS7	TWO-	-vvay	200		IIIIOI	1/ch	010									
General Information	_						Site	Inforn	natio	1						_			
Analyst	DBZ						Inters	ection			Dixie	Entrance	=						
Agency/Co.	Diane	B Zimm	erman T	raffic En	gineerin	g	Jurisd	liction											
Date Performed	6/16/	2020					East/\	Nest Stre	eet		Entrai	nce							
Analysis Year	2031						North	/South S	Street		Dixie	Highway	/						
Time Analyzed	PM P	eak					Peak	Hour Fac	tor		0.98								
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25								
Project Description	Race	Trac																	
Lanes																			
				7 4 4 Y ↑ Y C	<mark>១។</mark> Major	↑↑↑ ↑↑Υ Street: Nor	↑ ↑ ↑ ↑ th-South	r Y ❖ ₱ ſ											
Vehicle Volumes and Ad	justme	nts																	
Approach		_	ound			Westl	oound			North	bound	Southbound							
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R			
Priority	\bot	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes	+	1	0	1		1	0	1	0	1	2	1	0	1	2	0			
Configuration	+-	L		R		L		R		L	T	R		L	T	TR			
Volume (veh/h)	+	18		103		7		72	0	104	1345	86	0	57	1744	92			
Percent Heavy Vehicles (%)	+-	5		5		5		5	3	5			3	21		L			
Proportion Time Blocked	+																		
D . C . (00)									l										
Percent Grade (%)	+-		0				0												
Right Turn Channelized			lo	1-4-	Only		lo			N	lo		1						
Right Turn Channelized Median Type Storage	eadwa	٨		Left	Only					N	lo		1						
Right Turn Channelized Median Type Storage Critical and Follow-up H	eadwa	ys			Only	N		69			lo		1	41					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	ys 7.5		6.9	Only	7.5		6.9		4.1	lo		1	4.1					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec)	eadwa	ys 7.5 7.60		6.9 7.00	Only	7.5 7.60		7.00		4.1 4.20	lo		1	4.52					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	eadwa	ys 7.5		6.9	Only	7.5		-		4.1			1	_					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)		7.5 7.60 3.5 3.55	lo	6.9 7.00 3.3 3.35	Only	7.5 7.60 3.5		7.00 3.3		4.1 4.20 2.2			1	4.52 2.2					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.5 7.60 3.5 3.55	lo	6.9 7.00 3.3 3.35	Only	7.5 7.60 3.5		7.00 3.3		4.1 4.20 2.2			1	4.52 2.2					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an		ys 7.5 7.60 3.5 3.55 I of Se	lo	6.9 7.00 3.3 3.35	Only	7.5 7.60 3.5 3.55		7.00 3.3 3.35		4.1 4.20 2.2 2.25			1	4.52 2.2 2.41					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h)		7.5 7.60 3.5 3.55 1 of Se	lo	6.9 7.00 3.3 3.35	Only	7.5 7.60 3.5 3.55		7.00 3.3 3.35		4.1 4.20 2.2 2.25			1	4.52 2.2 2.41 58					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)		7.5 7.60 3.5 3.55 1 of Se	lo	6.9 7.00 3.3 3.35	Only	7.5 7.60 3.5 3.55		7.00 3.3 3.35 73 383		4.1 4.20 2.2 2.25 106 305			1	4.52 2.2 2.41 58 374					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.5 7.60 3.5 3.55 I of Se 18 34 0.55	lo	6.9 7.00 3.3 3.35 105 261 0.40	Only	7.5 7.60 3.5 3.55 7 16 0.44		7.00 3.3 3.35 73 383 0.19		4.1 4.20 2.2 2.25 106 305 0.35				4.52 2.2 2.41 58 374 0.16					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		7.5 7.60 3.5 3.55 1 of Se 18 34 0.55 1.8	lo	6.9 7.00 3.3 3.35 105 261 0.40 1.9	Only	7.5 7.60 3.5 3.55 7 16 0.44 1.2		7.00 3.3 3.35 73 383 0.19 0.7		4.1 4.20 2.2 2.25 106 305 0.35 1.5				4.52 2.2 2.41 58 374 0.16 0.5					
Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		7.5 7.60 3.5 3.55 I of Se 18 34 0.55 1.8 202.3	lo	6.9 7.00 3.3 3.35 105 261 0.40 1.9 27.9	Only	7.5 7.60 3.5 3.55 7 16 0.44 1.2 341.7		7.00 3.3 3.35 73 383 0.19 0.7 16.6		4.1 4.20 2.2 2.25 106 305 0.35 1.5 23.0	.6			4.52 2.2 2.41 58 374 0.16 0.5 16.4	0.5				

HCSTM TWSC Version 7.8.5 Dixie Ent PM 31.xtw

Copyright © 2020 University of Florida. All Rights Reserved.

Generated: 6/19/2020 5:48:17 PM

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort									
General Information							Site	Inforr	natio	n									
Analyst	DBZ						Inters	ection			Entra	nce Flow	ervale						
Agency/Co.	Diane	e B Zimm	erman T	raffic En	gineerin	g	Jurisd	iction											
Date Performed	6/15/	2020					East/\	Nest Stre	eet		Flowe	rvale							
Analysis Year	2021						North	/South S	Street		Entra	nce							
Time Analyzed	AM F	eak					-	Hour Fac			0.94								
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25								
Project Description	Race	Ггас																	
Lanes																			
				9 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Y YY1	st-West	A 1 4 4 4 4 4 1											
Vehicle Volumes and Adj	ustme	nts																	
Approach		Eastb	ound			Westl	stbound			Northbo				South	bound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R			
	1 1U	1	2	3	4U	4	5	6		7	8	9	l	10	11				
Priority	+												_			-			
Number of Lanes	0	1	1	0	0	1	2	0		0	1	0		0	1	-			
Number of Lanes Configuration		L		TR	0	L	Т	TR			1 LR				1 LR	0			
Number of Lanes Configuration Volume (veh/h)	0	L 40	1 110		0	L 13		-		87		13		38	_	7			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		L		TR	0	L	Т	TR							_	7			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	0	L 40		TR	0	L 13	Т	TR		87	LR	13		38	LR	0			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)	0	L 40		TR	0	L 13	Т	TR		87		13		38	_	7			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	0	L 40		TR 49		L 13	Т	TR		87	LR	13		38	LR	7			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	0 1	L 40 1		TR 49	vided	L 13	Т	TR		87	LR	13		38	LR	7			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Heaves	0 1	1 1 ys		TR 49		L 13 1	Т	TR		87	LR	13		38	LR	7 1			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up Heave (Sec)	0 1	L 40 1 1		TR 49		L 13 1	Т	TR		87 1	LR	13 1		7.5	LR	0 7 1			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)	0 1	ys 4.1 4.12		TR 49		L 13 1	Т	TR		7.5 7.52	LR	13 1 1 6.2 6.22		7.5 7.52	LR	6.9 6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	0 1	ys 4.1 4.12 2.2		TR 49		L 13 1 1 4.1 4.12 2.2	Т	TR		7.5 7.52 3.5	LR	6.2 6.22 3.3		7.5 7.52 3.5	LR	6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21	110	TR 49 Undi		L 13 1	Т	TR		7.5 7.52	LR	13 1 1 6.2 6.22		7.5 7.52	LR	6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21	110	TR 49 Undi		L 13 1 1 4.1 4.12 2.2	Т	TR		7.5 7.52 3.5	LR	6.2 6.22 3.3		7.5 7.52 3.5	LR	6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21	110	TR 49 Undi		L 13 1 1 4.1 4.12 2.2	Т	TR		7.5 7.52 3.5	LR	6.2 6.22 3.3		7.5 7.52 3.5	LR	6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21 I of Se 43 1214	110	TR 49 Undi		4.1 4.12 2.2 2.21	Т	TR		7.5 7.52 3.5	LR 00 00 106 523	6.2 6.22 3.3		7.5 7.52 3.5	LR 00 00 48 48 398	6.9 6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21 l of Se 43 1214 0.04	110	TR 49 Undi		4.1 4.12 2.2 2.21 14 1413 0.01	Т	TR		7.5 7.52 3.5	LR 00 00 106 523 0.20	6.2 6.22 3.3		7.5 7.52 3.5	LR 00 00 48 398 0.12	6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21 l of Se 43 1214 0.04 0.1	110	TR 49 Undi		4.1 4.12 2.2 2.21 14 1413 0.01 0.0	Т	TR		7.5 7.52 3.5	106 523 0.20	6.2 6.22 3.3		7.5 7.52 3.5	LR 00 00 00 00 00 00 00 00 00 00 00 00 00	6.9 6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21 I of Se 43 1214 0.04 0.1 8.1	110	TR 49 Undi		L 13 1 1 4.1 4.12 2.2 2.21 14 1413 0.01 0.0 7.6	Т	TR		7.5 7.52 3.5	106 523 0.20 0.8 13.6	6.2 6.22 3.3		7.5 7.52 3.5	LR 00 00 48 398 0.12 0.4 15.3	6.9 6.9			
Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	0 1 1 eadwa	ys 4.1 4.12 2.2 2.21 l of Se 43 1214 0.04 0.1 8.1 A	110	TR 49 Undi		L 13 1 1 4.1 4.12 2.2 2.21 14 1413 0.01 0.0 7.6 A	Т	TR		7.5 7.52 3.5 3.51	106 523 0.20	6.2 6.22 3.3		7.5 7.52 3.5 3.51	LR 00 00 00 00 00 00 00 00 00 00 00 00 00	6. 6.9 3.			

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort									
General Information	_						Site	Inforr	natio	n									
Analyst	DBZ						Inters	ection			Entra	nce Flow	ervale						
Agency/Co.	Diane	e B Zimm	nerman 1	raffic En	gineerin	g	Jurisd	liction											
Date Performed	6/15/	/2020					East/\	Nest Stre	eet		Flowe	ervale							
Analysis Year	2031						North	/South S	Street		Entra	nce							
Time Analyzed	AM F	eak					Peak	Hour Fac	ctor		0.94								
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25								
Project Description	Race	Trac																	
Lanes																			
				8744Y177		Y Y Y 1 or Street: Ea	↑ ↑	747											
Vehicle Volumes and Adj	ustme	nts																	
Approach		Eastb	ound			Westl	oound			North	bound		Southbound						
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R			
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	1	0	0	1	2	0		0	1	0		0	1	0			
Configuration	-	L		TR		L	T	TR			LR				LR				
Volume (veh/h)	0	40	116	49		13	338	7		87		13		38		7			
Percent Heavy Vehicles (%)	1	1				1				1		1		1		1			
Proportion Time Blocked	-																		
Percent Grade (%)	-										0			(0				
Right Turn Channelized	-				<u> </u>														
Median Type Storage				Unai	vided														
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1				7.5		6.2		7.5		6.9			
Critical Headway (sec)		4.12				4.12				7.52		6.22		7.52		6.92			
Base Follow-Up Headway (sec)	_	2.2				2.2				3.5		3.3		3.5		3.3			
Follow-Up Headway (sec)		2.21				2.21				3.51		3.31		3.51		3.31			
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)		43				14					106				48				
Capacity, c (veh/h)		1195				1406					511				383				
v/c Ratio		0.04				0.01					0.21				0.12				
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.8				0.4				
Control Delay (s/veh)		8.1				7.6					13.9				15.7				
Level of Service (LOS)		А				А					В				С				
Approach Delay (s/veh)		1	.6			0	.3			13	3.9		15.7						
Approach LOS											В		С						

HCSTM TWSC Version 7.8.5 FL AM 31 B.xtw

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort									
General Information	_						Site	Inforr	natio	n									
Analyst	DBZ						Inters	ection			Entra	nce Flow	ervale						
Agency/Co.	Diane	e B Zimm	erman 1	raffic En	gineerin	ıg	Jurisd	liction											
Date Performed	6/15/						East/\	Nest Str	eet		Flowe	ervale							
Analysis Year	2021						North	/South	Street		Entra	nce							
Time Analyzed	PM P	eak					Peak	Hour Fac	ctor		0.98								
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25								
Project Description	Race	Ггас																	
Lanes																			
				1 1 4 4 X 4 X C		Y or Street: Ea		117											
Vehicle Volumes and Ad	justme	nts				or street ea	J. W.J.												
Approach	_	Eastb	ound			Westl	bound		Northbound				Southbound						
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R			
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	1	0	0	1	2	0		0	1	0		0	1	0			
Configuration	+-	L		TR		L	T	TR			LR				LR	L			
Volume (veh/h)	0	33	365	42		12	287	6		105		12		5		31			
Percent Heavy Vehicles (%)	1	1				1				1		1		1		1			
Proportion Time Blocked	+																		
Percent Grade (%)	-										0				0				
Right Turn Channelized	+			11	a di al an al														
Median Type Storage				Undi	vided														
Critical and Follow-up H	leadwa	ys																	
Base Critical Headway (sec)	_	4.1				4.1				7.5		6.2		7.5		6.9			
Critical Headway (sec)		4.12				4.12				7.52		6.22		7.52		6.92			
Base Follow-Up Headway (sec)	_	2.2				2.2				3.5		3.3		3.5		3.3			
Follow-Up Headway (sec)		2.21	L			2.21		L		3.51		3.31		3.51		3.31			
Delay, Queue Length, ar	d Leve	l of S	ervice																
Flow Rate, v (veh/h)		34				12					119				37				
Capacity, c (veh/h)		1266				1147					361				667				
v/c Ratio		0.03				0.01					0.33				0.06				
95% Queue Length, Q₀₅ (veh)		0.1				0.0					1.4				0.2				
Control Delay (s/veh)		7.9				8.2					19.8				10.7				
Level of Service (LOS)		А				А					С				В				
Approach Delay (s/veh)		0			0	.3			19	9.8		10.7							
Approach LOS										(С		В						

Copyright $\ensuremath{\mathbb{G}}$ 2020 University of Florida. All Rights Reserved.

HCSTM TWSC Version 7.8.5 FL PM 21 B.xtw

Generated: 6/16/2020 11:12:37 AM

		Н	CS7	Two-	-Way	Sto _l	o-Co	ntrol	Rep	ort									
General Information							Site	Inform	natio	n									
Analyst	DBZ						Inters	ection			Entra	nce Flow	vervale						
Agency/Co.	Diane	B Zimm	erman T	raffic En	gineerin	ıg	Jurisc	liction											
Date Performed	6/15/						East/	West Str	eet		Flowe	ervale							
Analysis Year	2031						North	n/South :	Street		Entrance								
Time Analyzed	PM P	eak					Peak	Hour Fac	tor		0.98	0.98							
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25								
Project Description	Race	Ггас																	
Lanes																			
				5 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Y or Street: Ea		417											
Vehicle Volumes and Ad	justme	nts																	
Approach		Eastb	ound			West	bound			North	bound			South	bound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	1	0	0	1	2	0		0	1	0		0	1	0			
Configuration	+	L		TR		L	T	TR			LR				LR	╙			
Volume (veh/h)	0	33	384	42		12	303	6		112		12		5		31			
Percent Heavy Vehicles (%)	1	1				1				1		1		1		1			
Proportion Time Blocked	+																		
Percent Grade (%)	+										0				0				
Right Turn Channelized	+-																		
Median Type Storage				Undi	vided														
Critical and Follow-up H	leadwa	ys																	
Base Critical Headway (sec)	\bot	4.1				4.1				7.5		6.2		7.5		6.9			
Critical Headway (sec)		4.12				4.12				7.52		6.22		7.52		6.92			
Base Follow-Up Headway (sec)	_	2.2				2.2				3.5		3.3		3.5		3.3			
Follow-Up Headway (sec)		2.21				2.21				3.51		3.31		3.51		3.31			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		34				12					127				37				
Capacity, c (veh/h)		1249				1129					344				648				
v/c Ratio		0.03				0.01					0.37				0.06				
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					1.6				0.2				
Control Delay (s/veh)		8.0				8.2					21.4				10.9				
Level of Service (LOS)		А				А					С				В				
Approach Delay (s/veh)		0	.6			0	.3				21.4 10.9								
Approach LOS										(СВ								

HCSTM TWSC Version 7.8.5 FL PM 31 B.xtw

Generated: 6/16/2020 11:13:35 AM

Copyright $\ensuremath{\mathbb{G}}$ 2020 University of Florida. All Rights Reserved.